理科数学2010-2019高考真题分类训练专题九 解析几何第二十八讲 抛物线

合集下载

理科数学2010-2019高考真题分类训练专题九 解析几何第二十九讲 曲线与方程

理科数学2010-2019高考真题分类训练专题九  解析几何第二十九讲  曲线与方程

3, 2
抛物线 E: x2 = 2 y 的焦点 F 是 C 的一个顶点.
(Ⅰ)求椭圆 C 的方程;
(Ⅱ)设 P 是 E 上的动点,且位于第一象限,E 在点 P 处的切线 l 与 C 交与不同的两点
A,B,线段 AB 的中点为 D,直线 OD 与过 P 且垂直于 x 轴的直线交于点 M. (i)求证:点 M 在定直线上;
江苏 17)如图,在平面直角坐标系
xOy 中,椭圆 C:
x2 a2
+
y2 b2
= 1(a
b
0) 的焦
点为 F(1 –1、0),F(2 1,0).过 F2 作 x 轴的垂线 l,在 x 轴的上方,l 与圆 F2: (x −1)2 + y2 = 4a2
交于点 A,与椭圆 C 交于点 D.连结 AF1 并延长交圆 F2 于点 B,连结 BF2 交椭圆 C 于点 E,
其中,所有正确结论的序号是
(A)① (B)② (C)①② (D)①②③
2.(2019 浙江 15)已知椭圆 x2 + y2 = 1的左焦点为 F ,点 P 在椭圆上且在 x 轴的上方, 95
若线段 PF 的中点在以原点 O 为圆心, OF 为半径的圆上,则直线 PF 的斜率是_______.
3.(2019
y
P x
O
13.(2013
四川)已知椭圆
C:x a
2 2
+
y2 b2
= 1(a b 0) 的两个焦点分别为 F1(−1,0) ,F(2 1,0),
且椭圆 C 经过点 P( 4,1). 33
(Ⅰ)求椭圆 C 的离心率
(Ⅱ)设过点 A(0,2)的直线 l 与椭圆 C 交于 M,N 两点,点 Q 是 MN 上的点,且

十年真题(2010_2019)高考数学真题分类汇编专题12平面解析几何解答题理(含解析)

十年真题(2010_2019)高考数学真题分类汇编专题12平面解析几何解答题理(含解析)

专题12平面解析几何解答题历年考题细目表题型年份考点试题位置解答题2019 抛物线2019年新课标1理科19解答题2018 椭圆2018年新课标1理科19解答题2017 椭圆2017年新课标1理科20解答题2016 圆的方程2016年新课标1理科20解答题2015 抛物线2015年新课标1理科20解答题2014 椭圆2014年新课标1理科20解答题2013 圆的方程2013年新课标1理科20解答题2012 抛物线2012年新课标1理科20解答题2011 抛物线2011年新课标1理科20解答题2011 圆的方程2011年新课标1理科22解答题2010 椭圆2010年新课标1理科20历年高考真题汇编1.【2019年新课标1理科19】已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若3,求|AB|.【解答】解:(1)设直线l的方程为y(x﹣t),将其代入抛物线y2=3x得:x2﹣(t+3)x t2=0,设A(x1,y1),B(x2,y2),则x1+x22t,①,x1x2=t2②,由抛物线的定义可得:|AF|+|BF|=x1+x2+p=2t4,解得t,直线l的方程为y x.(2)若3,则y1=﹣3y2,∴(x1﹣t)=﹣3(x2﹣t),化简得x1=﹣3x2+4t,③由①②③解得t=1,x1=3,x2,∴|AB|.2.【2018年新课标1理科19】设椭圆C:y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M 的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.【解答】解:(1)c1,∴F(1,0),∵l与x轴垂直,∴x=1,由,解得或,∴A(1.),或(1,),∴直线AM的方程为y x,y x,证明:(2)当l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,OM为AB的垂直平分线,∴∠OMA=∠OMB,当l与x轴不重合也不垂直时,设l的方程为y=k(x﹣1),k≠0,A(x1,y1),B(x2,y2),则x1,x2,直线MA,MB的斜率之和为k MA,k MB之和为k MA+k MB,由y1=kx1﹣k,y2=kx2﹣k得k MA+k MB,将y=k(x﹣1)代入y2=1可得(2k2+1)x2﹣4k2x+2k2﹣2=0,∴x1+x2,x1x2,∴2kx1x2﹣3k(x1+x2)+4k(4k3﹣4k﹣12k3+8k3+4k)=0从而k MA+k MB=0,故MA,MB的倾斜角互补,∴∠OMA=∠OMB,综上∠OMA=∠OMB.3.