高三数学 第62课时 空间的角教案 教案
高考复习专题--数学空间角教案

2014年高考数学第二轮复习专题立体几何---空间角【考点审视】立体几何高考命题及考查重点、难点稳定:高考始终把空间直线与直线、直线与平面、平面与平面的平行与垂直的性质与判定、线面间的角与距离的计算作为考查的重点,尤其是以多面体和旋转体为载体的线面位置关系的论证,更是年年反复进行考查,在难度上也始终以中等偏难为主。
空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,空间角高考中每年必考,复习时必须高度重视。
对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.考试要求考点1:掌握空间两异面直线所成的角、直线与平面所成的角、二面角、二面角的平面角等概念;考点2:能熟练地在图形中找出相关的角并证明;考点3:能用向量方法和非向量方法进行计算;考点4:通过空间角的计算和应用进一步考察运算能力、逻辑推理能力及空间想象能力.【高考链接】1.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决.2. 三种空间角,即异面直线所成角、直线与平面所成角、平面与平面所成二面角。
它们的求法一般化归为求两条相交直线的夹角,通常“线线角抓平移,线面角找射影,面面角作平面角”而达到化归目的,有时二面角大小出通过cos θ=原射S S 来求。
3. 由于近年考题常立足于棱柱、棱锥和正方体,因此复习时应注意多面体的依托作用,熟练多面体性质的应用,才能发现隐蔽条件,利用隐含条件,达到快速准确解题的目的。
【复习回顾】(一)空间角三种角的定义异面直线所成的角(1)定义:,a b 是两条异面直线,经过空间任意一点o ,分别引直线//'a a ,//'b b ,则'a 和'b 所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:090θ≤≤. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小. 直线和平面所成的角(1)定义 和平面所成的角有三种:斜线和平面所成的角 这条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.垂线与平面所成的角 直线垂直于平面,则它们所成的角是直角. 一条直线和平面平行,或在平面内,则它们所成的角是0°的角. (2)取值范围090θ≤≤° (3)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ. ②解含θ的三角形,求出其大小. ③最小角定理斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面内任何直线所成的角二面角及二面角的平面角 (1)半平面 (2)二面角.(3)二面角的平面角 二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180°②二面角的平面角具有下列性质:二面角的棱垂直于它的平面角所在的平面。
空间角的求法教案

空间角的求法教案一、教学目标1. 让学生掌握空间角的概念,理解空间角的求法。
2. 培养学生运用空间角解决实际问题的能力。
3. 提高学生对空间几何的兴趣和认识。
二、教学内容1. 空间角的概念2. 空间角的求法3. 空间角的运用三、教学重点与难点1. 教学重点:空间角的概念,空间角的求法。
2. 教学难点:空间角的求法在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究空间角的求法。
2. 利用多媒体课件,直观展示空间角的求法过程。
3. 开展小组讨论,培养学生的合作意识。
五、教学过程1. 导入:通过生活中的实例,引导学生了解空间角的概念。
2. 新课讲解:讲解空间角的定义,演示空间角的求法过程。
3. 案例分析:分析实际问题,运用空间角解决问题。
4. 小组讨论:学生分组讨论,分享各自的解题心得。
