空间角定理

合集下载

高中数学精品课件:空间角

高中数学精品课件:空间角

图7-46-8
与平面ABCD所成的角,由已知得∠MBA=45°,则MA=MB,此时O为AB的中点.
连接OC,由∠BAD=∠ADC=90°,AB=AD=2DC,得四边形AOCD为矩形,所以
OC⊥AB,所以CO⊥平面MAB,又MA⊂平面MAB,所以OC⊥MA.
图7-46-8
[总结反思] (1)求解二面角的大小问题,关键是要合理作出它的平面角,当找到 二面角棱的一个垂面时,即可确定平面角,作二面角的平面角最常用的方法是 利用三垂线定理(或三垂线定理的逆定理). (2)对于建立空间直角坐标系比较简便的几何体,我们可以直接利用向量求出 两个平面的法向量,并转化为求两个法向量的夹角来完成.
.
题组二 常错题 ◆索引:二面角取值范围出错;线面角范围出错;不能正确构建线面垂直及斜线 段在底面上的射影.
6.在一个二面角的两个半平面内都和二面角的棱垂直的两个向量分别为
(0,-1,3),(2,2,4),则这个二面角的余弦值为
.
7.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为 45° .
图7-46-8
图7-46-8
方法二:二面角D-MA-C的大小即为二面角B-MA-D的大小与二面角B-MA-C大
小的差,由(1)可知二面角B-MA-D的大小为90°,
所以二面角D-MA-C的正弦值即为二面角B-MA-C的余弦值.
过M作MO⊥AB于O(图略),因为平面MAB⊥平面ABCD,平面 MAB∩平面ABCD=AB,所以MO⊥平面ABCD,∠MBO即为MB
A
证明:连接AC(图略),由题知△ACD为等边三角形,因为M为AD的中点,所以 CM⊥AD,又AD∥BC,所以CM⊥BC,因为平面ABCD⊥平面PBC,且平面 ABCD∩平面PBC=BC,CM⊂平面ABCD,所以CM⊥平面PBC,故CM⊥PB.

空间角度

空间角度

空间角度在机械零件加工中经常可以遇到具有空间角度的斜孔、斜面,在加工这些零件或设计这些零件夹具时,常常需要进行空间角度的计算。

因此,在这里就对空间角度的计算及应用进行讨论。

一、关于双斜线的空间角度计算在机械制图中我们把和三个投影面的位置都倾斜的直线叫做一般位置直线,在这我们称一般位置直线为双斜线。

1、双斜线的空间角度某斜孔零件如图所示,立体图剖切图从图中可以看到:斜孔和三个基本投影面都是倾斜的,但斜孔倾斜的方向和角度大小完全可以由斜孔轴线来表示,而斜孔轴线可看成是一般直线及双斜线,因此倾斜孔的空间角度问题就简化为双斜线的空间角度问题。

下面我们就来讨论双斜线的角度及角度代号。

1)、方向角为便于讨论,可把空间直线和三个投影面的关系抽象成一个长方体,双斜线就作为对角线,如图。

从图中可看出红色直线的方向可以由与投影轴之间的角度来确定。

直线与X轴、Y轴、Z轴的夹角通常用α、β、γ表示,称为方向角。

α表示双斜线与X投影轴之间的夹角。

β表示双斜线与Y投影轴之间的夹角。

γ表示双斜线与Z投影轴之间的夹角。

注意在这里所讨论的夹角都是双斜线与投影轴之间所夹的正锐角。

如图如果双斜线不通过原点,可以在直线上的任意点作三条线分别平行于X、Y、Z轴,这三条线与双斜线的夹角也是方向角。

如图2)、真实倾角从双斜线和三个投影面之间的几何关系看,双斜线和三个投影面之间存在着倾角,即线和面之间的倾角。

双斜线对投影面的倾角是可用双斜线和它在该投影面上投影之间的夹角表示。

双斜线与W (yz)面、V(xz)面、H(xy)面的夹角通常用α0、β0、γ0表示,称为真实倾角。

α0表示双斜线与W(yz)面的夹角。

β0表示双斜线与V(xz)面的夹角。

γ0表示双斜线与H(xy)面的夹角。

由下图可看出方向角和真实倾角之间的关系:α+α0=90°、β+β0=90°、γ+γ0=90°3)、投影角如图所示双斜线在三个投影面上的投影与投影轴之间的夹角也可反应空间直线的方向,我们把这些夹角称为投影角。