【2017年新课标1理科20】已知椭圆C:1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2﹣4=0,,x1x2,则1,又t≠1,∴t=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).4.【2016年新课标1理科20】设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b,则点E的轨迹方程为1(y≠0);(Ⅱ)椭圆C1:1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2,y1y2,则|MN|•|y1﹣y2|••12•,A到PQ的距离为d,|PQ|=22,则四边形MPNQ面积为S|PQ|•|MN|••12•=24•24,当m=0时,S取得最小值12,又0,可得S<24•8,即有四边形MPNQ面积的取值范围是[12,8).5.【2015年新课标1理科20】在直角坐标系xOy中,曲线C:y与直线l:y=kx+a(a>0)交于M,N 两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【解答】解:(I)联立,不妨取M,N,由曲线C:y可得:y′,∴曲线C在M点处的切线斜率为,其切线方程为:y﹣a,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.6.【2014年新课标1理科20】已知点A(0,﹣2),椭圆E:1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以a=2,b2=a2﹣c2=1,故E的方程.….(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y x﹣2或y x﹣2.…7.【2013年新课标1理科20】已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|由于对称性可知:当时,也有|AB|.综上可知:|AB|或.8.【2012年新课标1理科20】设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n 距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD,∴,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.9.【2011年新课标1理科20】在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.【解答】解:(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1).所(﹣x,﹣1﹣y),(0,﹣3﹣y),(x,﹣2).再由题意可知()•0,即(﹣x,﹣4﹣2y)•(x,﹣2)=0.所以曲线C的方程式为y2.(Ⅱ)设P(x0,y0)为曲线C:y2上一点,因为y′x,所以l的斜率为x0,因此直线l的方程为y﹣y0x0(x﹣x0),即x0x﹣2y+2y0﹣x02=0.则o点到l的距离d.又y02,所以d2,所以x02=0时取等号,所以O点到l距离的最小值为2.10.【2011年新课标1理科22】如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2﹣14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF(12﹣2)=5.故C,B,D,E四点所在圆的半径为511.【2010年新课标1理科20】设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB||x1﹣x2|,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.考题分析与复习建议本专题考查的知识点为:直线方程、圆的方程,直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线,曲线与方程等.历年考题主要以解答题题型出现,重点考查的知识点为:直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等,预测明年本考点题目会比较稳定,备考方向以知识点直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等为重点较佳.