声发射原理及其应用
声发射技术的原理及其应用

声发射技术的原理及其应用1. 引言声发射技术是一种非破坏性检测方法,广泛应用于工程结构、材料以及地下管线等领域。
本文将介绍声发射技术的原理及其在各领域中的应用。
2. 声发射技术的原理声发射技术是通过检测材料或结构在负载下释放的声音信号来评估它们的状态和可靠性。
其原理可简述如下:•声发射源:当结构或材料发生变形或损伤时,会释放大量的弹性能量。
这些释放的能量以形式各异的声波传播出来,形成声发射信号。
声发射源可以是材料的微小裂纹、构件的变形或断裂等。
•传感器:声发射技术通常使用传感器来接收由声发射源发出的声波信号。
传感器可以是压电传感器、麦克风或加速度计等。
•数据采集:传感器将接收到的声波信号转换为电信号,并通过数据采集系统进行记录和处理。
采集到的数据可以用于进一步的分析和评估。
•分析和评估:通过对采集到的声发射信号进行分析和评估,可以确定结构或材料的状态、位置和类型等信息。
常用的分析方法包括时间域分析、频域分析和能量分析等。
3. 声发射技术的应用声发射技术在各个领域都有广泛的应用,下面将介绍其中一些主要应用。
3.1 工程结构监测声发射技术可以用于工程结构的监测和评估,例如:•桥梁:声发射技术可用于检测桥梁中的裂缝、腐蚀和变形等问题,帮助工程师及时采取维修措施,确保桥梁的安全性。
•建筑物:声发射技术可用于监测建筑物中的结构损伤,例如裂缝、脱落和变形等,以保证建筑物的结构完整性。
•输电线路:声发射技术可以感知输电线路的杆塔和绝缘子的电弧放电,提前发现线路的故障和潜在故障。
3.2 材料缺陷检测声发射技术可以用于材料缺陷的检测和评估,例如:•金属材料:声发射技术可用于检测金属材料中的裂纹、腐蚀和疲劳等问题,对于工业生产中的质量控制和安全评估非常重要。
•复合材料:声发射技术可以检测复合材料中的纤维断裂、层间剥离和断裂等问题,用于评估材料的可靠性和耐久性。
3.3 地下管线检测声发射技术可以用于地下管线的检测和监测,例如:•燃气管线:声发射技术可以用于监测燃气管线中的泄漏,通过分析声发射信号的频率和能量等特征,可以定位管线泄漏的位置。
声发射技术的基础原理PPT课件

复合材料的声发射检测
总结词
复合材料的声发射检测是评估复合材料结构完整性和性能的重要手段。
详细描述
复合材料由多种材料组成,其结构复杂,传统的无损检测方法难以有效评估其完整性。声发射技术能够检测复合 材料在受力过程中产生的声波信号,通过分析这些信号可以判断复合材料的损伤程度、界面脱粘等缺陷,为复合 材料的安全使用提供保障。
近年来,随着计算机技术和数字信号处理技术的进步,声发射技术得到了进一步的 发展和完善,提高了其检测精度和可靠性。
声发射技术的应用领域
航空航天
声发射技术用于检测飞机和航 天器的关键部件,如发动机、 机身和机翼等,以确保其安全
可靠。
石油化工
声发射技术用于检测石油和化 工管道、压力容器等设备的裂 纹和缺陷,提高设备的安全性 能。
声发射信号的预处理
01
02
03
去噪
去除声发射信号中的噪声, 提高信号的信噪比。
滤波
根据需要将信号中的特定 频率成分进行提取或滤除。
放大
将微弱的声发射信号进行 放大,以便后续处理和分 析。
声发射信号的特征提取
时域特征
提取信号的幅度、持续时 间、上升时间等时域参数。
频域特征
对信号进行频谱分析,提 取频率、带宽等频域参数。
等,这些成果为声发射技术的应用提供 了重要的技术支持。
声发射技术的发展趋势与未来展望
01
02
03
04
05
随着科技的不断发展, 声发射技术也在不断进 步和完善。未来,声发 射技术将朝着高精度、 高可靠性和智能化的方 向发展。
在高精度方面,通过改 进信号处理技术和算法, 提高声发射检测的分辨 率和准确性,实现对微 小缺陷和损伤的准确检 测。
声发射检测技术的原理及应用

鄣
ρ 鄣
鄣 鄣 鄣 鄣
鄣2η
2
鄣t
=(λ+μ)鄣鄣Y
+μ
2η
鄣
鄣 鄣
2
鄣 ζ 鄣
ρ 鄣
2
鄣 鄣
鄣t
=(λ+μ)鄣鄣Z
+μ
