热力学统计物理试题及其完整答案版

合集下载

热力学统计物理练习试题和答案

热力学统计物理练习试题和答案

WORD 格式 整理 热力学·统计物理练习题一、填空题 . 本大题 70 个小题,把答案写在横线上。

1. 当热力学系统与外界无相互作用时 , 经过足够长时间 , 其宏观性质时 间改变,其所处的 为热力学平衡态。

2. 系统,经过足够长时间,其不随时间改变,其所处的状态为热力学平衡态。

3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化 学参量等四类参量描述,但有 是独立的。

4.对于非孤立系统, 当其与外界作为一个整体处于热力学平衡态时,此时 的系统所处的状态是 。

5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视 为。

6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。

7.均匀物质系统的独立参量有 个,而过程方程独立参量只有个。

8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。

9.定容压力系数的意义是在 不变条件下系统的压强随的相 对变化。

10.等温压缩系数的意义是在 不变条件下系统的体积随的 相对变化。

11.循环关系的表达式为。

12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功 W Y i dy i ,其中 y i 是, Y i 是与 y i 相应的。

13. U B U A Q W ,其中 是作的功。

W14. dUQW0 ,-W 是作的功,且 -W 等于。

22( 、 均为热力学平衡态1、L2 为15.Q W QW ,L 1L 1 1 2 1L 2准静态过程)。

16.第一类永动机是指的永动机。

17.内能是 函数,内能的改变决定于和。

18.焓是函数,在等压过程中,焓的变化等于的热量。

19.理想气体内能温度有关,而与体积。

学习参考资料分享WORD 格式整理20.理想气体的焓温度的函数与无关。

21.热力学第二定律指明了一切与热现象有关的实际过程进行的。

完整版热力学统计物理试题

完整版热力学统计物理试题

简述题1.写出系统处在平衡态的自由能判据。

一个处在温度和体积不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的自由能的改变均大于零。

即F0 。

2.写出系统处在平衡态的吉布斯函数判据。

一个处在温度和压强不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的吉布斯函数的改变均大于零。

即G0 。

3.写出系统处在平衡态的熵判据。

一个处在内能和体积不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的熵变均小于零。

即S 04.熵的统计讲解。

由波耳兹曼关系S k g ln可知,系统熵的大小反响出系统在该宏观状态下所拥有的可能的微观状态的多少。

而可能的微观状态的多少,反响出在该宏观平衡态下系统的凌乱度的大小。

故,熵是系统内部凌乱度的量度。

5.为什么在常温或低温下原子内部的电子对热容量没有贡献不考虑能级的精巧结构时,原子内的电子激发态与基态的能量差为1~10 eV ,相应的特点4 5温度为 10 ~ 10 K。

在常温或低温下,电子经过热运动获得这样大的能量而跃迁到激发态的概率几乎为零,平均而言电子被冻结基态,因此对热容量没有贡献。

6.为什么在常温或低温下双原子分子的振动对热容量贡献可以忽略由于双原子分子的振动特点温度 3 kT << k θv,振子经过θ ~10K,在常温或低温下v热运动获得能量 h k θv从而跃迁到激发态的概率极小,因此对热容量的贡献可以忽略。

7.能量均分定理。

对于处在平衡态的经典系统,当系统的温度为T 时,粒子能量的表达式中的每一个独立平方项的平均值为12k T 。

8等概率原理。

对于处在平衡态的孤立系统,系统的各种可能的微观状态出现的概率是相等的。

9.概率密度 ( q, p,t ) 的物理意义、代表点密度 D ( q, p,t ) 的物理意义及两者的关系。

(q, p,t ) : 在 t 时辰,系统的微观运动状态代表点出现在相点(q, p) 邻域,单位相空间体积内的概率。

热力学与统计物理试题

热力学与统计物理试题

热力学与统计物理试题一、选择题1. 热力学第一定律表明,一个系统内能的微小改变等于它与周围环境交换的热量与它做的功之和。

若一个气体绝热膨胀,其内能的变化量为:A. 正值B. 负值C. 零D. 无法确定2. 理想气体状态方程为 \( pV = nRT \),其中 \( p \) 代表压力,\( V \) 代表体积,\( n \) 代表物质的量,\( R \) 是气体常数,\( T \) 代表温度。