最新高考模拟试题1.已知椭圆22122:1(0)x yC a ba b+=>>的离心率为63,椭圆22222:1(0)33x yC a ba b+=>>经过点33⎝⎭.(1)求椭圆1C的标准方程;(2)设点M是椭圆1C上的任意一点,射线MO与椭圆2C交于点N,过点M的直线l与椭圆1C有且只有一个公共点,直线l与椭圆2C交于,A B两个相异点,证明:NAB△面积为定值.【答案】(1)22113y x +=; (2)见解析. 【解析】(1)解:因为1C所以22619b a=-,解得223a b =.①将点,22⎛⎫ ⎪ ⎪⎝⎭代入2222133x y a b +=,整理得2211144a b +=.② 联立①②,得21a =,213b =, 故椭圆1C 的标准方程为22113y x +=. (2)证明:①当直线l 的斜率不存在时,点M 为()1,0或()1,0-,由对称性不妨取()1,0M ,由(1)知椭圆2C 的方程为2213x y +=,所以有()N .将1x =代入椭圆2C的方程得y =,所以)111223NAB S MN AB ∆=⋅=3=. ②当直线l 的斜率存在时,设其方程为y kx m =+, 将y kx m =+代入椭圆1C 的方程 得()222136310kxkmx m +++-=,由题意得()()()2226413310km k m∆=-+-=,整理得22313m k =+.将y kx m =+代入椭圆2C 的方程, 得()222136330kxkmx m +++-=.设()11,A x y ,()22,B x y ,则122613km x x k +=-+,21223313m x x k-=+, 所以AB ===. 设()00,M x y ,()33,N x y ,ON MO λ=u u u v u u u u v,则可得30x x λ=-,30y y λ=-.因为220022333113x y x y ⎧+=⎪⎨+=⎪⎩,所以2200222003113x y x y λ⎧+=⎪⎛⎫⎨+= ⎪⎪⎝⎭⎩,解得λ=λ=,所以ON =u u u v u u u v,从而)1NM OM =.又因为点O 到直线l的距离为d =所以点N到直线l 的距离为)11m d ⋅=所以))111122NABS d AB ∆=⋅==,综上,NAB ∆32.如图,在平面直角坐标系xOy 中,椭圆C :22221x y a b+=(a >b >0)经过点(0,),点F 是椭圆的右焦点,点F 到左顶点的距离和到右准线的距离相等.过点F 的直线l 交椭圆于M ,N 两点.(1)求椭圆C 的标准方程;(2)当MF =2FN 时,求直线l 的方程;(3)若直线l 上存在点P 满足PM·PN=PF 2,且点P 在椭圆外,证明:点P 在定直线上.【答案】(1)22143x y +=;(25250x y ±-=;(3)见解析. 【解析】(1)设椭圆的截距为2c ,由题意,b 3由点F 到左顶点的距离和到右准线的距离相等,得a+c =2a c c-,又a 2=b 2+c 2,联立解得a =2,c =1.∴椭圆C 的标准方程为22143x y +=;(2)当直线l 与x 轴重合时,M (﹣2,0),N (2,0),此时MF =3NF ,不合题意; 当直线l 与x 轴不重合时,设直线l 的方程为x =my+1,M (x 1,y 1),N (x 2,y 2),联立22my 1x y 143x =+⎧⎪⎨+=⎪⎩,得(3m 2+4)y 2+6my ﹣9=0.△=36m 2+36(m 2+4)>0.122634m y y m +=-+ ①,1229y y 3m 4=-+②,由MF =2FN ,得y 1=﹣2y 2③, 联立①③得,1222126,3434m my y m m =-=++, 代入②得,()22227293434m m m-=-++,解得5m 5=±5250x y ±=;(3)当直线l 的斜率为0时,则M (2,0),N (﹣2,0),设P (x 0,y 0), 则PM•PN=|(x 0﹣2)(x 0+2)|,∵点P 在椭圆外,∴x 0﹣2,x 0+2同号,又()()()()2220000PF x 1,x 2x 2x 1=-∴-+=-,解得052x =. 当直线l 的斜率不为0时,由(2)知,1212226m 9y y ,y y 3m 43m 4+=-=-++,10200PM y ,PN y ,PF =-=-=.