声发射原理
声发射技术的原理及其应用

声发射技术的原理及其应用1. 引言声发射技术是一种非破坏性检测方法,广泛应用于工程结构、材料以及地下管线等领域。
本文将介绍声发射技术的原理及其在各领域中的应用。
2. 声发射技术的原理声发射技术是通过检测材料或结构在负载下释放的声音信号来评估它们的状态和可靠性。
其原理可简述如下:•声发射源:当结构或材料发生变形或损伤时,会释放大量的弹性能量。
这些释放的能量以形式各异的声波传播出来,形成声发射信号。
声发射源可以是材料的微小裂纹、构件的变形或断裂等。
•传感器:声发射技术通常使用传感器来接收由声发射源发出的声波信号。
传感器可以是压电传感器、麦克风或加速度计等。
•数据采集:传感器将接收到的声波信号转换为电信号,并通过数据采集系统进行记录和处理。
采集到的数据可以用于进一步的分析和评估。
•分析和评估:通过对采集到的声发射信号进行分析和评估,可以确定结构或材料的状态、位置和类型等信息。
常用的分析方法包括时间域分析、频域分析和能量分析等。
3. 声发射技术的应用声发射技术在各个领域都有广泛的应用,下面将介绍其中一些主要应用。
3.1 工程结构监测声发射技术可以用于工程结构的监测和评估,例如:•桥梁:声发射技术可用于检测桥梁中的裂缝、腐蚀和变形等问题,帮助工程师及时采取维修措施,确保桥梁的安全性。
•建筑物:声发射技术可用于监测建筑物中的结构损伤,例如裂缝、脱落和变形等,以保证建筑物的结构完整性。
•输电线路:声发射技术可以感知输电线路的杆塔和绝缘子的电弧放电,提前发现线路的故障和潜在故障。
3.2 材料缺陷检测声发射技术可以用于材料缺陷的检测和评估,例如:•金属材料:声发射技术可用于检测金属材料中的裂纹、腐蚀和疲劳等问题,对于工业生产中的质量控制和安全评估非常重要。
•复合材料:声发射技术可以检测复合材料中的纤维断裂、层间剥离和断裂等问题,用于评估材料的可靠性和耐久性。
3.3 地下管线检测声发射技术可以用于地下管线的检测和监测,例如:•燃气管线:声发射技术可以用于监测燃气管线中的泄漏,通过分析声发射信号的频率和能量等特征,可以定位管线泄漏的位置。
声发射的基本原理

声发射的基本原理声发射检测的原理,从声发射源发射的弹性波最终传播到达材料的表面,引起可以用声发射传感器探测的表面位移,这些探测器将材料的机械振动转换为电信号,然后再被放大、处理和记录。
固体材料中内应力的变化产生声发射信号, 在材料加工、处理和使用过程中有很多因素能引起内应力的变化,如位错运动、孪生、裂纹萌生与扩展、断裂、无扩散型相变、磁畴壁运动、热胀冷缩、外加负荷的变化等等。
人们根据观察到的声发射信号进行分析与推断以了解材料产生声发射的机制。
声发射检测的主要目的是:①确定声发射源的部位;②分析声发射源的性质;③确定声发射发生的时间或载荷;④评定声发射源的严重性。
一般而言,对超标声发射源,要用其它无损检测方法进行局部复检,以精确确定缺陷的性质与大小。