2023年高考数学----空间角问题规律方法与典型例题讲解

2023年高考数学----空间角问题规律方法与典型例题讲解

2023年高考数学----空间角问题规律方法与典型例题讲解【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D −中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11AC 所成的角为θ,则cos θ的取值范围为( )A .⎡⎢⎣⎦B .⎤⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦【答案】C【解析】如图1,设1B D 与平面1ACD 相交于点E ,连接BD 交AC 于点O ,连接11B D , ∵1BB ⊥平面ABCD ,AC ⊂平面ABCD ,则1BB AC ⊥,AC BD ⊥,1BD BB B ⋂=,1,BD BB ⊂平面11BDD B∴AC ⊥平面11BDD B ,由1B D ⊂平面11BDD B ,则1AC B D ⊥, 同理可证:11AD B D ⊥, 1AD AC A =,1,AD AC ⊂平面1ACD ,∴1B D ⊥平面1ACD ,∵111111AC AD CD AB B D B C =====,由正三棱锥的性质可得:E 为1ACD △的中心, 连接1OD ,∵O 为AC 的中点,∴1OD 交1B D 于点E ,连接PE ,由1B D ⊥平面1ACD ,PE ⊂平面1ACD ,则1B D PE ⊥,即PE 是1PB D 的高,设AB a =,PE d =,则1,B D AC =,且1ACD △的内切圆半径r OE ==,则1112PB D S B D PE =⋅=△,))1212ACD S =⨯=△,∵1113PB DACD S S =△△213=,则13d a r =<, ∴点P 的轨迹是以E 为圆心,13a 为半径的圆.∵1B D ⊥平面1ACD ,1OD ⊂平面1ACD ,则11B D OD ⊥,∴DE , 故PD 为底面半径为13a,高为=DE 的圆锥的母线,如图2所示,设圆锥的母线与底面所成的角α,则3tan 13a α== 所以π3α=,即直线PD 与平面1ACD 所成的角为π3. 直线AC 在平面1ACD 内,所以直线PD 与直线AC 所成角的取值范围为ππ,32⎡⎤⎢⎥⎣⎦,因为11AC AC ∥,所以直线PD 与直线11AC 所成角的取值范围为ππ,32⎡⎤⎢⎥⎣⎦,即ππ,32θ⎡⎤∈⎢⎥⎣⎦, 所以10cos 2θ≤≤. 故选:C.例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C −−的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤ D .11A BC A DC θ∠+∠≥【答案】C【解析】等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,可知:30,ACB ACD BD DC ∠=∠=⊥取BD 中点N ,BC 中点M 连接1,A N NM ,则1A N BD ⊥,NM BC ⊥,所以1A NM ∠为 二面角1A BD C −−的平面角,即1A NM θ∠=设122AB AD CD BC ====,则1111,1,2,2A N MN A B A D ==== 2222211111111cos 1222A N NM A M A M A M A N NM θ+−+−∴===−⋅,2222222111111221cos 122228A B BM A M A M A BC A M A B BM +−+−∴∠===−⋅⨯⨯,因为在[]0,π上余弦函数单调递减,又2211111111cos cos 82A M A M A BC A BC θθ−≥−⇒∠≥⇒∠≤,故A 对. 2222222111111221cos 122228A D DC AC AC A DC AC A D CD +−+−∴∠===−⋅⨯⨯222122221111153cos 2416AC AO OC AC AOC AC AO OC +−+−∴∠===−⋅ 当0θ=时,1A 与M 重合,此时160A DC ∠=,故C 不对. 1A DC ∠在翻折的过程中,角度从120减少到60 1AOC ∠在翻折的过程中,角度从180减少到30BD 选项根据图形特征及空间关系,可知正确.. 故选:C例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,BC D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①tan βα,②γβ≤,③γα>. A .① B .①② C .②③ D .