5. 总结与拓展:总结空间角的求法,提出拓展问题,激发学生的学习兴趣。
6. 课后作业:布置相关练习题,巩固所学知识。
教案内容请根据实际教学情况进行调整和补充。
六、教学评估1. 课堂问答:通过提问学生,了解他们对空间角概念和求法的掌握情况。
2. 练习题:布置课堂练习题,评估学生对空间角求法的运用能力。
3. 小组讨论:观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的能力。
七、教学反思1. 教师总结:反思教学过程中的优点和不足,为下一步教学做好准备。
2. 学生反馈:听取学生的意见和建议,改进教学方法。
3. 教学调整:根据教学反思,调整教学计划和内容。
八、课后作业1. 巩固空间角的概念和求法,完成相关练习题。
2. 思考空间角在实际问题中的应用,尝试解决相关问题。
3. 预习下一节课内容,为课堂学习做好准备。
九、拓展与延伸1. 研究空间角的其他求法,如利用向量、坐标等方法。
2. 探索空间角在立体几何中的应用,如对立体图形的分类、性质等方面进行研究。
3. 关注空间角在现实生活中的应用,举例说明空间角在工程、设计等领域的作用。
高三立体几何重点专题复习教案(空间角)

分析:要求二面角的正弦值,首先要找到二面角的平面角
解:过 作 于 ,过 作 交 于 ,连结 ,
则 垂直于平面 , 为二面角 的平面角,
∴ ,
又 平面 ,∴ , ,ຫໍສະໝຸດ ∴ 平面 ,∴ , ,又∵ , ,
∴ 平面 ,∴ ,
设 ,则 ,
在 中, ,∴ ,
同理, 中, , ∴ ,
(2)A、D的连线和直线BC所成的角;
(3)二面角A—BD—C的正切值;
10答案.(1) (2) (3)-2
∴AC与PB所成的余弦值
(3)解:作AN⊥CM,垂足为N,连结BN,在Rt△PAB中,AM=MB,又AC=CB,∴△AMC≌△BMC.∴BN⊥CM,故∠ANB为所求二面角的平面角。∵CB⊥AC,由三垂线定理,得CB⊥PC,
在Rt△PCB中,CM=MB,所以CM=AM.在等腰三角形AMC中, ∴ ∵AB=2,∴
故所求的二面角余弦值为说明:本题也可通过建立坐标系采用向量方法求解.
7.如图所示,正三角形ABC的边长为3,过其中心G作BC边的平行线,分别交AB\AC于B1,C1,将△AB1C1折起到△A1B1C1的位置.使点A1在平面BB1C1C上的射影恰是线段BC的中点M,求(1)二面角A1—B1C1—M的大小。(2)异面直线A1B1与CC1所成角的余弦值大小。
2、直线与平面所成角的定义?直线与平面所成角的范围是什么?怎样求直线与平面所成的角?
3、二面角的定义?怎样定义二面角的平面角?二面角的平面角的范围?怎样确定二面角的平面角?
二、基本技能训练讲评:
在一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的大小关系是( )
(A)相等(B)互补
最新高三教案-空间角及其应用 精品

空间角及其应用一、知识梳理1、空间角主要包括异面直线所成的角,直线与平面所成的角,二面角了解空间角的定义、范围,求角的步骤都是“一作、二证、三算”,将空间角转化为平面角,转化时应充分利用与垂直这两种特殊的位置关系。
2、重要结论:(1) ∠AOB 在平面内,OP 是面α的一斜线,OP 与OA 、OB 所 成的角相等,则OPQ 平面α上的射影在∠AOB 的平行线上;(2) OP 是平面α斜线,OA 是OP 在平面α内的射影,OC ⊂α, 则①∠POC ≥∠POA ;②cos ∠POC=cos ∠AOCcos ∠POA ;(3) 求二面角的平面角在填空选择题中常用面积射影法:cos θ面射S S =二、训练反馈1、 正方体ABCD-A 1B 1C 1D 1中,M 是DD 1的中点,O 为正方形A 1B 1C 1D 1的中心,P 是棱AB 上的垂足,则直线A 1M 与OP 所成的角________。
A 、300 B 、450 C 、600 D 、9002、 二面角α-AB-β大小为θ(0°≤θ≤90°),AC ⊂α,∠CAB=450,AC 与平面β所成角为300,则θ角等于______。