2ζ
(1) (2) (3)
图 4 声发射检测基本原理示意图
图 5 典型裂纹声发射频谱图
式中:Δ=εxx+εyy+εzz
2
=
鄣 鄣X2
+
鄣 鄣Y2
+
鄣 鄣Z2
(4) (5)
可以得出固体弹性介质中两种不同类型波的波动方程。首
声发射检测技术是一种动态无损检测方法,它可以对检测 对象进行实时监测,且检测灵敏度高。此外,几乎所有材料都具 有声发射特性,所以声发射检测不受材料限制,且不受检测对 象的尺寸、几何形状、工作环境等因素的影响。
述声发射信号的大小可判断是否有裂纹产生、是否有泄漏,并 获知泄漏程度。
(2)旋转和往复运动机械。特别是高速旋转机械,由于运 行过程中不平衡、不对中、热弯曲等,会发生转子碰磨,此时金 属内部晶格将发生滑移或重新排列,这个过程中能量的变化以 弹性波的形式释放出来,即产生了声发射信号。 3.2 声发射信号的处理
图 3 检测系统构成示意图
50
在预期产生缺陷的部位放置声发射传感器ae源产生声发射信号通过耦合界面传到ae传感器ae传感器采集包含ae源的状态信息的ae信号通过放大滤波器等对采集的ae信号进行放大滤波转换等处理并将转换后的ae信号传输到信号采集处理系统对采集的信号进行比对及特征分析通过外端显示设备输出
2010 年 3 月 第 3 期(总第 136 期)
声发射技术的应用原理

声发射技术的应用原理概述声发射技术是一种利用声波信号进行数据传输的技术。
该技术通过发射特定频率和振幅的声波,以达到传输数据的目的。
本文将介绍声发射技术的应用原理及其相关应用领域。
应用原理声发射技术的应用原理基于声波的特性。
通过在特定环境中产生声波并监听其传播过程中的变化,我们可以得到有关环境的信息。
声发射技术的应用原理主要包括以下两个方面:1.声波特性分析:–声波传播速度:不同介质中声波的传播速度不同,通过测量声波在不同介质中的传播速度可以获得有关介质的信息。
–声波衰减:声波在传播过程中会受到衰减,通过测量声波的衰减情况可以了解介质的特性。
–声波反射:声波在遇到障碍物时会发生反射,通过测量反射的声波可以了解障碍物的位置和形状。
–声波干扰:声波传播过程中可能会受到其他声源的干扰,通过分析干扰的声波可以了解干扰源的位置。
2.数据传输:–通过改变声波的频率、幅度等参数来表示不同的数据。
–接收端通过解码接收到的声波信号,将其转换为对应的数据。
应用领域声发射技术在许多领域中得到了广泛应用,下面列举了几个典型的应用领域:1.石油勘探:–利用声发射技术可以测量地下岩层中的声波传播速度,以分析岩层的密度、孔隙度等参数,从而判断地下是否存在油气资源。
–声发射技术还可用于检测地震活动,及时预警地震灾害并进行防护措施。
2.建筑结构健康监测:–利用声发射技术可以监测建筑结构中的裂纹、腐蚀等缺陷,提前预警潜在安全隐患。
–声发射技术还可用于检测建筑物中的渗漏问题,为修缮提供指导。
3.铁路轨道检测:–利用声发射技术可以检测铁轨的裂纹、疲劳等问题,及早修补和维护轨道,确保列车行驶的安全。
–声发射技术还可用于检测列车车轮的磨损情况,合理规划车轮的更换周期。
4.航空航天:–在航天器发射升空过程中,声发射技术可用于监测发射载具的结构健康情况,确保发射过程安全可靠。
–在航空器飞行过程中,声发射技术可用于监测发动机的工作状态,发现异常情况及时修复。
声发射监测技术

机械设备故障诊断讲稿__声发射监测技术声发射技术是根据结构内部发出的应力波来判断结构内部损伤程度的一种动态无损检测技术。
由于该方法能连续监视结构内部损伤的全过程,因此得到了广泛应用。
一、声发射监测的基本原理在日常生活中,人们会注意到,折断竹杆可以听到噼啦的断裂声,打碎玻璃可以听到清脆的破碎声,水开时可以听到对流声,这些都是人耳可觉查到的声发射现象。
通常,人们把物体在状态改变时自动发出声音的现象称为声发射。
其实质是物体受到外力或内力作用产生变形或断裂时,就以弹性波形式释放能量的一种现象。
由于声发射提供丁材料状态变化的有关信息,所以可用于设备的状态监测和故障诊断。