若温度和物质的量保持不变,而压力增加,则体积的变化为:A. 增加B. 减小C. 不变D. 先增加后减小3. 熵是热力学中用来描述系统无序度的物理量。

在一个孤立系统中,熵的变化趋势是:A. 持续增加B. 持续减少C. 保持不变D. 在特定条件下增加或减少4. 麦克斯韦关系是热力学中描述状态函数之间关系的一组方程。

对于一个理想气体,其等体过程中的温度与熵的关系是:A. 正比B. 反比C. 无关D. 非线性关系5. 统计物理中,微观状态与宏观状态之间的关系是通过什么原理来描述的?A. 能量均分原理B. 等概率原理C. 熵最大原理D. 能量最小原理二、填空题1. 热力学第二定律可以表述为,在一个自发的过程中,熵总是倾向于增加,这个过程是________的。

2. 理想气体的内能只与温度有关,与体积和压力________。

3. 在热力学循环中,卡诺循环的效率是由两个热库的温度决定的,其效率公式为 \( \eta = 1 - \frac{T_{c}}{T_{h}} \),其中 \( T_{c} \) 是________的温度,\( T_{h} \) 是________的温度。

4. 统计物理中,一个系统的宏观状态可以通过多个不同的________来实现。

5. 按照玻尔兹曼熵的定义,一个系统的熵与它的微观状态数目的对数成正比,数学表达式为 \( S = k_B \ln W \),其中 \( k_B \) 是________常数。

湖南大学热力学与统计物理考试试题及参考答案

湖南大学热力学与统计物理考试试题及参考答案

开卷考试,不得讨论!具错误实质性相同者,皆以零分计!湖南大学课程考试试卷课程名称:热力学统计物理;课程编码: 试卷编号: ;考试时间:120分钟低温下某晶体的热容量表达为如下两项湖南大学课程考试试卷湖南大学教务处考试中心参考答案第1题 1.1由于相对论性的自由粒子满足2222()()cp mc ε=+。