①③【答案】B 【解析】如图,设直线BN 与直线CM 垂直相交于点N ,在折叠图里,线段B T '与平面ACM 垂直相交于点T ,,(0,30)BCM θθ∠=∈,由图像知:;B NT B MT αβ''∠=∠=,B N BN θ==', ()sin ;/sin 30B T B M θαθθ=*='︒+',cos NT θα*,()tan 60MN θθ=*︒−,()()2sin 30CM θ=︒+,①tan β==,tan β=≤≤,所以tan βα;② ()Δ1sin 902ACM S CM CA θ=*︒−= 设ACB δ∠'=,则()()()2cos cos cos 90sin sin 90cos cos 0.5sin2δθθθθααθ=*︒−+*︒−=*,Δsin ACB S δ'== 由ΔΔ1133ACM M ACB ACB B T S d S −''**=**',得M ACB d −'=()sin sin 30sin M ACB d B TMC B M γβθα'−====︒+*'',则()()sin sin 2tan 21sin 2sin 30cos 22sin 30γθθβθθθ=≤=≤︒+︒+, 由sin sin γβ≤得γβ≤; ③sin sin sin γγα=⇒,则sin sin 2tan 2sin 2cos 22γθθαθ≤=<sin γα<,所以sin sin γα<,则γα<.故选:B例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B −−的平面角为α,二面角P FC B −−的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥【答案】A【解析】在等边ABC 中,取BC 边中点D ,连接AD ,交EF 于O ,连接PO , 则,EF PO EF DO ⊥⊥,=PO DO O ⋂,PO ⊂平面POD ,DO ⊂平面POD 故EF ⊥平面POD ,又EF ⊂平面EFCB ,则平面POD ⊥平面EFCB 在POD 中,过P 做PM 垂直于OD 于M ,则PM ⊥平面EFCB ,连接MF , 在等边ABC 中,过M 做MN 垂直于AC 于N ,连接PN.由,EF PO EF DO ⊥⊥,则POM ∠为二面角P EF B −−的平面角即POM α∠=, 由PM ⊥平面EFCB ,MN AC ⊥,则PNM ∠为二面角P FC B −−的平面角即PNM β?由PM ⊥平面EFCB ,则PFM ∠直线PF 与平面EFCB 所成角,即PFM γ?,设AO ,则PO ,=FO a ,sin PM α,cos MO αFM ,)1=cos (1cos )2MN αα+=+, 则有FM OM >,FM NM >由cos MO MN α-(1cos )(cos 1)0αα-+=-<可得MO MN <,则有FM MN OM >>,则111FM MN OM<< 又tan tan ,tan PM PM PMOM NM FMαβγ,=== 故tan tan tan αβγ>>,又0,2παβγ⎛⎫∈ ⎪⎝⎭、、故αβγ>> 故选:A例23.(2022·全国·高三专题练习)设三棱锥V ABC −的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B −−的平面角是γ则三个角α,β,γ中最小的角是( ) A .α B .β C .γD .不能确定【答案】B【解析】如图,取BC 的中点 D ,作VO ⊥平面ABC 于点O , 由题意知点O 在AD 上,且AO =2OD .作PE //AC ,PE 交VC 于点E ,作PF ⊥AD 于点F ,连接BF ,则PF ⊥平面ABC 取AC 的中点M ,连接BM ,VM ,VM 交 PE 于点H , 连接BH ,易知BH ⊥PE , 作于点G ,连接FG ,由PG ⊥AC ,PF ⊥AC ,PG PF =P ,由线面垂直判定定理可得AC ⊥平面PGF ,又FG ⊂平面PGF ∴ FG ⊥AC , 作FN ⊥BM 于点N . ∵ PG ∥VM ,PF ∥VN∴ 平面PGF ∥平面VMB , 又 PH ∥FN , 四边形PFNH 为平行四边形, 所以PH =FN因此,直线PB 与直线AC 所成的角=BPE α∠, 直线PB 与平面ABC 所成的角PBF β=∠, 二面角P -AC -B 的平面角PGF γ=∠, 又cos cos PH FN BFPB PB PBαβ==<=又,[0,]2παβ∈,∴ αβ> 因为 tan =tan PF PFGF BF γβ>= ,(0,)2πβγ∈∴ γβ>综上所述,,,αβγ中最小角为β,故选 B.。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。