声发射源往往是材料损坏的发源地。
由于声发射源的活动常在材料破坏之前很早就会出现,因此,可根据材料的微观变形和开裂以及裂纹的发生和发展过程所产生声发射的特点及强度来推知声发射源目前的状态(存在、位置、严重程度),而且可知道它形成的历史,并预测其发展趋势。
这就是声发射监测的基本原理。
二、声发射监测具有以下持点:(1)声发射监测可以获得有关缺陷的动态信息。
结构或部件在受力情况下,利用声发射进行监测,可以知道缺陷的产生、运动及发展状态,并根据缺陷的严重程度进行实时报警。
而超声波探伤,只能检测过去的状态,属于静态情况下的探伤。
(2)声发射监测不受材料位置的限制。
材料的任何部位只要有声发射,就可以进行检测并确定声源的位置。
(3)声发射监测只接收由材料本身所发射的超声波;而超声波监测必须把超声波发射到材料中,并接收从缺陷反射回来的超声波。
(4)灵敏度高。
结构缺陷在萌生之初就有声发射现象;而超声波、x射线等方法必须在缺陷发展到一定程度之后才能检测到。
(5)不受材料限制。
因为声发射现象普遍存在于金属、塑料、陶瓷、木材、混凝土及复合材料等物体中,因此得到广泛应用。
由于声发射具有以上特点,因此得到了科学家和工程技术人员的重视。
美国在l 964年就研制成功一套实用的声发射监测系统,并用于火箭发动机壳体水压试验的监测。
耳声发射的的原理及其应用

耳声发射的的原理及其应用1. 耳声发射的原理耳声发射,又被称为耳语扩音技术,是一种利用电声传输技术实现的语音传输方式。
其原理是通过一个麦克风将讲话人的声音转化成电信号,然后通过无线电传输到听者的耳机或听筒中。
下面将介绍耳声发射的具体原理。
1.1 麦克风采集声音信号耳声发射的第一步是通过麦克风采集讲话人的声音信号。
麦克风具有灵敏的振动膜,当声音波动作用于振动膜上时,振动膜会按照声音的频率和振幅变化,进而将声音转化为电信号。
1.2 信号放大和调整经过麦克风采集的声音信号比较微弱,需要经过放大和调整处理。
放大可以提高信号的幅度,使其适合传输和扩音。
调整可以对声音信号的频率和音量进行调控,使其更适合听者的需求。
1.3 信号传输经过放大和调整后的声音信号通过无线电信号传输到听者的耳机或听筒中。
这一过程涉及到无线电频率调谐、调制解调等技术,保证声音信号的稳定传输。
1.4 接收和转化听者的耳机或听筒接收到经过无线电传输的声音信号后,将其中的电信号转化为声音信号。
耳机或听筒中的扬声器和振膜会将电信号按照一定的规律震动和振动,最终将其转化为听者可感知的声音信号。
2. 耳声发射的应用耳声发射作为一种特殊的语音传播技术,在不同领域有着广泛的应用。
下面列举几个常见的应用场景。
2.1 会议和演讲在大规模会议或演讲现场,耳声发射技术可以用于将讲话人的声音传播到听众中。
听众只需佩戴耳机或听筒,就可以听到清晰、准确的声音,避免了因现场距离或环境噪音等原因导致的声音传播不畅的问题。
2.2 导览和旅游耳声发射技术也被广泛应用于导览和旅游领域。
游客可以佩戴导览器或听筒,通过无线电信号接收到导游的讲解声音。
这样可以保证游客在游览过程中听到清晰、连贯的解说,提高旅游的质量和体验。
2.3 教育和培训在教育和培训领域,耳声发射技术可以提供个性化的学习环境。
学生可以通过佩戴耳机或听筒来接收老师的授课内容,避免了因课堂噪音、空间限制等因素对学习效果的影响。
声发射传感器原理、使用、型号分类、校准大全

声发射传感器全介绍/目录声发射概述声发射传感器基础常用型号介绍声发射传感器使用其他问题压电陶瓷在受力产生变形时,其表面出现电荷,这种现象称为压电效应。
常用声发射传感器的工作原理,就是基于晶体元件的压电效应,将声发射波引起的被检件表面振动转换为电压信号,送入信号处理器,完成信号处理过程。
声发射传感器作为接收信号的敏感元件,在声发射系统中起到一个至关重要的桥梁作用。
传感器的谐振频率、本体噪音、温度稳定性、多传感器一致性等都会对信号的采集有着影响。