声发射技术的特点声发射检测方法在许多方面不同于其它常规无损检测方法,其优点主要表现为:(1) 声发射是一种动态检验方法,声发射探测到的能量来自被测试物体本身,而不是象超声或射线探伤方法一样由无损检测仪器提供;(2) 声发射检测方法对线性缺陷较为敏感,它能探测到在外加结构应力下这些缺陷的活动情况,稳定的缺陷不产生声发射信号;(3) 在一次试验过程中,声发射检验能够整体探测和评价整个结构中缺陷的状态;(4) 可提供缺陷随载荷、时间、温度等外变量而变化的实时或连续信息,因而适用于工业过程在线监控及早期或临近破坏预报;(5) 由于对被检件的接近要求不高,而适于其它方法难于或不能接近环境下的检测,如高低温、核辐射、易燃、易爆及极毒等环境;(6) 对于在役压力容器的定期检验,声发射检验方法可以缩短检验的停产时间或者不需要停产;(7) 对于压力容器的耐压试验,声发射检验方法可以预防由未知不连续缺陷引起系统的灾难性失效和限定系统的最高工作压力;(8) 由于对构件的几何形状不敏感,而适于检测其它方法受到限制的形状复杂的构件。
由于声发射检测是一种动态检测方法,而且探测的是机械波,因此具有如下的特点:(1) 声发射特性对材料甚为敏感,又易受到机电噪声的干扰,因而,对数据的正确解释要有更为丰富的数据库和现场检测经验;(2) 声发射检测,一般需要适当的加载程序。
声发射及其基本原理

声发射是材料受外力或内力作用产生变形或断 裂时,以弹性波的形式释放出应变能的现象。 声发射也指固体内部的缺陷或潜在缺陷,在外 部条件作用下改变状态而自动发声。
声发射检验的基本原理就是由外部条件(如力、 温度等)的作用而使物体发声,根据物体的发 声推断物体的状态或内部结构变化。
声发射信号单参数分析方法
经历图分析方法:声发射信号经历分析 方法通过对声发射信号参数随时间或外 变量变化的情况进行分析,从而得到声 发射源的活动情况和发展趋势。最常用 和最直观的方法是图形分析。经历图分 析方法可用于进行声发射源的活动性评 价 ,如凯赛尔(Kaiser)效应评价 。
声发射信号单参数分析方法
声发射特点
声发射检测是一种动态无损检测方法。可获得关于缺陷的动态 信息,从而评价缺陷的严重性和危险性,还可连续长期监视大 型构件在使用过程中的安全性。
声发射不需移动传感器,操作简便。可以大面积检查和监视缺 陷的活动情况,确定缺陷所在位置。灵敏度高,在用声发射获 得缺陷的动态信息后,常需用超声、X射线和磁粉等方法验证, 有时需微观分析方法补充。
其他分析方法
谱分析 谱分析是工程信号处理中广泛使用的一 种方法,是通过对信号进行短时傅立叶变换, 把时域信号转换到频域中,用频谱特性去分析 和表现时域信号的特性。
小波分析 主要是小波基的选择、小波分析尺度 的选择以及特征提取的方法。
神经网络的训练与局部决策 神经网络的训练过 程的目标误差精度和最大迭代次数可根据实际 应用由用户自己设置。
声发射信号有两种基本类型
连续型:声发射信号的幅度低,仪器测试系统 的放大倍数要高(通常大于104)
突发型:幅度高的单个应力波脉冲 这种分类不是绝对的,当突发型信号的频度大
耳声发射的的原理及其应用

耳声发射的的原理及其应用1. 耳声发射的原理耳声发射,又被称为耳语扩音技术,是一种利用电声传输技术实现的语音传输方式。
其原理是通过一个麦克风将讲话人的声音转化成电信号,然后通过无线电传输到听者的耳机或听筒中。
下面将介绍耳声发射的具体原理。
1.1 麦克风采集声音信号耳声发射的第一步是通过麦克风采集讲话人的声音信号。
麦克风具有灵敏的振动膜,当声音波动作用于振动膜上时,振动膜会按照声音的频率和振幅变化,进而将声音转化为电信号。
1.2 信号放大和调整经过麦克风采集的声音信号比较微弱,需要经过放大和调整处理。
放大可以提高信号的幅度,使其适合传输和扩音。
调整可以对声音信号的频率和音量进行调控,使其更适合听者的需求。