∵点P 在椭圆外,∴y 1﹣y 0,y 2﹣y 0同号, ∴PM•PN=(1+m 2)(y 1﹣y 0)(y 2﹣y 0)=()()221201201my yy y y y ⎡⎤+-++⎣⎦()()2222002269113434m m y m y m m ⎛⎫=++-=+ ⎪++⎝⎭,整理得032y m =,代入直线方程得052x =.∴点P 在定直线52x =上. 3.已知抛物线C :24y x =的焦点为F ,直线l 与抛物线C 交于A ,B 两点,O 是坐标原点. (1)若直线l 过点F 且8AB =,求直线l 的方程;(2)已知点(2,0)E -,若直线l 不与坐标轴垂直,且AEO BEO ∠=∠,证明:直线l 过定点. 【答案】(1)1y x =-或1y x =-+;(2)(2,0). 【解析】解:(1)法一:焦点(1,0)F ,当直线l 斜率不存在时,方程为1x =,与抛物线的交点坐标分别为(1,2),(1,2)-, 此时4AB =,不符合题意,故直线的斜率存在.设直线l 方程为(1)=-y k x 与24y x =联立得()2222220k x k x k -+-=,当0k =时,方程只有一根,不符合题意,故0k ≠.()212222k x x k++=,抛物线的准线方程为1x =-,由抛物线的定义得()()12||||||11AB AF BF x x =+=+++()222228k k+=+=,解得1k =±,所以l 方程为1y x =-或1y x =-+.法二:焦点(1,0)F ,显然直线l 不垂直于x 轴,设直线l 方程为1x my =+,与24y x =联立得2440y my --=,设11(,)A x y ,22(,)B x y ,124y y m +=,124y y =.||AB ==()241m ==+,由8AB =,解得1m =±, 所以l 方程为1y x =-或1y x =-+. (2)设11(,)A x y ,22(,)B x y ,设直线l 方程为(0)x my b m =+≠与24y x =联立得:2440y my b --=,可得124y y m +=,124y y b =-. 由AEO BEO ∠=∠得EAEB k k =,即121222y y x x =-++. 整理得121122220y x y x y y +++=,即121122()2()20y my b y my b y y +++++=, 整理得12122(2)()0my y b y y +++=, 即84(2)0bm b m -++=,即2b =. 故直线l 方程为2x my =+过定点(2,0).4.已知椭圆22221(0)x y a b a b +=>>,()2,0A 是长轴的一个端点,弦BC 过椭圆的中心O ,点C 在第一象限,且0AC BC ⋅=u u u r u u u r,||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r .(1)求椭圆的标准方程;(2)设P 、Q 为椭圆上不重合的两点且异于A 、B ,若PCQ ∠的平分线总是垂直于x 轴,问是否存在实数λ,使得PQ AB =λu u u r u u u r?若不存在,请说明理由;若存在,求λ取得最大值时的PQ 的长.【答案】(1) 223144x y +=【解析】(1)∵0AC BC ⋅=u u u r u u u r,∴90ACB ∠=︒,∵||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r.即||2||BC AC =u u u r u u u r ,∴AOC △是等腰直角三角形, ∵()2,0A ,∴()1,1C ,而点C 在椭圆上,∴22111a b +=,2a =,∴243b =, ∴所求椭圆方程为223144x y +=.(2)对于椭圆上两点P ,Q , ∵PCQ ∠的平分线总是垂直于x 轴, ∴PC 与CQ 所在直线关于1x =对称,PC k k =,则CQ k k =-,∵()1,1C ,∴PC 的直线方程为()11y k x =-+,①QC 的直线方程为()11y k x =--+,②将①代入223144x y +=,得()()22213613610k x k k x k k +--+--=,③∵()1,1C 在椭圆上,∴1x =是方程③的一个根,∴2236113P k k x k --=+,以k -替换k ,得到2236131Q k k x k +-=+.