E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。

求直线1EC 与1FD 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。

思路二:平移线段C 1E 让C 1与D 1重合。

转化为平面角,放到三角形中,用几何法求解。

(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。

则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。

三个空间角公式

三个空间角公式

三个空间角公式1.三余弦定理的基础知识三余弦指的是空间中的三个角的余弦值,在上方链接投影法求一面直线夹角中,三个角分别为直线l1与特定平面所成的夹角θ1,直线l2与特定平面所成夹角θ2,两条直线在特定平面上投影的夹角为α,此时两条异面直线的夹角余弦值公式为:cosX=cosαcosθ1cosθ2+sinθ1sinθ2,关于该公式的证明自己查看上述链接即可。

在这个异面直线夹角余弦值的公式中,两条直线异面且不在同一个特定平面内,若其中一条直线不在平面内且另外一条直线在平面内,此时在平面内的那条直线与平面的夹角θ2就是0,所以正弦值也为0,余弦值为1,此时公式为cosX=cosαcosθ1,这就是典型的三余弦定理的公式,一定要知道该公式是怎么来的,图示如下图所示:从公式中知道需要有三条线,这三条线形成三个角,三个角又形成三个面,我们求得就是与这三个角有关的内容,这三条线分别为平面内的一条线,平面外的一条线与该直线在平面内的射影,这么一看是不是和三垂线定理一样,没错,如果把平面内的一条直线与平面外直线的射影垂直,那么利用这个公式就能判定斜线和平面内的直线夹角为90°。

2.三余弦定理在求直线夹角中的应用这个公式更多应用在求异面直线夹角的余弦值当中,在同一个面中直接利用三角函数求更容易,因此三余弦定理在高中立体几何中的应用更多体现在异面直线夹角和所推广开的二面角中,有关三余弦定理在异面直线中的应用可参考链接中的这个典型题目:例1:如下图中正方体中,点M是棱DD1的中点,点O为底面ABCD的中心,点P为棱A1B1上任意一点,求直线OP与直线AM之间所成角的余弦值解析:点P为A1B1上运动,无论点P在哪个位置,OP在左侧面上的投影均为O'A1,此时发现AM和O'A1之间的夹角为90°,所以此时直线OP和AM 所成角的余弦值就等于OP与左侧面夹角的余弦值,考虑到AM就在左侧面上,所以AM与左侧面的夹角为0,正弦值也为0,所以可知异面直线OP和AM之间夹角的余弦值等于0,所以两条直线的夹角为90°。