1.3 信号传输经过放大和调整后的声音信号通过无线电信号传输到听者的耳机或听筒中。
这一过程涉及到无线电频率调谐、调制解调等技术,保证声音信号的稳定传输。
1.4 接收和转化听者的耳机或听筒接收到经过无线电传输的声音信号后,将其中的电信号转化为声音信号。
耳机或听筒中的扬声器和振膜会将电信号按照一定的规律震动和振动,最终将其转化为听者可感知的声音信号。
2. 耳声发射的应用耳声发射作为一种特殊的语音传播技术,在不同领域有着广泛的应用。
下面列举几个常见的应用场景。
2.1 会议和演讲在大规模会议或演讲现场,耳声发射技术可以用于将讲话人的声音传播到听众中。
听众只需佩戴耳机或听筒,就可以听到清晰、准确的声音,避免了因现场距离或环境噪音等原因导致的声音传播不畅的问题。
2.2 导览和旅游耳声发射技术也被广泛应用于导览和旅游领域。
游客可以佩戴导览器或听筒,通过无线电信号接收到导游的讲解声音。
这样可以保证游客在游览过程中听到清晰、连贯的解说,提高旅游的质量和体验。
2.3 教育和培训在教育和培训领域,耳声发射技术可以提供个性化的学习环境。
学生可以通过佩戴耳机或听筒来接收老师的授课内容,避免了因课堂噪音、空间限制等因素对学习效果的影响。
声发射实验原理和仪器介绍(全文)

声发射实验原理和仪器介绍1、实验原理固体介质中传播的声发射信号含有声发射源的特征信息,要利用这些信息反映材料特性或缺陷进展状态,就要在固体表面接收这种声发射信号。
接收、处理、分析和显示声发射信号便是对声发射信号的处理过程。
固体材料内部缺陷的发生和扩展,以弹性波的形式释放能量,并向四周传播,缺陷便成为声发射源。
为了在固体材料表面某一范围测量出缺陷的位置,可以将几个压电换能器按一定的几何关系放置在固定点上,组成换能器阵(或称阵列),测定声源发射的声波传播到各个换能器的相对时差。
将这些相对时差代入满足该阵几何关系的一组方程求解,便可以得到缺陷的位置坐标。
在实际操作中,通常有以下几种定位方法:1)直线定位法。
2)归一化正方阵定位法。
3)平面正方形定位法。
4)平面正三角形定位法。
5)任意平面三角形定位法。
6)球面三角形定位法。
7)区域定位法。
在实际操作中,我们常常采纳直线定位法。
下面我们将简单介绍直线定位法。
直线定位法就是在一唯空间中确定声发射源的位置坐标,亦称线定法。
线定位是声源定位中最简单的方法,多用于焊缝缺陷和裂纹的定位。
在一唯空间放置两个换能器,它们所确定的源位置必须在两个换能器的连接直线或弧线上。
如下图1所示,取坐标原点为两换能器之间连接直线的中点,取12的方向为正方向。
如换能器1首先接收到声发射信号,时差计数器所计的数值取负号;反之,换能器2首先接收到声发射信号,时差计数值取正号。
2、实验仪器介绍声发射信号是前沿时间只有几十到几百毫微秒、重复频率高的瞬变随机波信号。
局部瞬变产生的声发射波在试样表面的垂直位移约为10-7~~10-14米,频率分布在次声到超声频率范围(几千赫兹到几十赫兹)。
目前的声发射仪器大体上可分为两个基本类型,即单通道声发射检测仪和多通道声发射源定位和分析系统。
单通道声发射检测仪一般采纳一体结构,也可以采纳组件组合结构。
它由换能器、前置放大器、衰减器、主放大器、门槛电路、声发射率计数器、总数计数器以及数模转换器组成。
声发射原理的应用

声发射原理的应用声发射原理简介声发射原理是指声音在空气或其他介质中传播的过程。
声音是由物体振动产生的机械波,通过振动传递给周围的空气分子或其他介质分子,以波动的形式传播。