∴()213P Q PQ P Qk x x kk x x +-==-, ∵90ACB ∠=o ,()2,0A ,()1,1C ,弦BC 过椭圆的中心O , ∴()2,0A ,()1,1B --,∴13AB k =, ∴PQ AB k k =,∴PQ AB ∥,∴存在实数λ,使得PQ AB =λu u u r u u u r,||PQ =u u ur 3=≤,当2219k k =时,即k =时取等号,max ||3PQ =u u u r ,又||AB =u u u r,maxλ==,∴λ取得最大值时的PQ5.已知抛物线216y x =,过抛物线焦点F 的直线l 分别交抛物线与圆22(4)16x y -+=于,,,A C D B (自上而下顺次)四点.(1)求证:||||AC BD ⋅为定值; (2)求||||AB AF ⋅的最小值. 【答案】(1)见证明;(2)108 【解析】(1)有题意可知,(4,0)F可设直线l 的方程为4x my =+,1122(,),(,)A x y B x y联立直线和抛物线方程2164y x x my ⎧=⎨=+⎩,消x 可得216640y my --=,所以1216y y m +=,1264y y =-, 由抛物线的定义可知,112||4,||42pAF x x BF x =+=+=+, 又||||4,||||4AC AF BD BF =-=-,所以2221212264||||(||4)(||4)16161616y y AC BD AF BF x x ⋅=--==⋅==,所以||||AC BD ⋅为定值16.(2)由(1)可知,12||||||8AB AF BF x x =+=++,1||4AF x =+,212111212||||(8)(4)12432AB AF x x x x x x x x ⋅=+++=++++,由1216x x =,可得2116x x =, 所以211164||||1248AB AF x x x ⋅=+++(其中1>0x ), 令264()1248f x x x x =+++,222642(2)(4)()212x x f x x x x-+'=+-=, 当(0,2)x ∈时,()0f x '<,函数单调递减,当(2,)x ∈+∞时,()0f x '>,函数单调递增, 所以()(2)108f x f ≥=. 所以||||AB AF ⋅的最小值为108.6.已知O 为坐标原点,点()()2,02,0A B -,,()01AC AD CB CD λλ===<<u u u r u u u r,过点B 作AC的平行线交AD 于点E .设点E 的轨迹为τ. (Ⅰ)求曲线τ的方程;(Ⅱ)已知直线l 与圆22:1O x y +=相切于点M ,且与曲线τ相交于P ,Q 两点,PQ 的中点为N ,求三角形MON 面积的最大值.【答案】(Ⅰ)()22105x y y +=≠;. 【解析】(Ⅰ)因为,AD AC EB AC =∥, 故EBD ACD ADC ∠=∠=∠, 所以EB ED =,故EA EB EA ED AD +=+==由题设得()()2,02,04A B AB -=,,,由椭圆定义可得点E 的轨迹方程为:()22105x y y +=≠.(Ⅱ)由题意,直线l 的斜率存在且不为0, 设直线l 的方程为y kx m =+, 因为直线l 与圆O 相切,1=,∴221m k =+,由221,5,x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得()2221510550k x kmx m +++-=. 设()()1122,,,P x y Q x y ,由韦达定理知:()1212122210221515km mx x y y k x x m k k+=-+=++=++,. 所以PQ 中点N 的坐标为225,1515kmm k k ⎛⎫-⎪++⎝⎭,所以弦PQ 的垂直平分线方程为22151515m km y x k k k ⎛⎫-=-+ ⎪++⎝⎭,即 24015kmx ky k ++=+.所以MN =将m =MN =2441155||||k MN k k k ====++…(当且仅当k =m =取等号).所以三角形MON的面积为111=2255S OM MN =⨯⨯⨯⨯≤, 综上所述,三角形MON. 7.已知椭圆2222:1(0)x y C a b a b +=>>F 是椭圆C 的一个焦点.点(02)M ,,直线MF 的斜率为3. (1)求椭圆C 的方程;(2)若过点M 的直线l 与椭圆C 交于A B ,两点,线段AB 的中点为N ,且AB MN =.求l 的方程.【答案】(1)22182x y +=;(2)22y x =±+【解析】(1)由题意,可得2cac⎧=⎪⎪⎨⎪=⎪⎩,解得a c ⎧=⎪⎨=⎪⎩,则222=2b a c =-, 故椭圆C 的方程为22182x y +=.(2)当l 的斜率不存在时,=2AB MN AB MN ≠=,,,不合题意,故l 的斜率存在. 