高中数学空间的角的计算

高中数学空间的角的计算

面-线-面
0,2
语言叙述
二面角 半平面-线-半平面
0,
语言叙述或符号表示
要点三:直线和平面的夹角 1. 有关概念 斜线:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫作平面的斜.线.,斜 线和平面的交点叫作斜.足.. 射影:过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫作斜线在这个平 面上的射影. 斜线与平面的夹角:平面的一条斜线与它在该平面内的射影的夹角叫作该直线与此平面 的夹角. 如图, l 是平面 的一条斜线,斜足为 O , OA 是 l 在平面 内的射影, POA 就是直 线 l 与平面 的夹角.
3. “平面间的夹角”不同于“二面角” (1)二面角的有关概念 半平面:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫半平面. 二面角:从一条直线出发的两个半平面所组成的图形叫二面角. 如图,可记作二面角 -a- 或 - AB - .
2
(2)区别: 构成 范围
表示法
平面间的夹角
2
5
举一反三:
【变式 1】 如图,在四棱锥 P ABCD 中,底面 ABCD 是正方形,侧棱 PD ⊥底面 ABCD , PD DC ,点 E 是 PC 的中点,作 EF ⊥ PB 交 PB 于点 F .
(1)求证: PB ⊥平面 EFD ;
(2)求平面 与平面 的夹角的大小.
【变式 2】在四棱锥 P ABCD 中,侧面 PCD ⊥底面 ABCD ,PD ⊥ CD ,E 为 PC 中点, 底面 ABCD 是直角梯形, AB ∥ CD , ADC=90 , AB AD PD 1, CD 2 . 设 Q 为侧
11
一、选择题
S
C
B
D
A

高三数学第二轮专题讲座复习:关于求空间的角的问题

高三数学第二轮专题讲座复习:关于求空间的角的问题

张喜林制[选取日期]高三数学第二轮专题讲座复习:关于求空间的角的问题高考要求空间的角是空间图形的一个要素,在异面直线所成的角、线面角、二面角等知识点上,较好地考查了学生的逻辑推理能力以及化归的数学思想 重难点归纳空间角的计算步骤 一作、二证、三算1 异面直线所成的角 范围 0°<θ≤90°方法 ①平移法;②补形法2 直线与平面所成的角 范围 0°≤θ≤90° 方法 关键是作垂线,找射影3 二面角方法 ①定义法;②三垂线定理及其逆定理;③垂面法注1 二面角的计算也可利用射影面积公式S ′=S cos θ来计算注2 借助空间向量计算各类角会起到事半功倍的效果 4.三种空间角的向量法计算公式:⑴异面直线,a b 所成的角θ:cos cos ,a b θ=<>;⑵直线a 与平面α(法向量n )所成的角θ:sin cos ,a n θ=<>; ⑶锐二面角θ:cos cos ,m n θ=<>,其中,m n 为两个面的法向量。