声音的传播速度取决于介质的性质,一般在空气中的传播速度为约343米/秒。
声发射原理的应用声发射原理在现实生活中有着广泛的应用,以下是几个常见的应用例子:1. 声波通信声波可以通过空气传播,因此在无线通信方面有着重要的应用。
例如,在海洋中,声波的传播速度要比无线电波的传播速度快得多。
因此,在海洋中,声波常常被用于声纳和水声通信。
声纳是一种利用水中声波传播的技术,可以用于探测水下的物体,如鱼群、潜艇等。
此外,声波还可用于水下通信,如水下电话、水下传输数据等。
2. 声音放大器声发射原理也被广泛应用于音响设备中。
声音放大器是一种将音频信号增强并输出到扬声器的设备,它利用声发射原理中的声波传播过程,将微弱的音频信号放大成可以听到的声音。
一般的音响设备由音频源、音频功放和扬声器组成,其中音频功放起到放大信号的作用。
通过声波传播,音响设备可以使音乐、对话等声音传达到听众的耳朵中。
3. 声波清洗器声波清洗器是利用声发射原理进行清洁的设备。
它通过声波的振荡和压缩,产生局部高压和低压,从而实现对物体表面的清洗。
声波清洗器广泛应用于家庭和工业清洁,如清洗眼镜、餐具、机械零件等。
通过超声波的振动作用,声波清洗器可以有效去除物体表面的污垢和细菌。
4. 声波测距仪声波测距仪是一种利用声波传播延迟时间来测量距离的设备。
它通过发送声波信号,测量声波从发射器发出到接收器接收到的时间差,进而计算出距离。
声波测距仪在工程测量、地质勘探等领域有着重要的应用。
例如,当工程师需要测量一个建筑物或地下隧道的长度时,可以使用声波测距仪来实现非接触测量。
5. 声波成像声发射原理还可以用于声波成像,这在医学领域中有着广泛的应用。
声波成像技术是一种无创性的检查方法,可以用来观察人体内部的结构和器官。
声音传播原理

声音传播原理
声音是一种以机械振动形式传播的机械波。
当一个物体发出声音时,它会通过振动产生压力变化,使周围介质中的分子也开始振动。
这些分子的振动会传递给相邻的分子,从而导致声波的传播。
声音的传播依赖于介质,它可以在固体、液体和气体中传播。
在固体中,声波通过分子间的直接相互作用传递。
在液体和气体中,声波由分子间的相互碰撞引起的压缩和稀疏传播。
具体来说,声音的传播包括以下几个过程:
1. 振动产生:声音的传播始于物体的振动。
当物体振动时,它会迅速压缩和稀疏周围的介质,形成局部的压力变化。
2. 压力变化传递:刚刚形成的局部压力变化将通过介质中的分子间相互作用传递。
振动分子与周围分子发生碰撞,使其也发生压缩稀疏,从而产生更广泛的压力波动。
这种压力波动以波的形式向四周传播。
3. 声波传播:压力波经过介质中的连续传递,形成了声波。
声波是由一系列的压缩和稀疏区域组成的,这些区域以固定的频率和振幅沿着传播方向传递。
声波的传播速度取决于介质的性质,如固体、液体或气体的密度和弹性模量。
4. 接收和解读:当声波到达接收器(如耳朵)时,它会导致接收器中的部分结构振动。
这些振动会被转化为神经信号,并通
过神经系统传递到大脑,从而使我们能够感知和理解声音。
总的来说,声音的传播是通过物体振动产生的压力变化在介质中传递的过程。
这个过程是通过分子的碰撞和相互作用来实现的,从而形成了声波。
声音传播的速度和特性取决于介质的性质。
声发射技术原理

声发射技术原理声发射技术原理是一种利用声波进行通信和定位的技术。
