高三理科 利用空间向量求空间角总结

合集下载

高中理科数学空间向量方法总结(家教专用)

高中理科数学空间向量方法总结(家教专用)

平面法向量与立体几何引言:平面的法向量在课本上有定义,考试大纲中有“理解”要求,但在课本和多数的教辅材料中都没有提及它的应用,其实平面的法向量是中学数学中的一颗明珠,是解立体几何题的锐利武器。

本文介绍平面法向量的二种求法,并对平面法向量在高中立体几何中的应用作归纳和总结。

开发平面法向量的解题功能,可以解决不少立体几何中有关角和距离的难题,使高考立体几何中求空间角、求空间距离、证明垂直、证明平行等问题的解答变得快速而准确,那么每年高考中那道12分的立体几何题将会变得更加轻松。

2、平面法向量的求法方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y=[或(,1,)n x z=,或(1,,)n y z=],在平面α内任找两个不共线的向量,a b。

由nα⊥,得0n a⋅=且0n b⋅=,由此得到关于,x y的方程组,解此方程组即可得到n。

二、平面法向量的应用1、求空间角(1)、求线面角:如图4-1,设→n是平面α的法向量,AB是平面α的一条斜线,α∈A,则AB与平面α所成的角为:41,arccos.22||||sin|cos,||||| 41,arccos22||||n ABn ABn ABn ABn ABn ABn ABn ABn ABππθθππθ→→→→→→→→→→→→→→→→⎫⋅⎪-=-<>=-⋅⎪⋅⎪⇒=<>=⎬⎪⋅⋅-=<>-=-⎪⎪⋅⎭如图中:如图中:例3、在例2中,求直线1AA与平面1ACD所成的角。

解析:由例2知,(1,1,1)n=,1(0,0,1)AA=,∴11sin3AA nAA nθ⋅===⋅,即a r c s i n3θ=(2)、求面面角:设向量→m,→n分别是平面α、β的法向量,则二面角βα--l的平面角为:||||arccos,→→→→→→⋅⋅>==<nmnmnmθ(图5-1);||||arccos,→→→→→→⋅⋅->==<nmnmnmπθ(图5-2)图 7两个平面的法向量方向选取合适,可使法向量夹角就等于二面角的平面角。

空间向量的应用求空间角与距离

空间向量的应用求空间角与距离

空间向量的应用----求空间角与距离一、考点梳理1.自新教材实施以来,近几年高考的立体几何大题,在考察常规解题方法的同时,更多地关注向量法〔基向量法、坐标法〕在解题中的应用。

坐标法〔法向量的应用〕,以其问题〔数量关系:空间角、空间距离〕处理的简单化,而成为高考热点问题。

可以预测到,今后的高考中,还会继续表达法向量的应用价值。

2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下:1)求直线和直线所成的角假设直线AB 、CD 所成的角是α,cos α=|,cos |><CD AB ||||||CD AB CD AB •=2).利用法向量求线面角设θ为直线l 与平面α所成的角,ϕ为直线l 的方向向量v 与平面α的法向量n 之间的夹角,那么有2πϕθ=-或2πϕθ=+。

特别地0ϕ=时, 2πθ=,l α⊥;2πϕ=时,0θ=,l α⊂或l α。

计算公式为:||sin cos ||||v n v n θϕ==或||sin sin()cos (0)2||||||||v n v n v n v n v n πθϕϕ=-=-=-=<3).利用法向量求二面角设1n 、2n 分别为平面α、β的法向量,二面角l αβ--的大小为θ,向量1n 、2n 的夹角为ϕ,那么有θϕπ+=或θϕ=。

计算公式为:1212cos cos ||||n n n n θϕ=-=1212cos cos ||||n n n n θϕ==4).利用法向量求点面距离如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n ,过点P 作平面α的垂线PO ,记∠OPA=θ,那么点P 到平面的距离θcos ||||PA PO d ==||||||||||||n PA PA n PA n PA n •=⊗•=5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等。