微分之得:222d c pdp εε=,即:2pdp d c εε=。

22d pd q 体积元之内的微观状态数为222/d pd q h . 设体系的面积为S 。

则22222Sd pd q S d p h h =⎰。

在二维情况下,2θ=d p pdpd ,将角度部分积分,得2pdp π。

于是得结果222επεSd h c 。

考虑自旋1/2,得简并因子2. 最后得到结果: 224επεSd h c. 1.2aT 来自电子,3bT 来自点阵。

1.3电子之间有强烈的压强,这个压强和点阵(离子)之间的静电力场平衡。

1.4Bose 子的BEC 指原子质心运动的凝聚。

1.5由于简并性条件是3T T n λ<<,即使是低温,只要密度足够低,无论玻色子还是费米子,都不会简并。

也就是,原则上,零温附近,对于费米子一样可以有经典理想气体;对于费米子,如果密度不是非常高,还会形成电子(魏格纳)晶体。

1.6自由度冻结指的是,当温度较低时,一类自由度对热容量的的贡献可以忽略不计,称之为自由度冻结。

当温度下降时,电子运动,振动,转动将依次冻结,平动尽在绝对零度时才冻结。

第2题2.1 体积和粒子数。

2.2 微观状态总数为2N .最可几分布中包含的围观状态数目为2!/(!)2N N 。

二者相等指的是当N 很大时,2ln 21ln !/(!)2→NN N .注意,22lim.!/(!)2→∞→∞NN N N 2.3 最可几分布是左右各一半分子N/2. 这一N/2也可以认为是从0到N 这N+1种微观状态出现机会相等的平均值N/2=[0+1+2+…….+(N+1)] / (N+1)第3题利用玻尔兹曼统计,子系的配分函数为121()1βεβεβω∞---===-∑i iwi Z eee ,其中1()2i i w ε=+.平均能量为 1()ln ()12βωωεωωωβ∂=-=+∂-Z e . 热容量22()()()(1)βωβωεωωβω∂==∂-e C k T e . 熵为,()[ln ln ()]11[ln(1)]221[ln(1)]1βωβωβωβωωβωββωβωβωβω--∂=-∂=---++-=---S k Z Z k e e k e e当温度趋于零时,热容量和熵均为零,但是内能为/2ω.第4题单原子经典理想气体,化学势为负(p.338)。

热力学与统计物理试卷1、2+答案

热力学与统计物理试卷1、2+答案

热力学与统计物理试卷(甲)一、选择题:(每题3分,共15分)1、一个P、 V为参量的系统,T V不变时,下列说法证确的是()(1)系统处于平衡态时,熵最小;(2)系统处于平衡态时,内能最小;(3)系统处于平衡态时,自由能最大;(4)系统处于平衡态时,自由能最小;2、液体中有一气泡,如a表示液相,B表示气相,两相平衡时有()(1)、 T a≠ T B, P a≠ P B, μa≠μB;(2)、T a = T B, P a≠ P B, μa = μB;(3)、T a = T B, P a = P B, μa≠μB;(4)、T a = T B, P a = P B, μa= μB;3、一个单元系统,固、液两相共存时,()(1)因两相共存,所以不可能处于平衡态;(2)因两相共存,所以两相质量一定相等;(3)两相共存时,化学势高的相,物质的量将减少;(4)两相共存时,化学势高的相,物质的量将增加;4、初平衡态和终平衡态确定的热力学系统,,下列说法证确的是()(1)压强一定发生变化;(2)温度一定发生变化;(3)内能、熵、焓,自由能变化,但不确定;(4)内能、熵、焓、自由能变化都是确定的;5、两个完全不同的A、B物体,处于热平衡有:()(1)、 T A=T B , P A≠P B, V A≠V B ;(2)、 T A≠T B , P A=P B, V A=V B ;(3)、 T A=T B , P A=P B, V A=V B ;(4)、 T A≠T B , P A≠P B, V A=V B ;二、填空题:(每空3分,共30分)1、理想气体分别经等压、等容过程,温度都由T1升到T2,假设等压、等容热容是常数,则前后过程熵增的比值为()。

2、等温等容条件下的系统处在温度平衡`状态的必要和充分条件为(),由()可以确定平衡条件,由()可以确定平衡的稳定性条件。

3、写出玻尔兹曼分布表示式()、玻色分布表示式()、费米分布表示式()。

热力学与统计物理考试答案

热力学与统计物理考试答案

证明题:1.、根据热力学第二定律证明两条绝热线不能相交。

用反证法。

假设两条绝热线如果能相交,再加上一条等温线就可以组成一个循环(闭合曲线)。

这个循环只在等温过程从单一热源吸热,然后对外做功,显然违反了热力学第二定律。

所以,两条绝热线不可能相交。

2、将范式等温线对应的μ-p图花在其下方,并对此p-v图进行说明,以及如何转化为实验等温线。

答:(1)在等温线上μ-μ0=∫ Vmdp在p1<p<p2的范围内,对应于一个p值μ值有三个可能的值,这与上图在p1<p<p2的范围内,对应一个P值有三个可能的Vm值是相应的,根据吉布斯函数判断,在给定P,T下,稳定平衡态的吉布斯函数最小,因此OKBAMR上各点代表系统的稳定平衡态(2)B点和A点的μ值相等,正式在等温线的温度和A,B两点压强下气,液两相的相变平衡条件,μB=μA这相当于积分∫BNDJAVmdp=0 根据等面积法则,将范式气体等温线中的BNDJA换为直线BA就是实测等温线。