A 、300B 、450C 、600D 、900 3、 已知线段AB 夹在直二面角之间α-L-β,L B L A B A ∉∉∈∈,,,βα,AB 与α所成角为θ,AB 与β所成角为ϕ,则θ+ϕ与900的大小关系_______ A 、θ+ϕ=900 B 、θ+ϕ≥900 C 、θ+ϕ≤900 D 、θ+ϕ<900 4、已知∠AOB=900,过O 点引起∠AOB 所在平面的斜线OC ,与OA 、OB 分别成450、600,则以OC 为棱的二面角A-OC-B 的余弦值等于________三、典型例题例1 一副三角板拼成一个ABDC ,然后将它沿BC 折成直角二面角。
(1)求证:平面ABD ⊥平面ACD ; (2)求AD 与BC 所成的角; (3)求二面角A-BD-C 的大小。
利用向量法求空间角教案

利用向量法求空间角-经典教案教案章节一:向量基础教学目标:1. 理解向量的概念及其表示方法。
2. 掌握向量的运算规则,包括加法、减法、数乘和点乘。
教学内容:1. 向量的定义及表示方法。
2. 向量的运算规则:a) 向量加法:三角形法则和平行四边形法则。
b) 向量减法:向量减去另一个向量等于加上这个向量的相反向量。
c) 数乘:一个实数乘以一个向量,得到一个新的向量,其实数乘以原向量的模,新向量的方向与原向量相同。
d) 点乘:两个向量的点乘,得到一个实数,表示两个向量的夹角的余弦值。
教学活动:1. 通过实际操作,让学生直观地理解向量的概念和表示方法。
2. 通过例题,让学生掌握向量的运算规则。
教案章节二:空间向量教学目标:1. 理解空间向量的概念及其表示方法。
2. 掌握空间向量的运算规则,包括空间向量的加法、减法、数乘和点乘。
教学内容:1. 空间向量的定义及表示方法。
2. 空间向量的运算规则:a) 空间向量加法:三角形法则和平行四边形法则。
b) 空间向量减法:空间向量减去另一个空间向量等于加上这个空间向量的相反空间向量。
c) 空间向量的数乘:一个实数乘以一个空间向量,得到一个新的空间向量,其实数乘以原空间向量的模,新空间向量的方向与原空间向量相同。
d) 空间向量的点乘:两个空间向量的点乘,得到一个实数,表示两个空间向量的夹角的余弦值。
教学活动:1. 通过实际操作,让学生直观地理解空间向量的概念和表示方法。
2. 通过例题,让学生掌握空间向量的运算规则。
教案章节三:向量的投影教学目标:1. 理解向量的投影的概念及其计算方法。
2. 掌握向量的正交投影和斜投影的计算方法。
教学内容:1. 向量的投影的定义及计算方法。
2. 向量的正交投影和斜投影的计算方法:a) 向量的正交投影:将向量投影到垂直于某一平面的向量上,得到的投影向量与投影平面垂直。
b) 向量的斜投影:将向量投影到某一平面上,得到的投影向量与投影平面不垂直。
求空间中的角—教学设计

求空间中的角—教学设计教学目标:1.理解角的概念。
2.掌握角的度量方法。
3.能够根据角的度量分类,并进行角的比较和运算。
教学重点:1.角的概念。
2.角的度量方法。
教学难点:角的度量方法。
教学准备:1.白板、黑板、彩色粉笔。
2.角的示例图片、实物角模型。
教学过程:Step 1:导入新知识(10分钟)1.教师出示一些手表的图片,引导学生观察时针和分针的位置。
2.提问:时针和分针之间形成了什么形状?请用手势表示。
学生回答:角。
3.教师追问:角是什么?能告诉我角的概念吗?Step 2:角的概念(10分钟)1.教师解释角的概念:角是由两条射线共同起源于一个点所夹的部分。
2.图示:教师在黑板上画出一个角,并标注重要的术语。
3.示范:教师用示例图片和实物角模型展示不同种类的角,如锐角、钝角、直角等。
Step 3:角的度量方法(30分钟)1.角度的旋转:教师引导学生思考,时针和分针绕圆心旋转一周后回到原位,这个过程称为一周。
一周有多少度?2.教师介绍度量角的概念和单位:度。
教师解释1周=360度。
3.教师演示如何用量角器测量角的度数,引导学生跟随操作。
4.学生练习:提供一些角的图片和实物,学生用量角器测量角的度数并记录下来。
Step 4:角的度量分类(20分钟)1.教师给出一些角度度数,让学生判断是锐角、直角还是钝角。