其一,这三类距离都可以转化为点面间的距离;其二,异面直线间的距离可用如下方法操作:在异面直线上各取一点A 、B ,AB 在n 上的射影长即为所求。

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳一、基础知识1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b ||a ||b |❶, 其中a ,b 分别是直线a ,b 的方向向量.2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |❷.3.二面角(1)若AB ,CD 分别是二面角α­l ­β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α ­l ­β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|❸,如图(2)(3).两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值.直线与平面所成角的范围为⎣⎡⎦⎤0,π2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值.利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互补,需要结合图形进行判断.二、常用结论解空间角最值问题时往往会用到最小角定理 cos θ=cos θ1cos θ2.如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2. 考点一 异面直线所成的角[典例精析]如图,在三棱锥P ­ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. [解] 由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE ―→=(0,2,0),DB ―→=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE ―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨取z =1,可得n =(1,0,1).又MN ―→=(1,2,-1),可得MN ―→·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE . (2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH ―→=(-1,-2,h ), BE ―→=(-2,2,2). 由已知,得|cos 〈NH ―→,BE ―→〉|=|NH ―→·BE ―→||NH ―→||BE ―→|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12.所以线段AH 的长为85或12.[解题技法]用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.[提醒] 注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,此夹角就是异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.[题组训练]1.如图所示,在三棱柱ABC ­A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .30°B .45°C .60°D .90°解析:选C 以B 为坐标原点,以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系如图所示.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),∴EF ―→=(0,-1,1),BC 1―→=(2,0,2),∴EF ―→·BC 1―→=2,∴cos 〈EF ―→,BC 1―→〉=22×22=12,则EF 和BC 1所成的角是60°,故选C.2.如图,在四棱锥P ­ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面P AC ;(2)若P A =AB ,求PB 与AC 所成角的余弦值. 解:(1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以P A ⊥BD .又因为AC ∩P A =A ,所以BD ⊥平面P AC . (2)设AC ∩BD =O .因为∠BAD =60°,P A =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,射线OB ,OC 分别为x 轴,y 轴的正半轴建立空间直角坐标系O ­xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0), 所以PB ―→=(1,3,-2),AC ―→=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=|PB ―→·AC ―→||PB ―→||AC ―→|=622×23=64.即PB 与AC 所成角的余弦值为64. 考点二 直线与平面所成的角[典例精析](2019·合肥一检)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ∥平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. [解] (1)证明:连接AC 交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,∴MN ∥EC . ∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴MN ∥平面EFC .∵BF ,DE 都与平面ABCD 垂直,∴BF ∥DE . ∵BF =DE ,∴四边形BDEF 为平行四边形,∴BD ∥EF . ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴BD ∥平面EFC .又MN ∩BD =N ,∴平面BDM ∥平面EFC . (2)∵DE ⊥平面ABCD ,四边形ABCD 是正方形,∴DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D ­xyz . 设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4),∴DB ―→=(2,2,0),DM ―→=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·DM ―→=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量.∵AE ―→=(-2,0,4),设直线AE 与平面BDM 所成的角为θ, 则sin θ=|cosn ,AE ―→|=|n ·AE ―→||n |·|AE ―→|=4515,∴直线AE 与平面BDM 所成角的正弦值为4515.[解题技法]利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.[题组训练]1.在长方体ABCD ­A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________.解析:建立如图所示的空间直角坐标系D ­xyz ,由于AB =2,BC =AA 1=1,所以A 1(1,0,1),B (1,2,0),C 1(0,2,1),D 1(0,0,1),所以A 1C 1―→=(-1,2,0),BC 1―→=(-1,0,1),D 1C 1―→=(0,2,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧A 1C 1―→·n =0, BC 1―→·n =0,即⎩⎪⎨⎪⎧-x +2y =0,-x +z =0,令x =2,得y =1,z =2,则n =(2,1,2).设D 1C 1与平面A 1BC 1所成角为θ,则sin θ=|cos 〈D 1C 1―→,n 〉|=|D 1C 1―→·n ||D 1C 1―→||n |=22×3=13,即D 1C 1与平面A 1BC 1所成角的正弦值为13.答案:132.如图,在直三棱柱ABC ­A 1B 1C 1中,BA =BC =5,AC =8,D 为线段AC 的中点.(1)求证:BD ⊥A 1D ;(2)若直线A 1D 与平面BC 1D 所成角的正弦值为45,求AA 1的长.解:(1)证明:∵三棱柱ABC ­A 1B 1C 1是直三棱柱,∴AA 1⊥平面ABC ,又BD ⊂平面ABC ,∴BD ⊥AA 1, ∵BA =BC ,D 为AC 的中点,∴BD ⊥AC ,又AC ∩AA 1=A ,AC ⊂平面ACC 1A 1,AA 1⊂平面ACC 1A 1, ∴BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,∴BD ⊥A 1D . (2)由(1)知BD ⊥AC ,AA 1⊥平面ABC ,以D 为坐标原点,DB ,DC 所在直线分别为x 轴,y 轴,过点D 且平行于AA 1的直线为z 轴建立如图所示的空间直角坐标系D ­xyz .设AA 1=λ(λ>0),则A 1(0,-4,λ),B (3,0,0),C 1(0,4,λ),D (0,0,0), ∴DA 1―→=(0,-4,λ),DC 1―→=(0,4,λ),DB ―→=(3,0,0), 设平面BC 1D 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DC 1―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧4y +λz =0,3x =0,则x =0,令z =4,可得y =-λ,故n =(0,-λ,4)为平面BC 1D 的一个法向量. 设直线A 1D 与平面BC 1D 所成角为θ,则sin θ=|cosn ,DA 1―→|=|n ·DA 1―→||n |·|DA 1―→|=|4λ+4λ|λ2+16·λ2+16=45,解得λ=2或λ=8, 即AA 1=2或AA 1=8.