设l 的方程为2y kx =+,联立221822x y y kx ⎧+=⎪⎨⎪=+⎩,得22(14)1680k x kx +++=, 设1122(()A x y B x y ,),,,则12122216k 8,14k 14k x x x x +=-=++, ()222(16)3214128320k k k ∆=-+=->即214k >,设00()N x y ,,则12028214x x kx k +==-+,120||||,0AB MN x =-=-Q0x =,即228||1414k k k=++ 整理得21124k =>.故2k =±,l 的方程为22y x =±+. 8.已知椭圆2222:1(0)x y C a b a b+=>>过点(,右焦点F 是抛物线28y x =的焦点.(1)求椭圆C 的方程;(2)已知动直线l 过右焦点F ,且与椭圆C 分别交于M ,N 两点.试问x 轴上是否存在定点Q ,使得13516QM QN ⋅=-u u u u r u u u r 恒成立?若存在求出点Q 的坐标:若不存在,说明理由.【答案】(1) 2211612x y += (2)见解析【解析】(1)因为椭圆C过点,所以221231a b+=, 又抛物线的焦点为()2,0,所以2c =. 所以2212314a a +=-,解得23a =(舍去)或216a =. 所以椭圆C 的方程为2211612x y +=.(2)假设在x 轴上存在定点(,0)Q m ,使得13516QM QN ⋅=-u u u u r u u u r. ①当直线l 的斜率不存在时,则(2,3)M ,(2,3)N -,(2,3)QM m =-u u u u r ,(2,3)QN m =--u u u r,由2135(2)916QM QN m ⋅=--=-u u u u r u u u r ,解得54m =或114m =;②当直线l 的斜率为0时,则(4,0)M -,(4,0)N ,(4,0)QM m =--u u u u r ,(4,0)QN m =-u u u r,由21351616QM QN m ⋅=-=-u u u u r u u u r ,解得114m =-或114m =.由①②可得114m =,即点Q 的坐标为11,04⎛⎫⎪⎝⎭.下面证明当114m =时,13516QM QN ⋅=-u u u u r u u u r 恒成立.当直线l 的斜率不存在或斜率为0时,由①②知结论成立.当直线l 的斜率存在且不为0时,设其方程为(2)(0)y k x k =-≠,()11,M x y ,()22,N x y .直线与椭圆联立得()()222234161630kxk x k +-+-=,直线经过椭圆内一点,一定与椭圆有两个交点,且21221643k x x k +=+,()212216343k x x k -=+. ()()()222121212122224y y k x k x k x x k x x k =-•-=-++,所以()1122121212111111121,,44416QM QN x y x y x x x x y y ⎛⎫⎛⎫•=-•-=-+++ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r()()()()222222221212221631112111161211241244164344316k k k x x k x x k k k k k k -⎛⎫⎛⎫=+-++++=+-+++= ⎪ ⎪++⎝⎭⎝⎭13516-恒成立 综上所述,在x 轴上存在点11,04Q ⎛⎫⎪⎝⎭,使得13516QM QN ⋅=-u u u u r u u u r 恒成立.9.关于椭圆的切线由下列结论:若11(,)P x y 是椭圆22221(0)x y a b a b+=>>上的一点,则过点P 的椭圆的切线方程为11221x x y y a b +=.已知椭圆22:143x y C +=.(1)利用上述结论,求过椭圆C 上的点(1,)(0)P n n >的切线方程;(2)若M 是直线4x =上任一点,过点M 作椭圆C 的两条切线MA ,MB (A ,B 为切点),设椭圆的右焦点为F ,求证:MF AB ⊥.【答案】(1)240x y +-=(2)见证明 【解析】(1)由题意,将1x =代入椭圆方程22:143x y C +=,得32y =,所以3(1,)2P ,所以过椭圆C 上的点3(1,)2P 的切线方程为32143yx +=,即240x y +-=.