典型题例示范讲解例1在棱长为a 的正方体ABCD —A ′B ′C ′D ′中,E 、F 分别是BC 、A ′D ′的中点(1)求证 四边形B ′EDF 是菱形;(2)求直线A ′C 与DE 所成的角;(3)求直线AD 与平面B ′EDF 所成的角;(4)求面B ′EDF 与面ABCD 所成的角命题意图 本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强知识依托 平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角 错解分析 对于第(1)问,若仅由B ′E =ED =DF =FB ′就断定B ′EDF 是菱形是错误的,因为存在着四边相等的空间四边形,必须证明B ′、E 、D 、F 四点共面技巧与方法 求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法 求二面角的大小也可应用面积射影法(1)证明 如上图所示,由勾股定理,得B ′E =ED =DF =FB ′=25a ,下证B ′、E 、D 、F 四点共面,取AD 中点G ,连结A ′G 、EG ,由EG AB A ′B ′知,B ′EGA ′是平行四边形 ∴B ′E ∥A ′G ,又A ′FD G ,∴A ′GDF 为平行四边形∴A ′G ∥FD ,∴B ′、E 、D 、F 四点共面故四边形B ′EDF 是菱形(2)解 如图所示,在平面ABCD 内,过C 作CP ∥DE ,交直线AD 于P ,则∠A ′CP (或补角)为异面直线A ′C 与DE 所成的角在△A ′CP 中, 易得A ′C =3a ,C P =DE =25a ,A ′P =213a 由余弦定理得cos A ′CP =1515 故A ′C 与DE 所成角为另法(向量法) 如图建立坐标系,则(0,0,),(,,0),(0,,0),(,,0)2aA a C a a D a E a '(,,),(,,0)2aA C a a a DE a '⇒=-=-15cos ,15||||A C DE A C DE A C DE ''⇒<>==' 故A ′C 与DE 所成角为 (3)解 ∵∠ADE =∠ADF ,∴AD 在平面B ′EDF 内的射影在∠EDF 的平分线上 如下图所示又∵B ′EDF 为菱形,∴DB ′为∠EDF 的平分线, 故直线AD 与平面B ′EDF 所成的角为∠ADB ′ 在Rt △B ′AD 中,AD =2a ,AB ′=2a ,B ′D =2a则cosADB ′=33故AD 与平面B ′EDF 所成的角是 另法(向量法)∵∠ADE =∠ADF ,∴AD 在平面B ′EDF 内的射影在∠EDF 的平分线上 如下图所示 又∵B ′EDF 为菱形,∴DB ′为∠EDF 的平分线,故直线AD 与平面B ′EDF 所成的角为∠ADB ′, 如图建立坐标系,则 (0,0,0),(,0,),(0,,0)A B a a D a '(0,,0),(,,)DA a DB a a a '⇒=-=-3cos ,3||||DA DB DA DB DA DB ''⇒<>==',故AD 与平面B ′EDF 所成的角是 (4)解 如图,连结EF 、B ′D ,交于O 点,显然O 为B ′D 的中点,从而O 为正方形ABCD —A ′B ′C ′D 的中心作OH ⊥平面ABCD ,则H 为正方形ABCD 的中心, 再作HM ⊥DE ,垂足为M ,连结OM ,则OM ⊥DE ,B故∠OMH 为二面角B ′—DE ′—A 的平面角在Rt △DOE 中,OE =22a ,OD =23a ,斜边DE =25a , 则由面积关系得OM =1030=⋅DEOEOD a 在Rt △OHM 中,sin OMH =630=OM OH 故面B ′EDF 与面ABCD 所成的角为 另法(向量法) 如图建立坐标系,则(0,0,0),(0,0,),(,0,),(0,,0),(,,0)2aA A aB a a D a