3、试证明,对于一维自由粒子,在长度L 内,在ε到ε+ dε的能量范围内,量子态数为D(ε)dε=2L/h×(m/2ε)dε解: 根据式(6.2.14),一维自由粒子在μ空间体积元dxd px内可能的量子态数为:dxdpx/h在长度L 内,动量大小在p到p + d p范围内(注意动量可以有正负两个可能的方向)的量子态数为2L/h×dp(1)将能量动量关系:ε=p/2m代入,即得D(ε)dε=2L/h×(m/2ε)dε(2)4、试根据式(6.2.13)证明:在体积V内,在ε到ε+dε的能量范围内,三维自由粒子的量子态数为D(ε)dε=2πV/h×(2m)εdε解: 式(6.2.13)给出,在体积V =L内,在px到px+d px,py 到py+d py,px到px+d px的动量范围内,自由粒子可能的量子态数为V/h×dpxdpydpz(1)用动量空间的球坐标描述自由粒子的动量,并对动量方向积分,可得在体积V内,动量大小在p到p+d p范围内三维自由粒子可能的量子态数为4πV/h×p d p(2)上式可以理解为将μ空间体积元4πVp2d p(体积V,动量球壳4πp d p)除以相格大小h而得到的状态数.自由粒子的能量动量关系为ε=p /2m因此:p= 2mε pdp=mdε将上式代入式(2),即得在体积V内,在ε到ε+dε的能量范围内,三维自由粒子的量子态数为D(ε)dε=2πV/h ×(2m)εdε5、试证明,单位时间内碰到单位面积器壁上,速率介于υ与υ+的dυ之间的分子数为dΓ(v)=πn(m/2πkT)e v dv解: 参照式(7.3.16),单位时间内碰到法线方向沿z 轴的单位面积器壁上,速度在dvxdvydvz范围内的子数为dΓ(v)= fvzdvxdvydvz(1)用速度空间的球坐标,可以将式(1)表为dΓ= fυcosθυsinθdυdθdϕ. (2)对dθ和dϕ积分,θ从0 到π/2,ϕ从0 到π/2,有∫sinθcosθdθ∫dϕ= π.因此得单位时间内碰到单位面积器壁上,速率介于υ与υ+ dυ之间的分子数为dΓ(v)=πn(m/2πkT)e v dv(3)6试证明,对于二维的自由粒子,在面积L内,在ε到ε+ dε的能量范围内,量子态数为: D(ε)d ε=2πL/h×mdε解: 根据式(6.2.14),二维自由粒子在μ空间体积元dxdydpxdp y内的量子态数为:1/h×dx dy dpx dpy .(1)用二维动量空间的极坐标p, θ描述粒子的动量,p,θ与pxpy的关系为Px=cosθPy=sinθ用极坐标描述时,二维动量空间的体积元为p d p d θ在面积L内,动量大小在p到p +d p范围内,动量方向在θ到θ+ dθ范围内,二维自由粒子可能的状态数为Lpdpdθ/h(2)对dθ积分,从0 积分到2π,有∫dθ=2π可得在面积L2内,动量大小在p到p + d p范围内(动量方向任意),二维自由粒子可能的状态数为2πL/h×pdp(3)将能量动量关系ε=p/2m代入,即有D(ε)dε=2πL/h×mdε(4)三、计算题。

汪志诚热力学统计物理习题答案(第一章)

汪志诚热力学统计物理习题答案(第一章)

第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由得:nRT PV = VnRTP P nRT V ==; 所以: T P nR V T V V P 11)(1==∂∂=α,T PV RnT P P V /1)(1==∂∂=β,P PnRT V P V V T T /111)(12=--=∂∂-=κ 。

习题1.2 试证明任何一种具有两个独立参量的p T ,物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果11,T T pακ==,试求物态方程。