(2)设(4,)M t ,11(,)A x y ,22(,)B x y ,则过A ,B 两点的椭圆C 的切线MA ,MB 的方程分别为11143x x y y +=,22143x x y y+=, 因为(4,)M t 在两条切线上,114143x y t ⨯∴+=,224143x y t⨯+=, 所以A ,B 两点均在直线4143x yt +=上,即直线AB 的方程为13tyx +=, 当0t ≠时,3AB k t=-,又(1,0)F ,0413MF t t k -==-,313AB MF tk k t ⋅=-⨯=-,所以MF AB ⊥, 若0t =,点(4,0)M 在x 轴上,A ,B 两点关于x 轴对称,显然MF AB ⊥.10.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12F F ,,离心率为12,P 为椭圆上一动点(异于左右顶点),若12AF F △(1)求椭圆C 的方程;(2)若直线l 过点1F 交椭圆C 于,A B 两点,问在x 轴上是否存在一点Q ,使得QA QB ⋅u u u r u u u r为定值?若存在,求点Q 的坐标;若不存在,请说明理由.【答案】(1)22143x y +=(2)见解析【解析】(1)由题意,当P 在上或下顶点时,12PF F ∆的面积取值最大值,即最大值为bc = 又12c a =,且222a c b =+,解得24a =,23b =, 故椭圆C 的方程为22143x y +=.(2)易知()11,0F -,设直线l 的方程为1x my =-,()()()11220,,,,,0A x y B x y Q x , 联立方程组221431x y x my ⎧+=⎪⎨⎪=-⎩,整理得22(34)690m y my +--=, 则122634my y m +=+,122934y y m =-+, ()()()()10120200212,,y QA QB x x y x x y x x x x y y ⋅=-⋅-=--+u u u r u u u r()212001212x x x x x x y y =+-++,∵111x my =-,221x my =-,∴()()()2212121212215111134m x x my my m y y m y y m =--=+-+=-+, ()()()212122226112234m x x my my m y y m +=-+-=+-=-+, ∴222000222156912343434m m QA QB x x x m m m ⋅=-+-+-+++u u u r u u u r22002281253434m x x m m +=+-++()222000231248534x m x x m -++-=+, 要使QA QB ⋅u u u r u u u r 为定值,则2200031248534x x x -+-=,解得0118x =-, 所以在x 轴上存在点11,08Q ⎛⎫-⎪⎝⎭,使得QA QB ⋅u u u r u u u r 为定值. 11.已知点()1,0F ,直线:1l x =-,P 为平面上的动点,过点P 作直线的垂线,垂足为Q ,且QP QF FP FQ ⋅=⋅u u u r u u u r u u u r u u u r .(1)求动点P 的轨迹C 的方程;(2)设直线y kx b =+与轨迹C 交于两点,()11,A x y 、()22,B x y ,且12y y a -= (0a >,且a 为常数),过弦AB 的中点M 作平行于x 轴的直线交轨迹C 于点D ,连接AD 、BD .试判断ABD ∆的面积是否为定值,若是,求出该定值,若不是,请说明理由 【答案】(1) 24y x = (2)见解析 【解析】(1)设(,)P x y ,则(1,)Q y -,QP QF FP FQ •=•u u u r u u u r u u u r u u u r Q ,(1,0)(2,)(1,)(2,)x y x y y ∴+•-=-•-,即22(1)2(1)x x y +=--+,即24y x =, 所以动点P 的轨迹的方程24y x =.(2)联立方程组2,4,y kx b y x =+⎧⎨=⎩消去x ,得2440ky y b -+=, 依题意,0k ≠,且124y y k+=,124b y y k =,由12y y a -=得()2212124y y y y a +-=, 即221616ba k k-=, 整理得:221616kb a k -=,所以2216(1)a k kb =-,①因为AB 的中点222,bk M k k -⎛⎫⎪⎝⎭,所以点212,D k k ⎛⎫⎪⎝⎭,依题意, 122111||22BD bkS DM y y a k ∆∆-=-=, 由方程2440ky y b -+=中的判别式16160kb ∆=->,得10kb ->,所以2112ABD bkS a k∆-=••, 由①知22116a k kb -=,所以23121632MBDa a S a ∆=••=,又a 为常数,故ABD S ∆的面积为定值. 