考点三 二面角[典例精析]如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B ­D ′A ­C 的余弦值.[解] (1)证明:由四边形ABCD 为菱形,得AC ⊥BD . 由AE =CF =54,得AE AD =CFCD ,所以EF ∥AC .因此EF ⊥DH ,从而EF ⊥D ′H . 由AB =5,AC =6,得DO =BO =AB 2-AO 2=4.由EF ∥AC 得OH DO =AE AD =14,所以OH =1,D ′H =DH =3,则OD ′2=OH 2+D ′H 2,所以D ′H ⊥OH . 又OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)以H 为坐标原点,HB ,HF ,HD ′分别为x 轴,y 轴,z 轴建立空间直角坐标系H ­xyz ,如图所示.则B (5,0,0),C (1,3,0),D ′(0,0,3),A (1,-3,0), (由口诀“起点同”,我们先求出起点相同的3个向量.) 所以AB ―→=(4,3,0), AD ′―→=(-1,3,3),AC ―→=(0,6,0). (由口诀“棱排前”,我们用行列式求出两个平面的法向量.) 由⎩⎪⎨⎪⎧ AD ′―→=(-1,3,3), AB ―→=(4,3,0),可得平面ABD ′的法向量n 1=(-3,4,-5),由⎩⎪⎨⎪⎧AD ′―→=(-1,3,3), AC ―→=(0,6,0),可得平面AD ′C 的法向量n 2=(-3,0,-1). 于是cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=7525.所以二面角B ­D ′A ­C 的余弦值为7525.[解题技法](1)利用法向量求二面角的大小时,由于法向量的方向不同,两个法向量的夹角与二面角的大小可能相等,也可能互补.所以,两个法向量的夹角的余弦值与二面角的余弦值可能存在正负号的差异.(2)有时用观察法难以判定二面角是钝角还是锐角,为了保证解题结果准确无误,我们给出一种万无一失的方法:就是在两个半平面和二面角的棱上各取1个向量,要求这三个向量必须起点相同,在利用行列式计算法向量时,棱对应的向量必须排前面,即口诀“起点同,棱排前”,这样求出的两个法向量的夹角一定与二面角的大小相等.[题组训练]如图所示,四棱锥P ­ABCD 中,P A ⊥平面ABCD ,△DAB ≌△DCB ,E 为线段BD 上的一点,且EB =ED =EC =BC ,连接CE 并延长交AD 于F .(1)若G 为PD 的中点,求证:平面P AD ⊥平面CGF ; (2)若BC =2,P A =3,求二面角B ­CP ­D 的余弦值. 解:(1)证明:在△BCD 中,EB =ED =EC =BC , 故∠BCD =90°,∠CBE =∠BEC =60°.∵△DAB ≌△DCB ,∴∠BAD =∠BCD =90°,∠ABE =∠CBE =60°,∴∠FED =∠BEC =∠ABE =60°.∴AB ∥EF ,∴∠EFD =∠BAD =90°, ∴EF ⊥AD ,AF =FD . 又PG =GD ,∴GF ∥P A .又P A ⊥平面ABCD ,∴GF ⊥平面ABCD , ∵AD ⊂平面ABCD ,∴GF ⊥AD . 又GF ∩EF =F ,∴AD ⊥平面CGF .又AD ⊂平面P AD ,∴平面P AD ⊥平面CGF .(2)以A 为坐标原点,射线AB ,AD ,AP 分别为x 轴,y 轴,z 轴的正半轴建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (3,3,0),D (0,23,0),P (0,0,3),故CB ―→=(-1,-3,0), CP ―→=(-3,-3,3),CD ―→=(-3,3,0). 设平面BCP 的一个法向量为n 1=(1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·CB ―→=0,n 1·CP ―→=0,即⎩⎪⎨⎪⎧ -1-3y 1=0,-3-3y 1+3z 1=0,解得⎩⎨⎧y 1=-33,z 1=23,即n 1=⎝⎛⎭⎫1,-33,23. 设平面DCP 的一个法向量为n 2=(1,y 2,z 2),则⎩⎪⎨⎪⎧n 2·CD ―→=0,n 2·CP ―→=0,即⎩⎪⎨⎪⎧-3+3y 2=0,-3-3y 2+3z 2=0,解得⎩⎪⎨⎪⎧y 2=3,z 2=2,即n 2=(1,3,2). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=43169×8=24, 由图知二面角B ­CP ­D 为钝角, 所以二面角B ­CP ­D 的余弦值为-24. [课时跟踪检测]A 级1.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( )A.3030 B.3015 C.3010D.1515解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→=(-1,-1,-2), D 1N ―→=(1,0,-2),∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→||B 1M ―→|·|D 1N ―→|=|-1+4|1+1+4×1+4=3010. 2.如图,已知长方体ABCD ­A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A.33535B.277C.33D.24解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),∴DC 1―→=(0,3,1), D 1E ―→=(1,1,-1), D 1C ―→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E ―→=0,n ·D 1C ―→=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,取y =1,得n =(2,1,3).∴cosDC 1―→,n=DC 1―→·n |DC 1―→|·|n|=33535, ∴DC 1与平面D 1EC 所成的角的正弦值为33535.3.在直三棱柱ABC ­A 1B 1C 1中,AA 1=2,二面角B ­AA 1­C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B.6C.5D .2解析:选A 由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1―→·BC 1―→=(BB 1―→-BA ―→)·(BB 1―→+BC ―→)=4, |AB 1―→|=22,|BC 1―→|=4, cosAB 1―→,BC 1―→=AB 1―→·BC ―→|AB 1―→|·|BC ―→|=24,故tanAB 1―→,BC 1―→=7.4.如图,正三棱柱ABC ­A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( )A.35 B.56 C.3310D.3610解析:选A 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1()0,3,2,F (1,0,1), E ⎝⎛⎭⎫12,32,0,G (0,0,2), B 1F ―→=()1,-3,-1,EF ―→=⎝⎛⎭⎫12,-32,1, GF ―→=(1,0,-1).设平面GEF 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ EF ―→·n =0,GF ―→·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =()1,3,1为平面GEF 的一个法向量, 所以cos 〈n ,B 1F ―→〉=1-3-15×5=-35,所以B 1F 与平面GEF 所成角的正弦值为35.5.在正方体ABCD ­A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22解析:选B 以A 为坐标原点建立如图所示的空间直角坐标系A ­xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D ―→=(0,1,-1), A 1E ―→=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则⎩⎪⎨⎪⎧ n 1·A 1D ―→=0,n 1·A 1E ―→=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2). 又平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.6.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.解析:如图,以O 为坐标原点,以OA ,OB 所在直线分别为x 轴,y 轴,以过点O 且平行于CF 的直线为z 轴建立空间直角坐标系.设AE =a ,则B (0,3,0),D (0,-3,0),F (-1,0,3),E (1,0,a ),∴OF ―→=(-1,0,3),DB ―→=(0,23,0), EB ―→=(-1,3,-a ).设平面BED 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·EB ―→=0,即⎩⎪⎨⎪⎧23y =0,-x +3y -az =0,则y =0,令z =1,得x =-a , ∴n =(-a,0,1),∴cos 〈n ,OF ―→〉=n ·OF ―→|n ||OF ―→|=a +3a 2+1×10.∵直线OF 与平面BED 所成角的大小为45°, ∴|a +3|a 2+1×10=22, 解得a =2或a =-12(舍去),∴AE =2.答案:27.如图,已知四棱锥P ­ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,且AC ⊥BD ,AC 与BD 交于O ,PO ⊥底面ABCD ,PO =2,AB =22,E ,F 分别是AB ,AP 的中点,则二面角F ­OE ­A 的余弦值为________.