●谐振式声发射传感器一般由壳体、耦合面、压电元件、连接导线及接线端子组成;宽带型加入阻尼材料抑制部分谐振;内置放大型加入一个前置放大器;差动型有两压电元件组成;●将压电元件的负电极面用导电胶粘贴在底座上,另一面焊出一根很细的引线与高频插座的芯线连接,外壳接地;差动型采用对称的两压电元件,通过差分放大器消除共模信号;●压电元件通常采用锆钛酸铅陶瓷晶片,起到声电转换作用;耦合面起到绝缘和保护压电陶瓷的作用;金属外壳对电磁干扰起屏蔽作用;谐振式传感器宽带型传感器前置放大传感器差动型传感器常规类型声发射传感器定制声发射传感器差分型声发射传感器内置前放型声发射传感器小型声发射传感器超小型声发射传感器宽带型声发射传感器120dB高灵敏度声发射传感器空气耦合传感器高温、低温传感器防水绝缘型声发射传感器校准用可溯源声发射传感器传感器的选择应根据使用场景和被检测声发射信号来确定。
首先是了解检测声发射的频率范围和幅度范围,然后选择对有效声发射信号灵敏的传感器。
常用频率推荐:金属检测100-300kHz ,推荐型号AE144S/PXR15岩石/混凝土检测30-60kHz ,推荐型号AE503S/PXR04复合材料检测300kHz 以上,推荐型号AE304S/PXR30 局放检测,推荐型号AE503D 差动型声发射传感器确定尺寸、温度等必要条件用宽带型传感器测得信号频率段选用相对频率的谐振式传感器选型步骤A B C声发射传感器常见参数谐振频率:传感器对外部信号发生共振现象时的信号频率,传感器对该点的频率最灵敏。
基于声发射技术的材料疲劳损伤监测

基于声发射技术的材料疲劳损伤监测声发射技术是一种常用于材料疲劳损伤监测的非破坏性测试方法。
它通过监测材料在加载过程中产生的声波信号来评估材料的疲劳破坏状态。
本文将介绍声发射技术的工作原理、应用范围以及未来的发展趋势。
一、工作原理声发射技术基于声波在材料中的传播特性进行研究。
当材料受到外部力加载时,内部的微小裂纹或缺陷将会产生应力集中,最终导致疲劳破坏。
在这个过程中,材料会释放出各种频率和幅度的声波信号。
声发射技术通过检测、记录和分析这些声波信号,以了解材料在加载中出现的疲劳损伤。
二、应用范围声发射技术广泛应用于不同类型材料的疲劳损伤监测,并被用于多个领域,如工程结构、航空航天、能源领域等。
2.1 工程结构工程结构是声发射技术应用的一个重要领域。
在桥梁、建筑物等大型结构中,声发射技术可以用于监测结构受到的负载和疲劳破坏情况。
通过实时监测声发射信号,结构的安全性和使用寿命可以得到评估和预测。
2.2 航空航天航空航天领域对于材料的疲劳损伤监测要求极高,因为任何小的疲劳破坏都可能会导致灾难性后果。
声发射技术可以帮助航空航天工程师监测材料的疲劳寿命,预测结构的性能变化,并根据监测结果进行修复和维护。
2.3 能源领域能源领域也是声发射技术的重要应用领域之一。
例如,在核电站中,材料的疲劳损伤监测对于保障设施的运行安全至关重要。
声发射技术可以监测关键设备中的裂纹和缺陷,及时发现潜在的问题,并采取措施进行修复和保养。
三、发展趋势随着科学技术的发展,声发射技术在材料疲劳损伤监测中的应用将会得到进一步提升。
以下是未来该技术发展的一些趋势:3.1 算法和分析方法的改进为了提高声发射技术的准确性和可靠性,研究人员将会不断改进算法和分析方法。
利用机器学习和人工智能等技术,可以更准确地判断材料疲劳破坏的位置和程度。
3.2 多传感器系统的应用多传感器系统可以提供更全面的监测和检测能力。
未来,声发射技术可能会与其他传感器技术相融合,形成更强大的监测系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
声发射检测到的也是一种振动信号
什么是声发射?
声发射(acoustic emission,简称AE)是指材料或结
构受外力或内力作用产生变形或断裂,以应力波形式释 放出应变能的现象。
① 应变能足够强,则人耳可以听到。 ② 许多金属材料的声及射信号强度很弱,人耳不能直
接听见,需要藉助灵敏的电子仪器才能检测出来。
AE System
弹性波
如何产生声发射?