解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p pVV T V V )(1,)(1∂∂-=∂∂=κα 所以 T dV V dT V dp ακ=-,即T dVdT dp Vακ=-,两边积分有: ⎰-=dp dT V T καln ,当 p T T /1,/1==κα,代入得ln dT dp V T p =-⎰即 pV CT =习题 1.3在0oC 和1n p 下,测得一块铜块的体胀系数和等温压缩系数分别为514.8510K α--=⨯和717.810T n p κ--=⨯,T κα,可近似看作常量。

今使铜块加热至10o C 。

问(1)压强要增加多少n p 才能使铜块体积维持不变?(2)若压强增加100n p ,铜块的体积改变多少? 解:根据T dV dT dp V ακ=-,Tdp dT ακ=,代入数据可得:21622n p p p -=根据()()()000,,01T V T p V T T T K p α=+--⎡⎤⎣⎦有()()21211T VT T K p p V α∆=--- 代入数据有 44.0710V -∆=⨯习题1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。

热力学统计物理习题(共五则)

热力学统计物理习题(共五则)

热力学统计物理习题(共五则)第一篇:热力学统计物理习题《热力学统计物理2》教学大纲课程名称(英文):热力学统计物理2(Thermodynamics and Statistical Mechanics Ⅱ)课程代码:0612933课程类别:提高拓宽课程学时:34学时学分:2学分考核办法:考查适用对象:物理学本科专业一、课程简介《热力学统计物理2》课程是高等学校物理学专业本科选修的课程。

是在《热力学统计物理1》的基础上进一步掌握热力学统计物理的基本概念和原理,加深与扩展热力学统计物理的内容,使学生对热力学统计物理的概念、原理与基本理论有更透彻的理解与掌握。

同时掌握用热力学统计物理解决实际问题的方法,进一步提高学生的解题技巧与能力。

为进一步学习现代物理学和科学技术奠定基础,并满足一部分学生考研的需要。

二、教学目的及要求1、掌握多元系热力学函数的一般性质和多元系的热力学方程,了解多元系的化学平衡条件。

2、系综理论可以应用于有相互作用粒子组成的系统。

掌握系综理论的基本概念,以及微正则系综、正则系综和巨正则系综。

3、进一步提高学生的解题技巧与能力。

为进一步学习现代物理学和科学技术奠定基础,并满足一部分学生考研的需要。

三、教学重点和难点教学重点和难点:多元系的热力学方程及复相平衡条件,热力学第三定律;相空间,刘维定理,微正则系综,正则系综,巨正则系综。

四、与其它课程的关系1、前期课程:力学、热学、原子物理、量子力学、高等数学,《热力学统计物理(1)》。

2、材料物理和固体物理等课程的先行课。

五、教学内容第四章多元系的复相平衡和化学平衡(10学时)本章主要教学内容:4.1 多元系的热力学函数和热力学方程:(1)多元单相系的热力学函数:欧勒定律偏摩尔量;(2)多元单相系的热力学基本方程:多元方程吉布斯关系;(3)多元复相的系热力学函数与基本方程。

4.2 多元系的复相平衡条件:力学平衡条件:Pα=Pβ;热平衡条件:Tα =Tβ;相平衡条件:μα i =μβi(i=1,2,3,...)4.3 吉布斯相律:证明吉布斯相律*4.5 化学平衡条件:化学反应式一般表达式;化学反平衡条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《热力学统计物理》试题参考解答及评分标准
一、1. B, 2. B, 3. A, 4. D, 5. B, 6. A, 7. C, 8. C, 9. A, 10. A. 评分标准:本题共20分, 每个答案2分。

二、 1. 状态, 2. 态, 系统从外界吸收, 3. p -, 4. ω )2
1
(+n , ,2,1,0=n , 5. l
e
a l l βεαω--=, 6. 0, 7. T V F )(∂∂-, 8. 负温度状态, 9. n p T G ,)(∂∂-, 10. n p S
H
,)(∂∂。