解析:以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系O ­xyz , 由题知,OA =OB =2,则A (0,-2,0),B (2,0,0),P (0,0,2),E (1,-1,0),F (0,-1,1), OE ―→=(1,-1,0),OF ―→=(0,-1,1),设平面OEF 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·OE ―→=0,m ·OF ―→=0,即⎩⎪⎨⎪⎧x -y =0-y +z =0.令x =1,可得m =(1,1,1).易知平面OAE 的一个法向量为n =(0,0,1),则cos 〈m ,n 〉=m ·n|m ||n |=33.由图知二面角F ­OE ­A 为锐角, 所以二面角F ­OE ­A 的余弦值为33. 答案:338.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧C D 所在平面垂直,M 是C D 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ­ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 解:(1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,所以BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM . 又BC ∩CM =C , 所以DM ⊥平面BMC . 因为DM ⊂平面AMD , 所以平面AMD ⊥平面BMC .(2)以D 为坐标原点, DA ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz .当三棱锥M ­ABC 的体积最大时,M 为CD 的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ―→=(-2,1,1),AB ―→=(0,2,0),DA ―→=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,又DA ―→是平面MCD 的一个法向量,所以cos 〈n ,DA ―→〉=n ·DA ―→|n ||DA ―→|=55,sin 〈n ,DA ―→〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.9.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­P A ­C 为30°,求PC 与平面P AM 所成角的正弦值.解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3.连接OB ,因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为OB ∩AC =O , 所以PO ⊥平面ABC .(2)以O 为坐标原点,OB ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系O ­xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP ―→=(0,2,23).取平面P AC 的一个法向量OB ―→=(2,0,0). 设M (a,2-a,0)(0<a ≤2),则AM ―→=(a,4-a,0). 设平面P AM 的法向量为n =(x ,y ,z ),令y =3a ,得z =-a ,x =3(a -4),所以平面P AM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB ―→,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB ―→,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =43或a =-4(舍去).所以n =⎝⎛⎭⎫-833,433,-43.又PC ―→=(0,2,-23),所以cos 〈PC ―→,n 〉=833+8334+12·643+163+169=34.所以PC 与平面P AM 所成角的正弦值为34. B 级1.如图,四棱柱ABCD ­A 1B 1C 1D 1的底面ABCD 是菱形,AC ∩BD =O ,A 1O ⊥底面ABCD ,AB =2,AA 1=3.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)若∠BAD =60°,求二面角B ­OB 1­C 的余弦值. 解:(1)证明:∵A 1O ⊥平面ABCD ,BD ⊂平面ABCD , ∴A 1O ⊥BD .∵四边形ABCD 是菱形,∴CO ⊥BD . ∵A 1O ∩CO =O ,∴BD ⊥平面A 1CO . ∵BD ⊂平面BB 1D 1D ,∴平面A 1CO ⊥平面BB 1D 1D .(2)∵A 1O ⊥平面ABCD ,CO ⊥BD ,∴OB ,OC ,OA 1两两垂直,以O 为坐标原点,OB ―→,OC ―→, OA 1―→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.∵AB =2,AA 1=3,∠BAD =60°, ∴OB =OD =1,OA =OC =3, OA 1=AA 21-OA 2= 6.则O (0,0,0),B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,6),∴OB ―→=(1,0,0),BB 1―→=AA 1―→=(0,3,6), OB 1―→=OB ―→+BB 1―→=(1,3,6). 设平面OBB 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧OB ―→·n =0,OB 1―→·n =0,即⎩⎪⎨⎪⎧x =0,x +3y +6z =0.令y =2,得z =-1,∴n =(0,2,-1)是平面OBB 1的一个法向量. 同理可求得平面OCB 1的一个法向量m =(6,0,-1), ∴cosn ,m=n ·m|n |·|m |=13×7=2121,由图可知二面角B ­OB 1­C 是锐二面角, ∴二面角B ­OB 1­C 的余弦值为2121. 2.如图,在四棱锥P ­ABCD 中,底面ABCD 是直角梯形,∠ADC =90°,AB ∥CD ,AB =2CD .平面P AD ⊥平面ABCD ,P A =PD ,点E 在PC 上,DE ⊥平面P AC .(1)求证:P A ⊥平面PCD ;(2)设AD =2,若平面PBC 与平面P AD 所成的二面角为45°,求DE 的长.解:(1)证明:由DE ⊥平面P AC ,得DE ⊥P A ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,CD ⊥AD ,所以CD ⊥平面P AD ,所以CD ⊥P A , 又CD ∩DE =D ,所以P A ⊥平面PCD . (2)取AD 的中点O ,连接PO , 因为P A =PD ,所以PO ⊥AD ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以PO ⊥平面ABCD ,以O 为坐标原点建立如图所示的空间直角坐标系O ­xyz ,由(1)得P A ⊥PD ,由AD =2得P A =PD =2,PO =1,设CD =a ,则P (0,0,1),D (0,1,0),C (a,1,0),B (2a ,-1,0), 则BC ―→=(-a,2,0),PC ―→=(a,1,-1). 设m =(x ,y ,z )为平面PBC 的法向量,由⎩⎪⎨⎪⎧m ·BC ―→=0,m ·PC ―→=0,得⎩⎪⎨⎪⎧-ax +2y =0,ax +y -z =0,令x =2,则y =a ,z =3a ,故m =(2,a,3a )为平面PBC 的一个法向量,由(1)知n =DC ―→=(a,0,0)为平面P AD 的一个法向量. 由|cosm ,n|=|m ·n ||m ||n |=|2a |a 10a 2+4=22,解得a =105,即CD =105,所以在Rt △PCD 中,PC =2155,由等面积法可得DE =CD ·PD PC =33.3.如图,在三棱锥P ­ABC 中,平面P AB ⊥平面ABC ,AB =6, BC =23,AC =26,D ,E 分别为线段AB ,BC 上的点,且AD =2DB ,CE =2EB ,PD ⊥AC .(1)求证:PD ⊥平面ABC ;(2)若直线P A 与平面ABC 所成的角为45°,求平面P AC 与平面PDE 所成的锐二面角大小.解:(1)证明:∵AC =26,BC =23,AB =6,∴AC 2+BC 2=AB 2,∴∠ACB =90°, ∴cos ∠ABC =236=33.又易知BD =2,∴CD 2=22+(23)2-2×2×23cos ∠ABC =8, ∴CD =22,又AD =4, ∴CD 2+AD 2=AC 2,∴CD ⊥AB .∵平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,CD ⊂平面ABC , ∴CD ⊥平面P AB ,又PD ⊂平面P AB ,∴CD ⊥PD , ∵PD ⊥AC ,AC ∩CD =C , ∴PD ⊥平面ABC .(2)由(1)知PD ,CD ,AB 两两互相垂直,∴可建立如图所示的空间直角坐标系D ­xyz ,∵直线P A 与平面ABC 所成的角为45°,即∠P AD =45°,∴PD =AD =4,则A (0,-4,0),C (22,0,0),B (0,2,0),P (0,0,4),∴CB ―→=(-22,2,0),AC ―→=(22,4,0),P A ―→=(0,-4,-4). ∵AD =2DB ,CE =2EB ,∴DE ∥AC , 由(1)知AC ⊥BC ,∴DE ⊥BC ,又PD ⊥平面ABC ,BC ⊂平面ABC ,∴PD ⊥BC , ∵PD ∩DE =D ,∴CB ⊥平面PDE ,∴CB ―→=(-22,2,0)为平面PDE 的一个法向量. 设平面P AC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·P A ―→=0,即⎩⎪⎨⎪⎧22x +4y =0,-4y -4z =0,令z =1,得x =2,y =-1, ∴n =(2,-1,1)为平面P AC 的一个法向量. ∴cos n ,CB ―→=-4-24×12=-32, ∴平面P AC 与平面PDE 所成的锐二面角的余弦值为32, 故平面P AC 与平面PDE 所成的锐二面角为30°.。