2.学生练习:教师以小组为单位,给每组发放一些角的度数,要求学生根据度数进行分类。
3.请一名学生将小组的分类结果列在黑板上,与其他小组比较。
Step 5:角的比较和运算(20分钟)1.角度的比较:教师出示几个角,让学生根据度数大小判断它们的大小关系。
2.角的运算:教师出示两个角度,引导学生思考如何进行角的加法、减法和乘除运算,引导学生进行小组讨论。
Step 6:总结与拓展(10分钟)1.教师复习角的概念和度量方法。
2.教师总结角的分类和运算方法。
3.提问:角的度量方法适用于什么情况?学生回答:适用于平面角和空间角。
高中数学空间角度问题教案

高中数学空间角度问题教案
学科:数学
年级:高中
课时安排:2课时
教学目标:
1. 理解空间角度的概念,能够准确描述和度量空间角度;
2. 能够运用空间角度的知识解决相关问题;
3. 培养学生的空间想象力和逻辑推理能力。
教学步骤:
第一课时:
1. 导入:通过展示一些真实生活中的空间角度问题,引导学生思考空间角度的概念及其重要性。
2. 讲解:介绍空间角度的定义和性质,分别讲解平面角度和空间角度的区别;
3. 案例分析:给出一些实际问题,让学生尝试计算空间角度,并讨论解决方法;
4. 练习:让学生在小组内进行练习,互相讨论并解答问题;
5. 总结:总结本节课所学内容,强调空间角度的重要性及运用。
第二课时:
1. 复习:通过解答一些简单空间角度问题,复习上节课的内容;
2. 练习:给出一些复杂的空间角度问题,让学生自主解答,并制定解题思路;
3. 探究:引导学生思考空间角度问题的不同解法和解题技巧;
4. 实践:让学生在实际情景中应用空间角度知识,解决一些具体问题;
5. 总结:总结本节课的内容,检查学生对空间角度问题的理解和掌握情况。
教学反思:
本节课以空间角度为主题,通过讲解和案例分析,引导学生掌握空间角度的计算方法和应用技巧,帮助他们在实际问题中运用空间角度知识进行思考和解决。
通过本节课的学习,
学生不仅提高了空间角度问题的解决能力,还培养了他们的空间想象力和逻辑推理能力。
希望学生能够在实际生活中运用所学知识,不断提升自己的数学素养。
利用向量法求空间角教案

利用向量法求空间角-经典教案教案章节:一、向量法求空间角的概念教学目标:1. 了解向量法求空间角的概念。
2. 掌握向量法求空间角的基本方法。
教学内容:1. 向量法求空间角的概念介绍。
2. 向量法求空间角的计算方法。
教学步骤:1. 引入向量法求空间角的概念,解释空间角的概念。
2. 讲解向量法求空间角的计算方法,通过示例进行演示。
3. 进行练习,让学生巩固向量法求空间角的方法。
教学评估:1. 通过课堂提问,检查学生对向量法求空间角概念的理解。
2. 通过练习题,检查学生对向量法求空间角计算方法的掌握。
二、向量法求空间角的计算方法教学目标:1. 掌握向量法求空间角的计算方法。
2. 能够应用向量法求解空间角的问题。
教学内容:1. 向量法求空间角的计算方法介绍。
2. 向量法求空间角的计算实例。
教学步骤:1. 复习向量法求空间角的概念,引入计算方法。
2. 讲解向量法求空间角的计算步骤,通过示例进行演示。
3. 进行练习,让学生巩固向量法求空间角的计算方法。
教学评估:1. 通过课堂提问,检查学生对向量法求空间角计算方法的理解。
2. 通过练习题,检查学生对向量法求解空间角问题的能力。
三、向量法求空间角的练习题教学目标:1. 巩固向量法求空间角的计算方法。
2. 提高学生应用向量法求解空间角问题的能力。
教学内容:1. 向量法求空间角的练习题。
教学步骤:1. 给出向量法求空间角的练习题,让学生独立完成。
2. 对学生的答案进行讲解和指导,解决学生在解题过程中遇到的问题。
3. 进行练习,让学生进一步巩固向量法求空间角的计算方法。
教学评估:1. 通过练习题,检查学生对向量法求解空间角问题的能力。
2. 通过学生的解题过程,了解学生对向量法求空间角计算方法的掌握情况。
四、向量法求空间角的拓展与应用教学目标:1. 了解向量法求空间角的拓展与应用。
2. 能够应用向量法解决实际问题中的空间角问题。