塑性变形
结构材料源
相变 亚临界裂纹扩展 压力泄漏 摩擦及磨损 裂纹面闭合与摩擦 撞击
声 发 射 源
其他源
磁畴壁运动 燃烧 沸腾 凝固与熔化 氧化膜、锈皮和熔渣开裂
声发射的应用
起重机主梁裂纹检测
管道裂纹检测
声发射的应用
储 油 罐
油面
传 感 器
腐蚀点
传 感 器 变压器局部放电检测
每个散点都是一个声发射事件
如何对声发射信号分析?
门槛
能量 幅值 RMS 振铃计数
上升时间
持续时间
声发射特征值的应用(一)
新5#高炉上料主皮带轴承检测穿带辊增面辊南传动辊北传动辊
声发射特征值的应用(一)
北传动西侧轴承
声发射特征值的应用(一)
穿带辊西侧轴承
声发射的数据分析方法
特征值分析
与振动信号类似,采集声发射波形流
时域波形 5
0
-5
0
0.2
0.4
0.6 s
0.8
1
1.2
1.4
声发射信号的分析难点
声发射与设备的结构、材料、受力有极大关系
应力波的传播存在折射、反射,易使信号发生畸变
应力波的传播存在衰减,易使信号特征减弱
存在多个声发射源同时产生声发射,使信号复杂
声发射特征值的应用(一)
声发射特征值的应用(二)
测试对象
三炼钢A、B炉从动侧耳轴轴承
特点
低速重载 /非平稳 / 非整周期运转
方法
幅值—频率质心— RMS
1H
1A
2A
2H
x 10 4
-3
B
A
A号 炉 B号 炉
RMS
结论
能有效区分A炉和B炉的运行状态
3
2
1
0 180 160 140 55 频率质心 120 50 幅值 60 70 65
传感器 储油罐漏油检测
机械设备中的声发射现象
运动副间的接触并发生相对运动而产生声发射
轴承:
滚动体与保持架、内圈、外圈发生摩擦/撞击产生声发射 轴承的润滑不良会产生声发射 轴承受外力作用产生声发射
声发射信号的类型
突发型:在时间上可分离的波形。
连续型:在时间上不可分离的波形。
声发射信号的散点图
声发射原理及其应用
主要内容
声发射的原理 声发射的应用 声发射设备的使用
振动与声发射
振动测量在设备故障诊断中应用最为广泛。
声发射传感器可以检测到材料表面10-14m的微小振动。
B炉
左 通 道 2H
800 600 400 200 0 -200 -400 -600 -800 1.474 1.476 1.478 1.48 1.482 1.484 1.486 1.488
声发射波形流的应用
炼铁厂一制粉1#磨
电机
1号通道 2号通道
减速机
声发射波形流的应用
炼铁厂一制粉1#磨
电机
1号通道 2号通道
减速机
声发射与振动的异同
振 动 声发射
设备的机械运动 原理 压电式 传 原理 陶瓷\普通金属 感 材料 器 频响 特征值 RMS,峰值,峭度 峰值因子
材料受力释放的应力波
前置放大器 声发射采集系统
声发射设备的使用注意事项
传感器安装
①
②
传递路径短、结合面少
试件表面需清洁和平整
耦合剂使用
① ②
不宜涂得过多或过少
耦合层应尽可能薄,表面要充分浸湿
声发射设备的使用注意事项
断铅标定
①
使用直径为0.5mm的HB或2B铅芯与构件表面成
30°夹角,铅芯的伸长量为2.5mm左右,铅芯在 距离传感器30mm内折断,散点的幅值应在95dB 左右。
②
铅芯常常需要折断3~4次。一根铅芯开始的和最后 的几次折断不应作为标准。
总结
声发射是应力波的释放,检测到的也是振动信号
运动副间的接触并发生相对运动而产生声发射 信号采集 特征值分析和波形流分析
学习资料
《声发射检测》 机械工业出版社
其他无损检测类书籍
谢 谢
如何判断产生了一个声发射信号?
压电式 特殊金属锆钛合金 ≥150KHz 事件数,振铃计数,能量 持续时间 采集≥300KHz以上的超声 波信号
波形流 采集≤10KHz的振动
信号
核心:声发射信号来自故障源本身而非外部,可以得 到有关缺陷的丰富信息,
主要内容
声发射的原理 声发射的应用 声发射设备的使用
声发射设备的使用
声发射传感器
PDT(峰值定义时间):用于定义信号峰值的上升时 间。第一次过门槛后的PDT时间内,信号的最大值即 为整个信号的峰值。 HDT(撞击定义时间):如果两个超过门槛值之间的 时间必须小于HDT。 HLT(撞击闭锁时间):如果两个超过门槛值之间的 时间大于HLT,认为是两个撞击信号。HLT值可以避 免信号衰减时的非真实检测及提高数据采集速度。