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。

更易于学生们所接受,故而执教者应高度重视空间向量的工具性。

首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。

向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。

范围:直线和平面所夹角的取值范围是 。

向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。

二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。

高中数学知识点总结(第八章 立体几何 第九节 利用空间向量求空间角)

高中数学知识点总结(第八章 立体几何 第九节 利用空间向量求空间角)

第九节 利用空间向量求空间角一、基础知识1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a·b||a||b|, 其中a ,b 分别是直线a ,b 的方向向量.2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n||a||n|.3.二面角(1)若AB ,CD 分别是二面角α­l ­β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α ­l ­β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|,如图(2)(3). 两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值.直线与平面所成角的范围为⎣⎡⎦⎤0,π2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值.利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互补,需要结合图形进行判断.二、常用结论解空间角最值问题时往往会用到最小角定理cos θ=cos θ1cos θ2.如图,若OA为平面α的一条斜线,O为斜足,OB为OA在平面α内的射影,OC为平面α内的一条直线,其中θ为OA与OC所成的角,θ1为OA与OB所成的角,即线面角,θ2为OB与OC所成的角,那么cos θ=cos θ1cos θ2.[解题技法]用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.[提醒]注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,此夹角就是异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.[解题技法]利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.[解题技法](1)利用法向量求二面角的大小时,由于法向量的方向不同,两个法向量的夹角与二面角的大小可能相等,也可能互补.所以,两个法向量的夹角的余弦值与二面角的余弦值可能存在正负号的差异.(2)有时用观察法难以判定二面角是钝角还是锐角,为了保证解题结果准确无误,我们给出一种万无一失的方法:就是在两个半平面和二面角的棱上各取1个向量,要求这三个向量必须起点相同,在利用行列式计算法向量时,棱对应的向量必须排前面,即口诀“起点同,棱排前”,这样求出的两个法向量的夹角一定与二面角的大小相等.。