教学内容:1. 向量法求空间角的拓展与应用介绍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:空间的角
教学目标:掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定
理,并能
熟练解决有关问题,
进一步掌握异面直线所成角的求解方法,熟练解决有关问题. 教学重点:直线与平面所成的角,二面角的求解. (一) 主要知识及主要方法:
1.三垂线定理(课本30P ):在平面内的一条直线,如果和 这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.
2.三垂线的逆定理(课本31P ):在平面内的一条直线,如果和
这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.
3. 空间角的计算步骤 一作、二证、三算.
4.异面直线所成角:()1范围:(]0,90︒︒;()2计算方法:
①平移法:一般情况下应用平行四边形的对边、梯形的平行对边、三角形的中位线进行平移.②向量法:设a 、b 分别为异面直线a 、b 的方向向量,
则两异面直线所成的角α=arccos
a b a b
;③补体法;
④证明两条异面直线垂直,即所成角为90︒.
5.直线与平面所成的角:①定义:
(课本29P )平面的一条斜线和它在这个平面内的射影所成的锐角,叫做这条直线和这个平面所成的角;一条直线垂直于平面,我们说它们所成的角是直角.②范围 []0,90︒︒;③最小角定理:斜线和平面所成的角,是这条斜线和这个平面内经过斜足的直线所成的一切角中最小的角.⑤斜线与平面所成角的计算:
()1直接法:关键是作垂线,找射影 可利用面面垂直的性质; ()2平移法:通过三角形的中位线或平行四边形的对
边平移,计算其平行线与平面所成的角.也可平移平面()3通过等体积法求出斜线任一点到平面的距离d ,计算这点
与斜足之间的线段长l ,则sin d l
θ=
. ()4应用结论:如右图所示,PO α⊥,O 为垂足,A 为斜足, AB
α,AP 与平面α所成的角为1θ,2BAO θ∠=, PAB θ∠=,则12cos cos cos θθθ=.
()5向量法:设l 是斜线l 的方向向量,n 是平面α
的法向量,则斜线l 与平面α所成的角θarcsin
l n l n
=.
6.二面角:①定义:平面内的一条直线把平面分为两部分,
其中的每一部分叫做半平面.从一条直线出发的两个半平面 所组成的图形叫做二面角,这条直线叫做二面角的棱,
每个半平面叫做二面角的面.二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两
条射线,这两条射线所成的角,叫做这个二面角的平面角.规定:二面角的两个半平面重合时,二面角为0,当两个半平面合成一个平面时,二面角为π,因此,二面角的大小范围为[]0,π.②确定二面角的方法:()1定义法;()2三垂线定理及其逆定理法;()3垂面法;()4射影面积法:cos S S θ=
射影多边形原多边形
,此方法常用于无棱二面角大小的计算;
无棱二面角也可以先根据线面性质恢复二面角的棱,然后再用方法()1、()2计算大小;()5向量法:法一、在α内
a l ⊥,在β内
b l ⊥l β-- 的平面角αarccos
a b a b
=;其方向如右图,则二面角l αβ--的平面角
α=arccos
a b a b
π-(同等异补)
法二、设1n ,2n 是二面角l αβ--外侧(同等异补),则二面角l αβ--α12
12arccos
||||
n n n n =
(二)典例分析: 问题1.(07全国Ⅰ)四棱锥S ABCD -中,底面ABCD 为平行四边形,
侧面SBC ⊥底面ABCD .已知45ABC =︒∠,
2AB =,BC =SA SB ==
()1证明:SA BC ⊥;
S
B
C
D
A
α A
P
O a
a b
n
αβ
a b
αβ
a b
1n
2n
α
P O
B
A
1θ
2θ θ
()2求直线SD与平面SAB
所成角的大小.