E a '',所以面ABCD 的法向量为(0,0,),m AA a '==下面求面B ′EDF 的法向量n设(1,,)n y z =,由(,,0),(0,,),22a aED a EB a '=-=- 00221002a a y nED y a z nED y az ⎧-+=⎪⎧==⎧⎪⎪⇒⇒⎨⎨⎨==⎩⎪⎪⎩-+=⎪⎩∴(1,2,1)n =∴6cos ,||||6n m n m n m <>==故面B ′EDF 与面ABCD 所成的角为 例2如下图,已知平行六面体ABCD —A 1B 1C 1D 1中,底面ABCD 是边长为a 的正方形,侧棱AA 1长为b ,且AA 1与AB 、AD 的夹角都是120°求 (1)AC 1的长;(2)直线BD 1与AC 所成的角的余弦值技巧与方法 数量积公式及向量、模公式的巧用、变形用21111111222111:(1)||()()()()||||||222AC AC AC AA AC AA AC AA AB AD AA AB AD AA AB AD AA AB AA AD AB AD=⋅=++=++++=+++⋅+⋅+⋅解22222111112221:||,||||,,120,,9011cos120,cos120,0,22||2AA b AB AD aAA AB AA AD AB AD AA AB b aab AA AD b a ab AB AD AC a b ===<>=<>=︒<>=︒∴⋅=⋅︒=-⋅=⋅︒=-⋅=∴=+-由已知得12,||ab AC ∴=1111112211(2),||2,()()AC a AC AB AD BD AD BA AA AD AB AC BD AB AD AA AD AB AB AA AD AA AB AD AD AB ==+=+=+-∴⋅=++-=⋅+⋅+⋅+-依题意得21111122222111||()()||||||2222AB AD ab BD BD BD AA AD AB AA AD AB AA AD AB AA AD AB AD AA AB a b -⋅=-=⋅=+-+-=+++⋅-⋅-⋅=+2212||b a BD +=∴111cos ,||||4BD AC BD AC BD AC ⋅<>==∴BD 1与AC例3如图,l αβ--为60°的二面角,等腰直角三角形MPN 的直角顶点P 在l 上,M ∈α,N ∈β,且MP 与β所成的角等于NP 与α (1)求证 MN 分别与α、β所成角相等; (2)求MN 与β所成角(1)证明 作NA ⊥α于A ,MB ⊥β于B ,连接AM ,再作AC ⊥l 于C ,BD ⊥l 于D ,连接NC 、∵NA ⊥α,MB ⊥β,∴∠MPB 、∠NP A 分别是及NP 与α所成角,∠MNB ,∠NMA 分别是MN 与角,∴∠MPB =∠NP A在Rt △MPB 与Rt △NP A 中,PM =PN ,∠MPB =∠NPA ,∴△MPB ≌△NPA ,∴MB =NA在Rt △MNB 与Rt △NMA 中,MB =NA ,MN 是公共边,∴△MNB ≌△NMA ,∴∠MNB =∠NMA ,即(1)结论成立(2)解 设∠MNB =θ,MN =2a ,则PB =PN =a ,MB =NA =2a sin θ,NB =2a cos θ,∵MB ⊥β,BD ⊥l ,∴MD ⊥l ,∴∠MDB 是二面角α—l —β的平面角,∴∠MDB =60°,同理∠NCA =60°,∴BD =AC =3633=MB a sin θ,CN =DM =63260sin 6=︒MB a sin θ, ∵MB ⊥β,MP ⊥PN ,∴BP ⊥PN∵∠BPN =90°,∠DPB =∠CNP ,∴△BPD ∽△PNC ,∴PBBDPN PC ===整理得,16sin 4θ-16sin 2θ+3=0解得sin 2θ=4341或,sin θ=2321或,当sin θ=23时,CN =632a sin θ= 2a >PN 不合理,舍去 ∴sin θ=21,∴MN 与β所成角为30°。