考点22+利用空间向量求解立体几何中的角-2019届高考数学(理)提分必备30个黄金考点+Word版含解析

考点22+利用空间向量求解立体几何中的角-2019届高考数学(理)提分必备30个黄金考点+Word版含解析

【考点剖析】1.命题方向预测:空间角的计算是高考热点,一般以大题的条件或一小问形式呈现,考查用向量方法解决立体几何问题,将空间几何元素之间的位置关系转化为数量关系,并通过计算解决立体几何问题.此类问题往往属于“证算并重”题,即第一问用几何法证明平行关系或垂直关系,第二问则通过建立空间直角坐标系,利用空间向量方法进一步求角. 2.课本结论总结: 一种方法用空间向量解决几何问题的一般方法步骤是: (1)适当的选取基底{a ,b ,c }; (2)用a ,b ,c 表示相关向量; (3)通过运算完成证明或计算问题. 两个理解(1)共线向量定理还可以有以下几种形式: ①a =λb ⇒a ∥b ;②空间任意两个向量,共线的充要条件是存在λ,μ∈R 使λa =μb .③若OA →,OB →不共线,则P ,A ,B 三点共线的充要条件是OP →=λOA →+μOB →且λ+μ=1.(2)对于共面向量定理和空间向量基本定理可对比共线向量定理进行学习理解.空间向量基本定理是适当选取基底的依据,共线向量定理和共面向量定理是证明三点共线、线线平行、四点共面、线面平行的工具,三个定理保证了由向量作为桥梁由实数运算方法完成几何证明问题的完美“嫁接”. 四种运算空间向量的四种运算与平面向量的四种运算加法、减法、数乘、数量积从形式到内容完全 一致可类比学习.学生要特别注意共面向量的概念.而对于四种运算的运算律,要类比实数加、减、乘的运算律进行学习. 三种成角(1)异面直线所成的角的范围是⎝ ⎛⎦⎥⎤0,π2;(2)直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2; (3)二面角的范围是[0,π]. 3.名师二级结论: 1.夹角计算公式(1)线线角:直线与直线所成的角θ,如两直线的方向向量分别为a ,b ,则||cos cos a b θ=〈,〉.(2)线面角:直线与平面所成的角θ,如直线的方向向量为a ,平面的法向量为n ,则||sin cos a n θ=〈,〉. (3)面面角:两相交平面所成的角θ,两平面的法向量分别为n 1,n 2,则cos θ=|cos 〈n 1,n 2〉|.判定二面角的平面角是锐角还是钝角的情况来决定cos θ=|cos 〈n 1,n 2〉|还是cos θ=-|cos 〈n 1,n 2〉|. 2.距离公式(1)点点距:点与点的距离,以这两点为起点和终点的向量的模;(2)点线距:点M 到直线a 的距离,如直线的方向向量为a ,直线上任一点为N ,则点M 到直线a 的距离d =|MN →|sin 〈MN →,a 〉;(3)线线距:两平行线间的距离,转化为点线距离;两异面直线间的距离,转化为点面距离或者直接求公垂线段的长度;(4)点面距:点M 到平面α的距离:如平面α的法向量为n ,平面α内任一点为N ,则点M 到平面α的距离d =|MN →||cos 〈MN →,n 〉|=|MN →·n ||n |;(5)线面距:直线和与它平行的平面间的距离,转化为点面距离; (6)面面距:两平行平面间的距离,转化为点面距离. 4.考点交汇展示:三棱锥A BCD -及其侧视图、俯视图如图所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN NP ⊥.(1)证明:P 为线段BC 的中点; (2)求二面角A NP M --的余弦值.【答案】(1)证明详见解析;(2)cos θ=.y(2)易得平面PMN 的法向量为1(0,1,1)n =.(1,0,3),(1,BA BC =-=-,设平面ABC 的法向量为2(,,)n x y z =,则0000x x ⎧-++=⎪⇒⎨-+=⎪⎩2(3,1,1)n =,所以cos θ==【2018年理数全国卷II 】如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.【答案】(1)见解析(2)(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量.设,则.设平面的法向量为.由得,可取,所以.由已知得.所以.解得(舍去),.所以.又,所以.所以与平面所成角的正弦值为.【2018年全国卷Ⅲ理】如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.【答案】(1)见解析(2)【解析】(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BC CM=C,所以DM⊥平面BMC.而DM平面AMD,故平面AMD⊥平面BMC.(2)以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz.【考点分类】考向一利用空间向量求空间角1.【2018年江苏卷】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【答案】(1)(2)【解析】如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以.所成角的正弦值为.2.如图,在四棱锥P ABCD -中,PA ^底面ABCD ,AD AB ^,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.C(Ⅰ)证明:DC BE ⊥;(Ⅱ)求直线BE 与平面PBD 所成角的正弦值;(Ⅲ)若F 为棱PC 上一点,满足AC BE ⊥,求二面角F AB P --的余弦值. 【答案】(Ⅰ)详见试题分析;(Ⅱ)直线BE 与平面PBD;.(Ⅰ)向量()0,1,1BE =,()2,0,0DC =,故0=⋅. ∴DC BE ⊥.(Ⅱ)向量()1,2,0BD =-,()1,0,2PB =-.设(),,n x y z =为平面PBD 的法向量,则0,0,n BD n PBìï?ïíï?ïî即20,20.x y x z ì-+=ïïíï-=ïî不妨令1y =,可得()2,1,1n =为平面PBD的一个法向量.于是有cos ,6n BE n BE n BE×===×BE 与平面PBD (Ⅲ)向量()1,2,0BC =,()2,2,2CP =--,()2,2,0AC =,()1,0,0AB =.由点F 在棱PC 上,设CF CP l =,01l#,故()12,22,2BF BC CF BC CP l l l l =+=+=--,由BF AC ^,得0BF AC?,因此,()()2122220l l -+-=,解得34l =,即113,,222BF 骣÷ç=-÷ç÷ç桫.设()1,,n x y z =为平面FAB 的法向量,则110,0,n AB n BFìï?ïíï?ïî即0,1130.222x x y z ì=ïïïíï-++=ïïî不妨令1z =,可得()10,3,1n =-为平面FAB 的一个法向量.取平面ABP 的法向量()20,1,0n =,则121211cos ,10n n n n n n ×===-×.易知,二面角F AB P --. (方法二)(Ⅰ)如图,取PD 中点M ,连结EM ,AM .由于,E M 分别为,PC PD 的中点,故//EM DC ,且12EM DC =,又由已知,可得//EM AB 且EM AB =,故四边形ABEM 为平行四边形,∴//BE AM .∵PA ^底面ABCD ,故PA CD ^,而CD DA ^,从而CD ^平面PAD ,∵AM Ì平面PAD ,于是CD AM^,又//BE AM ,∴BE CD ^.C【方法规律】1.利用向量法求异面直线所成的角时,注意向量的夹角与异面直线所成的角的异同.同时注意根据异面直线所成的角的范围(0,π2]得出结论.2.利用向量法求线面角的方法一是分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); 二是通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.3.利用空间向量求二面角可以有两种方法:一是分别在二面角的两个半平面内找到一个与棱垂直且从垂足出发的两个向量,则这两个向量的夹角的大小就是二面角的平面角的大小;二是通过平面的法向量来求:设二面角的两个半平面的法向量分别为n 1和n 2,则二面角的大小等于〈n 1,n 2〉(或π-〈n 1,n 2〉). 4.利用空间向量求二面角时,注意结合图形判断二面角是锐角还是钝角.求解过程中应注意以下几个方面:(1)两平面的法向量的夹角不一定就是所求的二面角,有可能两法向量夹角的补角为所求;(2)求平面的法向量的方法:①待定系数法:设出法向量坐标,利用垂直关系建立坐标的方程解之;②先确定平面的垂线,然后取相关线段对应的向量,即确定了平面的法向量.当平面的垂线较易确定时,常考虑此方法.5. (1)运用空间向量坐标运算求空间角的一般步骤为:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2)求直线与平面所成的角θ,主要通过直线的方向向量与平面的法向量的夹角α求得,即sin θ=|cos α|.【解题技巧】运用空间向量求解空间的角关键是建立空间直角坐标系后,空间角转化为向量的运算.使用空间向量解决立体几何计算,直线的标志是它的方向向量,平面的标志是它的法向量,我们可以借助于直线和平面的标志用向量这个工具解决立体几何计算问题.利用向量法求解空间角,可以避免利用定义法作角、证角、求角中的“一作、二证、三计算”的繁琐过程,利用法向量求解空间角的关键在于“四破”.第一破“建系关”,第二破“求坐标关”;第三破“求法向量关”;第四破“应用公式关”,熟记线面成的角与二面角的公式,即可求出空间角.【易错点睛】1.异面直线所成角的范围;线面角的正弦值是直线的方向向量和平面法向量所成角余弦的绝对值;两相交平面所成的角θ,两平面的法向量分别为n1和n2,则cosθ=|cos〈n1,n2〉|,其特殊情况是两个半平面所成的角即二面角,也可以用这个公式解决,但要判定二面角的平面角是锐角还是钝角的情况以决定cosθ=|cos〈n1,n2〉|还是cosθ=-|cos〈n1,n2〉|.这是利用向量求二面角的难点、易错点.2.向量的书写不规范,字母上方缺少"→".3.作图马虎,虚实线不分,不用直尺作图.考向二利用空间向量解决探索与翻折问题1.【2018年理新课标I卷】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.【答案】(1)证明见解析.(2) .【解析】(1)由已知可得,BF⊥PF,BF⊥EF,又,所以BF⊥平面PEF.又平面ABFD,所以平面PEF⊥平面ABFD.2.如图,在三棱锥S ABC -中, SA ⊥底面ABC , 2AC AB SA ===, AC AB ⊥, D , E 分别是AC , BC 的中点, F 在SE 上,且2SF FE =. (1)求证: AF ⊥平面SBC ;(2)在线段上DE 上是否存在点G ,使二面角G AF E --的大小为30︒?若存在,求出DG 的长;若不存在,请说明理由.【答案】(1)见解析; (2)见解析. 【解析】(1)由2AC AB SA ===, AC AB ⊥,E 是BC 的中点,得AE =因为SA ⊥底面ABC ,所以SA AE ⊥.(2)方法一:假设满足条件的点G 存在,并设DG t =. 过点G 作GM AE ⊥交AE 于点M ,又由SA GM ⊥, AE SA A ⋂=,得GM ⊥平 面SAE .作MN AF ⊥交AF 于点N ,连结NG ,则AF NG ⊥. 于是GNM ∠为二面角G AF E --的平面角,即30GNM ︒∠=,由此可得)12MG x =-. 由MNEF ,得MN AM EF AE =)1t +=)1MN t =+.在Rt GMN 中, tan30MG MN ︒=,即)()11263t t -=+⋅,解得12t =.于是满足条件的点G 存在,且12DG =.所以()1,1,0AE =, 222,,333AF ⎛⎫=⎪⎝⎭, ()1,,0AG t =. 设平面AFG 的法向量为()111,,m x y z =,则0{0m AF m AG ⋅=⋅=,即2220{3330x y z x my ++=+=,取1y =,得x t =-, 1z t =-,即(),1,1m t t =--.设平面AFE 的法向量为()222,,n x y z =,则0{0n AF n AE ⋅=⋅=,即222{333x y z x y ++=+=,取1y =,得x t =-, 1z t =-,即(),1,1n t t =--.由二面角G AF E --的大小为30︒,得cos30m n m n︒⋅==⋅,化简得22520t t -+=,又01t ≤≤,求得12t =. 于是满足条件的点G 存在,且12DG =. 【方法规律】1.解决探索性问题,都是先假设存在,然后根据已知条件和结论逐步进行计算和推导,若推出矛盾则不存在,这是解决探索性问题的常用方法.2.解决翻折问题,关键是弄清翻折前后哪些量变了,哪些量没有变,特别是没有变的量是我们解决问题的关键.【解题技巧】探索性问题命题背景宽,涉及到的知识点多,综合性较强,通常是寻找使结论成立的条件或探索使结论成立的点是否存在等问题,全面考查考生对立体几何基础知识的掌握程度,考生的空间想象能力、逻辑思维能力和运算求解能力.空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围的解”等,因此使用问题的解决更简单、有效,应善于运用这一方法解题.【易错点睛】解决与平行、垂直有关的存在性问题的基本策略是:通常假定题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.如本题把直二面角转化为这两个平面的法向量垂直,利用两法向量数量积为零,得参数p的方程.即把与两平面垂直有关的存在性问题转化为方程有无解的问题.与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【热点预测】1.【2016高考新课标1卷】平面α过正方体ABCD-A1B1C1D1的顶点A,α//平面CB1D1,αI平面ABCD=m,αI平面AB B1A1=n,则m、n所成角的正弦值为B)21 3【答案】A2.在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,则异面直线与所成角的余弦值为()A. B. C. D.【答案】D【解析】故选D.3.【2018届河北省定州中学高三上第二次月考】已知点在正方体的对角线上,在上,则与所成角的大小为___________.【答案】【解析】以D点为原点,以DA,DC,分别为x,y,z轴建立空间直角坐标系,,连接,在平面中,延长DP交于点H,设,由,可得,,填。