(本小题要求用多种方法解答,包括向量法).
问题2.(07届高三湖北、荆州、宜昌4月模拟)
边长为1的正方体1111
ABCD A B C D
-中,P是棱
1
CC
上任一点,CP m
=(01
m
<<).
()1若1
2
m=时,求证:面
1
BPD⊥面
11
BDD B;
()2试确定m值,使直线AP与平面11
BDD B所成的角
的正切值为
问题3.(07四川)如图,PCBM是直角梯形,90
PCB
∠=︒,PM∥BC,
1
PM=,2
BC=,又1
AC=,120
ACB
∠=︒,
AB PC
⊥,直线AM与直线PC所成的角为60︒.
()1求证:平面PAC⊥平面ABC;
()2求二面角B
AC
M-
-的大小;
()3求三棱锥P MAC
-的体积.
(要求第()2小题用多种方法解答,包括向量法).
A
B
D
C
1
A
1
B
1
C
1
D
P
S
B
C
D A
S
B
C
D A
A
B
C
M
P
A
B
C
M
P
问题4.(07陕西)如图,在底面为直角梯形的四棱锥P ABCD -中,
AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .4PA =,2AD =
,AB =6BC =
()1求证:BD ⊥平面PAC (此小题这里略去不做);()2求二面角A PC D --的大小. (要求第()2小题用多种方法解答,包括向量法).
(三)课后作业:
1.如图所示,在棱长为2的正方体1111ABCD A B C D -中,
O 是底面ABCD 的中心,E ,F 分别是1CC ,AD 的
中点.那么异面直线OE 和1FD 所成角的余弦值等于
2.(05浙江文)在三棱锥P ABC -中,1
,2
AB BC AB BC PA ⊥==
, 点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC .
()1求证:OD ∥平面PAB ;
()2求直线PA 与平面PBC 所成角的大小
3.如图,ABC △的边长为2,AD ,1BB ,1CC
都垂直于平面ABC ,且112BB CC ==,
1AD =,点E 为1DB 的中点,求直线
1C E 与平面ABC 所成的角.
(四)走向高考: 4.(07浙江)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,
且2AC BC BD AE ===,M 是AB 的中点.
()1求证:CM EM ⊥;
()2求CM 与平面CDE 所成的角.
P
C B
A D E
P
C B
A
D E
E
D
C
M
A
B
O
A
B
C
D 1A
1B
1C 1D
E F C
A B
1A
1B
1C
D
E
F A
P
C
B
D
O
E F
5.(07北京)如图,在Rt AOB
△中,
π
6
OAB
∠=,斜边4
AB=.
Rt AOC
△可以通过Rt AOB
△以直线AO为轴旋转得到,
且二面角B AO C
--是直二面角.动点D的斜边AB上.()1求证:平面COD⊥平面AOB;
()2当D为AB的中点时,求异面直线AO与CD所成角的大小;()3求CD与平面AOB所成角的最大值.
v
6.(07福建)如图,正三棱柱
111
ABC A B C
-的所有棱长都为2,D为
1
CC中点.
()1求证:1AB⊥平面1A BD(此小题这里略去不做);
()2求二面角1
A A D B
--的大小;
()3求点C到平面1A BD的距离.
O
C A
D
B
A
B
C
D
1
A
1
C
1
B。