声发射技术可以用于水下通信、地震监测、声呐定位、声纳探测等领域,具有广泛的应用前景。
声发射技术的原理主要包括声波的产生、传播和接收三个方面,下面将对这几个方面进行详细的阐述。
声波的产生是声发射技术的基础。
声波是由物体振动产生的,振动的物体会使周围的介质产生压力变化,从而形成声波。
声发射技术中常用的声源包括压电换能器、磁致伸缩换能器、电动换能器等。
这些声源可以将电能或机械能转化为声能,产生可控的声波信号。
声波的频率、幅度和波形对声发射技术的性能和应用具有重要影响,因此声源的设计和选择是声发射技术中的关键技术之一。
声波的传播是实现声发射技术的基础。
声波是一种机械波,需要介质传播。
在空气中,声波是通过空气分子的运动传播的;在水中,声波是通过水分子的振动传播的。
声波的频率、波长和传播速度由介质的性质决定,不同介质的声波传播特性也会有所不同。
声波的传播在声发射技术中需要考虑介质的声学特性、传播路径和传播损耗等因素,以实现准确的声信号传输和定位。
声波的接收是实现声发射技术应用的关键环节。
声波到达接收器时,会引起接收器内部的物理变化,如振动、压力变化等。
接收器将这些物理变化转化为电信号,经过放大、滤波、数字化等处理后,最终得到声波的相关信息。
声波的接收器和信号处理技术对声发射技术的灵敏度、分辨率和定位精度起着至关重要的作用。
声发射技术的原理涉及到声波的产生、传播和接收三个方面。
在声发射技术的研发和应用过程中,需要充分理解声波的物理特性、声源和接收器的设计原理、声波传播的特性等,以实现声发射技术在通信、定位、探测等方面的应用。
声发射技术的不断发展将会为海洋勘测、水下探测、环境监测、物资运输等领域带来更多的创新和应用可能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
声发射
1.测试原理
材料在受到外荷载作用时,其内部贮存的应变能快速释放产生弹性波,发生声响,称为声发射。
1950年,德国人凯泽(J.Kaiser)发现多晶金属的应力从其历史最高水平释放后,再重新加载,当应力未达到先前最大应力值时,很少有声发射产生,而当应力达到和超过历史最高水平后,则大量产生声发射,这一现象叫做凯泽效应。
从很少产生声发射到大量产生声发射的转折点称为凯泽点,该点对应的应力即为材料先前受到的最大应力。
后来国外许多学者证实了在岩石压缩试验中也存在凯瑟效应,许多岩石如花岗岩、大理岩、石英岩、砂岩、安山岩、辉长岩、闪长岩、片麻岩、辉绿岩、灰岩、砾岩等也具有显著的凯泽效应,从而为应用这一技术测定岩体初始应力奠定了基础。
地壳内岩石在长期应力作用下达到稳定应变状态。
岩石达到稳定状态时的微裂结构与所受应力同时被“记忆”在岩石中。
如果把这部分岩石用钻孔法取出岩芯,即该岩芯被应力解除,此时岩芯中张开的裂隙将会闭合,但不会“愈合”。
由于声发射与岩石中裂隙生成有关,当该岩芯被再次加载并且岩芯内应力超过它原先在地壳内所受的应力时,岩芯内开始产生新的裂隙,并伴有大量声发射出现,于是可以根据岩芯所受载荷,确定出岩芯在地壳内所受的应力大小。
凯泽效应为测量岩石应力提供了一个途径,即如果从原岩中取回定向的岩石试件,通过对加工的不同方向的岩石试件进行加载声发射试验,测定凯瑟点,即可找出每个试件以前所受的最大应力,并进而求出取样点的原始(历史)三维应力状态。
2.测试步骤
(1)试件制备
从现场钻孔提取岩石试样,试样在原环境状态下的方向必须确定将试样加工成圆柱体试件,径高比为1:2~1:3。