高考数学考点突破——空间向量与立体几何(理科专用):立体几何中的向量方法(二)求空间角

高考数学考点突破——空间向量与立体几何(理科专用):立体几何中的向量方法(二)求空间角

立体几何中的向量方法(二)求空间角【考点梳理】1.异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【考点突破】考点一、利用空间向量求异面直线所成的角【例1】在直三棱柱 ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A .110B .25C .3010D .22[答案] C[解析] 建立如图所示的空间直角坐标系C -xyz ,设BC =2,则B (0,2,0),A (2,0,0),M (1,1,2),N (1,0,2),所以BM →=(1,-1,2),AN →=(-1,0,2),故BM 与AN 所成角θ的余弦值cos θ=|BM →·AN →||BM →|·|AN →|=36×5=3010.【类题通法】1.利用向量法求异面直线所成角的一般步骤是:①选好基底或建立空间直角坐标系;②求出两直线的方向向量v 1,v 2;③代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.2.两异面直线所成角的范围是θ∈⎝⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角. 【对点训练】在正方体A 1B 1C 1D 1-ABCD 中,AC 与B 1D 所成的角的大小为( ) A .π6 B .π4 C .π3 D .π2[答案] C[解析] 建立如图所示的空间直角坐标系,设正方体边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0).∴AC →=(1,1,0),B 1D →=(-1,1,-1), ∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0, ∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2.考点二、利用空间向量求直线与平面所成的角【例2】如图,在三棱柱ABC -A 1B 1C 1中,B 1B =B 1A =AB =BC ,∠B 1BC =90°,D 为AC 的中点,AB ⊥B 1D .(1)求证:平面ABB 1A 1⊥平面ABC ;(2)求直线B 1D 与平面ACC 1A 1所成角的正弦值.[解析] (1)取AB 中点为O ,连接OD ,OB 1, ∵B 1B =B 1A ,∴OB 1⊥AB . 又AB ⊥B 1D ,OB 1∩B 1D =B 1, ∴AB ⊥平面B 1OD ,∵OD ⊂平面B 1OD ,∴AB ⊥OD . ∵∠B 1BC =90°,即BC ⊥BB 1,又OD ∥BC ,∴OD ⊥BB 1,又AB ∩BB 1=B , ∴OD ⊥平面ABB 1A 1, 又OD ⊂平面ABC , ∴平面ABC ⊥平面ABB 1A 1.(2)由(1)知,OB ,OD ,OB 1两两垂直.以O 为坐标原点,OB →的方向为x 轴的方向,|OB →|为单位长度1,建立如图所示的空间直角坐标系O -xyz .由题设知B 1(0,0,3),D (0,1,0),A (-1,0,0),C (1,2,0),C 1(0,2,3). 则B 1D →=(0,1,-3),AC →=(2,2,0),CC 1→=(-1,0,3).设平面ACC 1A 1的一个法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧m ·AC →=0,m ·CC 1→=0,得⎩⎨⎧x +y =0,-x +3z =0,取m =(3,-3,1).∴cos 〈B 1D →,m 〉=B 1D →·m|B 1D →||m |=0×3+1×(-3)+(-3)×102+12+(-3)2×(3)2+(-3)2+12=-217, ∴直线B 1D 与平面ACC 1A 1所成角的正弦值为217. 【类题通法】利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角. 【对点训练】如图,三棱柱ABC -A 1B 1C 1中,底面ABC 为等腰直角三角形,AB =AC =1,BB 1=2,∠ABB 1=60°.(1)证明:AB ⊥B 1C ;(2)若B 1C =2,求AC 1与平面BCB 1所成角的正弦值.[解析] (1)连接AB 1,在△ABB 1中,AB =1,BB 1=2,∠ABB 1=60°, 由余弦定理得,AB 21=AB 2+BB 21-2AB ·BB 1·cos ∠ABB 1=3, ∴AB 1=3,∴BB 21=AB 2+AB 21, ∴AB 1⊥AB .又△ABC 为等腰直角三角形,且AB =AC , ∴AC ⊥AB ,∵AC ∩AB 1=A , ∴AB ⊥平面AB 1C .又B 1C ⊂平面AB 1C ,∴AB ⊥B 1C .(2)∵AB 1=3,AB =AC =1,B 1C =2, ∴B 1C 2=AB 21+AC 2,∴AB 1⊥AC .如图,以A 为原点,以AB →,AC →,AB 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (0,0,0),B 1(0,0,3),B (1,0,0),C (0,1,0),∴BB 1→=(-1,0,3),BC →=(-1,1,0). 设平面BCB 1的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧BB 1→·n =0,BC →·n =0,得⎩⎨⎧-x +3z =0,-x +y =0,令z =1,得x =y =3,∴平面BCB 1的一个法向量为n =(3,3,1).∵AC 1→=AC →+CC 1→=AC →+BB 1→=(0,1,0)+(-1,0,3)=(-1,1,3), ∴cos 〈AC 1→,n 〉=AC 1→·n|AC 1→||n |=35×7=10535,∴AC 1与平面BCB 1所成角的正弦值为10535.考点三、利用空间向量求二面角【例3】如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E -BC -A 的余弦值.[解析] (1)由已知可得AF ⊥DF ,AF ⊥EF , 所以AF ⊥平面EFDC . 又AF ⊂平面ABEF , 故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G . 由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则|DF |=2,|DG |= 3. 可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3). 由已知得AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°. 从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量, 则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.【类题通法】利用向量计算二面角大小的常用方法:(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小. 【对点训练】如图,在四棱锥P ­ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°. (1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,求二面角A ­PB ­C 的余弦值.[解析] (1)由已知∠BAP =∠CDP =90°, 得AB ⊥AP ,CD ⊥PD . 因为AB ∥CD ,所以AB ⊥PD . 又AP ∩PD =P ,所以AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD . (2)在平面PAD 内作PF ⊥AD ,垂足为F . 由(1)可知,AB ⊥平面PAD , 故AB ⊥PF ,又AD ∩AB =A , 可得PF ⊥平面ABCD .以F 为坐标原点,FA ―→的方向为x 轴正方向,|AB ―→|为单位长度,建立如图所示的空间直角坐标系F ­xyz .由(1)及已知可得A ⎝ ⎛⎭⎪⎫22,0,0,P ⎝ ⎛⎭⎪⎫0,0,22,B ⎝ ⎛⎭⎪⎫22,1,0,C ⎝ ⎛⎭⎪⎫-22,1,0.所以PC ―→=⎝ ⎛⎭⎪⎫-22,1,-22,CB ―→=(2,0,0),PA ―→=⎝ ⎛⎭⎪⎫22,0,-22,AB ―→=(0,1,0).设n =(x 1,y 1,z 1)是平面PCB 的法向量, 则⎩⎪⎨⎪⎧ n ·PC ―→=0,n ·CB ―→=0,即⎩⎪⎨⎪⎧-22x 1+y 1-22z 1=0,2x 1=0.所以可取n =(0,-1,-2). 设m =(x 2,y 2,z 2)是平面PAB 的法向量, 则⎩⎪⎨⎪⎧m ·PA ―→=0,m ·AB ―→=0,即⎩⎪⎨⎪⎧22x 2-22z 2=0,y 2=0.所以可取m =(1,0,1).则cos 〈n ,m 〉=n ·m |n ||m |=-23×2=-33.由图知二面角A ­PB ­C 为钝角, 所以二面角A ­PB ­C 的余弦值为-33.。

向量法求空间的距离和角

向量法求空间的距离和角

所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三 年级 数学 科辅导讲义(第 讲)学生姓名: 授课教师: 授课时间:一、复习引入1.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)(3)把向量的运算结果“翻译”成相应的几何意义。

(回到图形) 2.向量的有关知识:(1)两向量数量积的定义:><=⋅,cos |||| (2)两向量夹角公式:||||,cos b a >=<(3)平面的法向量:与平面垂直的向量 二、知识讲解与典例分析知识点1:面直线所成的角(范围:]2,0(πθ∈)(1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a ´与b ´,那么直线a ´与b ´ 所成的锐角或直角,叫做异面直线a 与b 所成的角. (2)用向量法求异面直线所成角 设两异面直线a 、b 的方向向量分别为和,问题1: 当与的夹角不大于90的角θ与 和 的夹角的关系?问题 2:a 与b 的夹角大于90°时,,异面直线a θ与a 和b 的夹角的关系?结论:异面直线a 、b 所成的角的余弦值为|||||,cos |cos n m =><=θa思考:在正方体1111D C B A ABCD -中,若1E 与1F 分别为11B A 、11D C 的四等分点,求异面直线1DF 与1BE 的夹角余弦值?(1)方法总结:①几何法;②向量法(2)><11,cos BE DF 与><B E DF 11,cos 相等吗? (3)空间向量的夹角与异面直线的夹角有什么区别?例1如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和1CB 所成的角.解法步骤:1.写出异面直线的方向向量的坐标。