空间的角

空间的角

空间的角异面直线所成的角 范围:0°<θ≤90° 方法:①平移法;②补形法. 直线与平面所成的角 范围:0°≤θ≤90° 方法:关键是作垂线,找射影. 二面角θ范围:0°≤θ≤180° 方法:①定义法; ②三垂线定理及其逆定理;③垂面法. 注:二面角的计算也可利用射影面积公式S ′=S cos θ来计算1.空间角的计算步骤 一作、二证、三算.2.异面直线所成角:(1)范围:(]0,90︒︒;(2)计算方法:①平移法:②向量法:设,a b r r分别为异面直线,a b 的方向向量,则两异面直线所成的角α=arccosa b a buu r u u r uu r u u r g g ;③补形法;④证明两条异面直线垂直,即所成角为90︒. 3直线与平面所成的角:①定义:平面的一条斜线和它在这个平面内的射影所成的锐角,若垂直于平面,所成角是直角.②范围[]0,90︒︒;③最小角定理:斜线和平面所成的角,是斜线和这个平面内经过斜足的直线所成的角中最小的角.⑤斜线与平面所成角的计算:(1)直接法:关键是作垂线,找射影 可利用面面垂直的性质;(2)通过等体积法求出斜线任一点到平面的距离d ,计算这点与斜足之间的线段长l ,则sin d l θ=.(3) 12cos cos cos θθθ=. (4)向量法:设l 是斜线l 的方向向量,n是平面α的法向量,则斜线l 与平面α所成的角θarcsinl n l n=r r g r r g .4.二面角:①定义:平面内的一条直线把平面分为两部分,其中的每一部分叫做半平面.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面.二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角,叫做这个二面角的平面角.规定:二面角的两个半平面重合时,二面角为0,当两个半平面合成一个平面时,二面角为π,因此,二面角的大小范围为[]0,π.②确定二面角的方法:(1)定义法;(2)三垂线定理及其逆定理法;(3)垂面法;(4)射影面积法:cos S S θ=射影多边形原多边形,此方法常用于无棱二面角大小的计算;无棱二面角也可以先根据线面性质恢复二面角的棱,然后再用方法(1)、(2)计算大小;(5)向量法:法一、在α内al ⊥,在β内bl ⊥,则二面角l αβ-- 的平面角αarccosa ba b=ur u r u r u r g g ;或 arccos a ba bπ-ur u r ur u r g g (同等异补)法二、设1n ,2n是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧(同等异补),则二面角l αβ--的平面角α1212arccos n nn n=uu r uu ruu r uu r g g课前练习1.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱C 1C 与BC 的中点,则直线EF 与直线D 1C 所成角的大小是 ( B )A .45°B .60°C .75°D .90°空间四边形ABC D 中,E 、F 分别为AC 、B D 中点,若C D =2AB =4,EF ⊥AB ,则EF 与C D 所成的角为( A )(A)30° (B)45° (C)60°(D)90°如图,AB =2,A C ⊥α,B D ⊥α,C α∈,D α∈,CD=1, 则直线AB 与α所成的角为( B )(A)300(B)600(C)a rct an21 (D)4503.AB ⊥平面BCD ,DC ⊥CB ,AD 与平面BCD 所成的角为30°,且AB =BC . 求AD 与平面ABC 所成角的大小.( 45°)例53. 已知正方形ABCD ,沿对角线AC 将△ADC 折起,设AD 与平面ABC 所成的角为β,当β 取最大值时,二面角B ―AC ―D 等于( B )(A )1200 (B )900 (C )600 (D )450 例57.正方体AB CD-A 1B 1C 1D 1中,(1)B C 1与底面AB CD 所成角为 450 ;(2)A 1C 与底面AB CD 所成的角的正切值为22;(3)B C 1与对角面BB 1D 1D 所成的角为 300 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间角定理
空间角定理是指在三维空间中,两个直线之间的夹角可以通过它们在平面上的投影以及它们在空间中的夹角来求得。

这个定理是空间几何中非常重要的定理之一,可以用在很多不同的数学和物理问题中。

首先,我们来看一下这个定理的几何图像。

假设有两个非平行的直线AB和CD,它们在空间中的夹角为α。

我们将这两个直线在一个平面上的投影分别表示为A'B'和C'D',它们在平面上的夹角为β。

那么空间角定理告诉我们,这两个夹角之间有一个关系式:
cos(α) = cos(β)cos(γ) +
sin(β)sin(γ)cos(δ)
其中,γ表示A'B'和C'D'的夹角,δ表示这两条直线所在的两个平面的夹角。

这个公式可以用于计算任意两条直线之间的夹角,只需要知道它们在平面上的投影和它们在空间中的夹角即可。

空间角定理的推导可以通过向量的方法进行,它的基本思想是将直线的方向向量表示为一个向量,然后通过向量的点积和叉积来计算夹角。

这个方法虽然比较抽象,但是它的推导过程非常严密,也是空间向量运算的基础之一。

除了可以用于计算直线夹角之外,空间角定理还可以用于解决其他几何问题。

例如,我们可以利用它来计算球体的表面积和体积。

对于一个球体,我们可以将它切割成很多小块,然后计算每一小块的表面积和体积,并将它们加起来得到最终的结果。

在这个过程中,我们需要用到空间角定理来计算每一小块的表面积和体积。

空间角定理在物理学中也有广泛的应用。

例如,在电场和磁场的相互作用中,我们可以用它来计算两个电荷或者两个磁极之间的力和力矩。

在开发物理学理论和设计物理实验时,空间角定理也常常被用到。

总之,空间角定理是空间几何中非常重要的一个定理,它可以用于计算直线之间的夹角,解决球体表面积和体积的问题,以及在物理学中的应用等等。

对于那些热爱数学和物理的人来说,学习空间角定理是非常值得的。

相关文档
最新文档