为了确定测点三维应力状态,必须在该点的岩样中沿六个不同方向制备试件,假如该点局部坐标系为oxyz,则三个方向选为坐标轴方向,另三个方向选为oxy,oyz, ozx平面内的轴角平分线方向。
为了获得测试数据的统计规律,每个方向的试件为15~25块。
为了消除由于试件端部与压力试验机上、下压头之间摩擦所产生的噪声和试件端部应力集中,试件两端浇铸由环氧树脂或其他复合材料制成的端帽(参见图4-23)。
(2)声发射测试
将试件放在单压缩试验机上加压,并同时监测加压过程中从试件中产生的声发射现象。
图4-23是一组典型的监测系统框图。
在该系统中,两个压电换能器(声发射接受探头)固定在试件上、下部,用以将岩石试件在受压过程中产生的弹性波转换成电信号。
该信号经放大、鉴别之后送入定区检测单元,定区检测是检测二个探头之间的特定区域里的声发射信号,区域外的信号被认为是噪声而不被接受。
定区检测单元输出的信号送入计数控制单元,计数控制单元将规定的采样时间间隔内的声发射模拟量和数字量(事件数和振铃数)分别送到记录仪或显示器绘图、显示或打印。
图4-23 声发射监测系统框图
图4-24 应力—声发射事件试验曲线图
凯泽效应一般发生在加载的初期,故加载系统应选用小吨位的应力控制系统,并保持加载速率恒定,尽可能避免用人工控制加载速率如用手动加载,则应采用声发射事件数或振铃总数曲线判定凯泽点,而不应根据声发射事件速率曲线判定凯泽点。
这是因为声发射速率和加载速率有关。
在加载初期,人工操作很难保证加载速率恒定,在声发射事件速率曲线上可能出现多个峰值,难于判定真正的凯泽点。
(3)计算地应力
由声发射监测所获得的应力一声发射事件数(速率)曲线(参见图4-24),即可确定每次试验的凯泽点,并进而确定该试件轴线方向先前受到的最大应力值。
15~25个试件获得一个方向的统计结果,六个方向的应力值即可确定取样点的历史最大三维应力大小和方向。
根据凯泽效应的定义,用声发射法测得的是取样点的先存最大应力,而非现今地应力。
但是也有一些人对此持相反意见,并提出了“视凯泽效应”的概念。
认为声发射可获得两个凯泽点,一个对应于引起岩石饱和残余应变的应力,它与现今应力场一致,比历史最高应力值低,因此称为视凯泽点。
在视凯泽点之后,还可获得另一个真正的凯泽点,它对应于历史最高应力。
由于声发射与弹性波传播有关,所以高强度的脆性岩石有较明显的声发射凯泽效应出
现,而多孔隙低强度及塑性岩体的凯泽效应不明显,所以不能用声发射法测定比较软弱疏松岩体中的应力。
需要指出的是,传统的地应力测量和计算理论是建立在岩石为线弹性、连续、均质和各向同性的理论假设基础之上的,而一般岩体都具有程度不同的非线性、不连续性、不均质和各向异性。
在由应力解除过程中获得的钻孔变形或应变值求地应力时,如忽视岩石的这些性质,必将导致计算出来的地应力与实际应力值有不同程度的差异,为提高地应力测量结果的可靠性和准确性,在进行结果计算、分析时必须考虑岩石的这些性质。
下面是几种考虑和修正岩体非线性、不连续性、不均质性和各向异性的影响的主要方法:
(1)岩石非线性的影响及其正确的岩石弹仕模已泊松比确定方法;
(2)建立岩体不连续性、不均质性和各向异性模型井用相应程序计算地应力;
(3)根据岩石力学试验确定的现场岩体不连续性、不均质性和各向异性修正测量应变值;
(4)用数值分析方法修工岩石不连续性、不均质性和各自异性和非线性弹性的影响。