2.利用空间两个向量的夹角公式求出夹角。

练习1:在Rt △AOB 中,∠AOB =90°,现将△AOB 沿着平面AOB 的法向量方向平移到△A 1O 1B 1的位置,已知OA =OB=OO 1,取A 1B 1 、A 1O 1的中点D 1 、F 1,求异面直线BD 1与AF 1所成的角的余弦值。

知识点2、直线与平面所成的角(范围:]2,0[πθ∈)yxyxy思考:设平面α的法向量为n ,则><BA n ,与θ的关系?例2、如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和B B AA 11面所成角的正弦值.练习:正方体1111D C B A ABCD -的棱长为1,点E 、F 分别为CD 、1DD 的中点.求直线11C B 与平面C AB 1所成的角的正弦值.知识点3:二面角(范围:],0[πθ∈)①方向向量法:将二面角转化为二面角的两个面的方向向量(在二面角的面内且垂直于二面角的棱)的夹2)y角。

如图,设二面角βα--l 的大小为θ,其中βα⊂⊥⊂⊥CD l CD AB l AB ,,,.例3 、 如图,甲站在水库底面上的点A 处,乙站在水坝斜面上的点B 处.从A ,B 到直线 (库底与水坝的交线)的距离AC 和BD 分别为 a 和 b ,CD 的长为c , AB 的长为d .求库底与水坝所成二面角的余弦值.②法向量法结论:或归纳:法向量的方向:一进一出,二面角等于法向量夹角;同进同出,二面角等于法向量夹角的补角.例4、如图,ABCD 是一直角梯形,︒=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,21=AD ,求面SCD 与面SBA 所成二面角的余弦值.练习:正方体1111D C B A ABCD -的棱长为1,点E 、F 分别为CD 、1DD 的中点.求二面角D AE F --的余弦值。

三、课堂小结1.异面直线所成的角:|,cos |cos ><=b a θ 2.直线和平面所成的角:|,cos |sin ><=θ3.二面角:><-=><=2121,cos cos ,cos cos n n n n θθ或.第四部分 巩固练习1.如图所示,已知正方体ABCD ­A 1B 1C 1D 1,E ,F 分别是正方形A 1B 1C 1D 1和ADD 1A 1的中心,则EF 和CD 所成的角是( )yA .60°B .45°C .30°D .90°2.在正方体ABCD ­A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B. 23C.33D.223.在三棱锥P ­ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为( )A.15B.255C.55D.254.如图,在四棱锥P ­ABCD 中,四边形ABCD 为平行四边形,且BC ⊥平面PAB ,PA ⊥AB ,M 为PB 的中点,PA =AD =2.若AB =1,则二面角B ­AC ­M 的余弦值为( )A.66B.36C.26D.165.如图所示,在空间直角坐标系中有直三棱柱ABC ­A1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.6.如图,在正四棱锥S ­ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面PAC 所成角为________.7.如图,三棱柱ABC ­A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.答 案1.选B 以D 为原点,分别以射线DA ,DC ,DD 1为x 轴、y 轴、z 轴的非负半轴建立空间直角坐系系D -xyz ,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫12,12,1,F ⎝ ⎛⎭⎪⎫12,0,12,EF =⎝ ⎛⎭⎪⎫0,-12,-12,DC =(0,1,0),∴cos 〈EF ,DC 〉=EF ·DC |EF ||DC |=-22,∴〈EF ,DC 〉=135°,∴异面直线EF 和CD 所成的角是45°.2.选B 以A 为原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎪⎫1,0,12,D (0,1,0),∴1A D =(0,1,-1), 1A E =⎝ ⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23.3.选C 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,由AB =AC =1,PA =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝ ⎛⎭⎪⎫12,12,0,F ⎝⎛⎭⎪⎫0,12,1,∴PA =(0,0,-2),DE =⎝⎛⎭⎪⎫0,12,0,DF =⎝ ⎛⎭⎪⎫-12,12,1. 设平面DEF 的法向量为n =(x ,y ,z ),则由⎩⎨⎧n ·DE =0,n ·DF =0得⎩⎪⎨⎪⎧y =0,-x +y +2z =0,取z =1,则n =(2,0,1),设PA 与平面DEF 所成的角为θ,则sin θ=|PA ·n ||PA ||n |=55,∴PA 与平面DEF 所成角的正弦值为55, 故选C.4.选A ∵BC ⊥平面PAB ,AD ∥BC ,∴AD ⊥平面PAB ,PA ⊥AD , 又PA ⊥AB ,且AD ∩AB =A ,∴PA ⊥平面ABCD .以点A 为坐标原点,分别以AD ,AB ,AP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系A ­xyz .则A (0,0,0),C (2,1,0),P (0,0,2),B (0,1,0),M⎝ ⎛⎭⎪⎫0,12,1, ∴AC =(2,1,0), AM =⎝ ⎛⎭⎪⎫0,12,1,求得平面AMC 的一个法向量为n =(1,-2,1),又平面ABC 的一个法向量AP =(0,0,2), ∴cos 〈n ,AP 〉=n ·AP|n |·|AP |=21+4+1·2=16=66.∴二面角B ­AC ­M 的余弦值为66.5.解析:不妨令CB =1,则CA =CC 1=2. 可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1),∴1BC =(0,2,-1),1AB =(-2,2,1), ∴cos 〈1BC ,1AB 〉=1BC ·1AB | 1BC ||1AB |=4-15×9=15=55>0. ∴1BC 与1AB 的夹角即为直线BC 1与直线AB 1的夹角, ∴直线BC 1与直线AB 1夹角的余弦值为55. 答案:556.解析:如图所示,以O 为原点建立空间直角坐标系O ­xyz .设OD =SO =OA =OB =OC =a , 则A (a,0,0),B (0,a,0),C (-a,0,0), P ⎝ ⎛⎭⎪⎫0,-a 2,a 2.则CA =(2a,0,0),AP =⎝⎛⎭⎪⎫-a ,-a 2,a2,CB =(a ,a,0).设平面PAC 的法向量为n ,可求得n =(0,1,1),则cos 〈CB ,n 〉=CB ·n| CB ||n |=a 2a 2·2=12. ∴〈CB ,n 〉=60°, ∴直线BC 与平面PAC 的夹角为 90°-60°=30°. 答案:30°7.解:(1)证明:取AB 的中点O ,连接OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O ­xyz .由题设知A (1,0,0),A 1(0, 3,0),C (0,0, 3),B (-1,0,0).则BC =(1,0,3),1BB =1AA =(-1,3,0),1A C =(0,-3,3). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则⎩⎪⎨⎪⎧n ·BC =0,n ·1BB =0.即⎩⎨⎧x +3z =0,-x +3y =0.可取n =(3,1,-1). 故cosn ,1A Cn ·1A C|n ||1A C |=-105. 所以A 1C 与平面BB 1C 1C 所成角的正弦值为105.。

相关文档
最新文档