评分标准:本题共20分, 每个答案2分。

三、 1. 正确。

理由:pdV SdT dF --=。

2. 错误。

理由:T
V F p ⎪⎭⎫
⎝⎛∂∂-=。

3. 错误。

理由:自由粒子为不受外力的作用而作自由运动的粒子。

4. 错误。

理由:组成玻色系统和费米系统的粒子是不可分辨的,而组成玻耳兹曼系统的
粒子是可以分辨的。

评分标准:每小题2.5分。

其中判断1分,理由1.5分。

四、1.证: 由正则分布Es
s e Z
βρ-=
1,得 s s E Z βρ--=ln ln . (1) 将上式代入广义熵的表示式,得
]ln [ln ][ln β
ββ∂∂-=+=Z
Z k U Z k . (2) 上式即正则系综中系统熵的表示式。

或者,由正则分布中熵的表示式出发 ][ln s
s
s E
Z k
βρ+=∑, (3)
利用(1)式,由上式得熵的普遍表示式
∑-=s
s s k S ρρln . (4)
评分标准:(1),(2)式各5分。

2. 证明:理想气体的热容量为n C ,则đdT C Q n =。

由热力学第一定律得
pdV dT C dT C V n +=,
0)(=--pdV dT C C V n . (1) 将理想气体状态方程RT pV =微分,有
RdT Vdp pdV =+. (2)
由(1)式和(2)式消去dT ,得
0)()(=-+-pdV C C Vdp C C p n V n ,

0=+p
dp
V dV n
. (3) 式中
V
n p n C C C C n --=
. (4)
若V p n C C C ,,均为常数, 由(4)式知n 为常数,积分(3)式得 =n
pV 恒量. (5)
此即多方过程方程。

评分标准:(1)-- (5)式各2分。

3. 证明:设固体共有A N 个A 种原子和 B N 个B 种原子,原子总数为 N =A N +B N ,设x 为A 种原子的百分比(N N x A =
), (1-x )为B 种原子的百分比(1-x )= N
N
B , 所以 A N =Nx , B N =N x )1(-. (1)
N =A N +B N 个原子在晶体格点上作随机分布方式的总数为
()!
!!
B A B A N N N N +=
Ω=
]!
)1[(]![!
N x xN N -. (2)
所以A,B 两种原子在晶体格点上的随机分布引起的熵为
S = k ln ln
k =Ω[]()[]!
1!!
N x xN N - 。

(3)
利用斯特林公式简化上式,可得
[])1ln()1(ln }]!)1ln[()!ln(!{ln x x x x Nk N x xN N k S --+-=---=. (4)
注意到0<x<1,由(4)式给出的熵值
S>0. (5)
评分标准:(1)-- (5)各2分。

五、计算题:
1。

解: 范氏方程可表为 对范氏方程取导数得
,)(
b V R
T p V -=∂∂ 2
3)(2)(b V RT V a V
p T --=∂∂ (1) 按循环关系式,我们有
2
33)(2)
()()()(b V a RTV b V RV V p T p T V T V p ---=∂∂∂∂-=∂∂ (2)
因此
V 1=α2
32)(2)()()()(b V a RTV b V RV V p V T p T V
T V p ---=∂∂∂∂-=∂∂ (3)
p 1=β)()()(22b V a RTV RV b V p R T p V --=
-=∂∂ (4)
V T 1-=κ2
3
222
3)(2)()(211)(b V a RT V b V V b V RT V a V p V
T ---=--
-=∂∂. (5) 评分标准:(1)-- (5)式各2分。

2.解:用能量均分定理求粒子的平均能量。

a
b a b x a P P p m z y x 4)2()(21222
22-++++=ε. (1) 上式中2
)2(a
b x a +
是独立平方项,从而有 a
b a b x a p p p m z y x 4)2()(21222
22-
++++=ε
=a
b kT a b kT kT 42421232
2-=-+ (2)
评分标准:(1)式和(2)式各5分。

相关文档
最新文档