12.已知点P 在抛物线()220C x py p =:>上,且点P 的横坐标为2,以P 为圆心,PO 为半径的圆(O 为原点),与抛物线C 的准线交于M ,N 两点,且2MN =. (1)求抛物线C 的方程;(2)若抛物线的准线与y 轴的交点为H .过抛物线焦点F 的直线l 与抛物线C 交于A ,B ,且AB HB ⊥,求AF BF -的值. 【答案】(1) 24x y = (2)4 【解析】(1)将点P 横坐标2P x =代入22x py =中,求得2P y p=, ∴P (2,2p),2244OP p =+,点P 到准线的距离为22p d p =+, ∴222||||2MN OP d ⎛⎫=+ ⎪⎝⎭, ∴22222212p p p ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,解得24p =,∴2p =,∴抛物线C 的方程为:24x y =;(2)抛物线24x y =的焦点为F (0,1),准线方程为1y =-,()01H -,; 设()()1122A x y B x y ,,,, 直线AB 的方程为1y kx =+,代入抛物线方程可得2440x kx --=,∴121244x x k x x +==-,,…① 由AB HB ⊥,可得1AB HB k k ⋅=-, 又111AB AF y k k x -==,221HB y k x +=, ∴1212111y y x x -+⋅=-, ∴()()1212110y y x x -++=,即2212121111044x x x x ⎛⎫⎛⎫-++= ⎪⎪⎝⎭⎝⎭, ∴()22221212121110164x x x x x x +--+=,…② 把①代入②得,221216x x -=,则()22121211||||1116444AF BF y y x x -=+--=-=⨯=. 13.已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:()PFd P FQ=. (1)当8(1)3P --,时,求()d P ; (2)证明:存在常数a ,使得2()d P PF a =+.(3)123,,P P P 为抛物线准线上三点,且1223PP P P =,判断13()()d P d P +与22()d P 的关系. 【答案】(1)83;(2)证明见解析;(3)()()()1322d P d P d P +>. 【解析】(1)因为8443(1)233PFk y x ==⇒=-. 联立方程24(1)1344Q y x x y x ⎧=-⎪⇒=⎨⎪=⎩, 则1083()534PF d P QF ⎧=⎪⎪⇒=⎨⎪=⎪⎩. (2)当()1,0P -,易得2()2a d P PF =-=, 不妨设()1,P P y -,0P y >, 直线:1PF x my =+,则2P my =-,联立214x my y x=+⎧⎨=⎩,2440y my --=,224(4)16221Q m m y m m ++==++,()222212()||212221P P Q y m d P PF m y y m m m m +-=-+=+++ 2212122m m m +-+=-+=.(3)设()()()1122331,,1,,1,P y P y P y ---,则()()()13224d P d P d P +-⎡⎤⎣⎦1322PF P F P F =+-===因为()221316y y ⎡⎤-++⎣⎦1228y y =-,又因()()()()2222213131313444480y y y y y y y y ++-+=+->,所以()()()1322d P d P d P +>.14.已知抛物线2:2(0)C x py p =>的焦点F 到准线距离为2. (1)若点(1,1)E ,且点P 在抛物线C 上,求||||PE PF +的最小值;(2)若过点(0,)N b 的直线l 与圆22:(2)4M x y +-=相切,且与抛物线C 有两个不同交点,A B ,求AOB ∆的面积.【答案】(1)2(2) 2ABC S b ∆=【解析】解:(1)根据题意可知2p = 所以抛物线方程为24x y =则抛物线C 焦点为(0,1)F ,准线为1y =-; 记点,P E 到抛物线C 准线的距离分别为12,d d ,故12||||||2PE PF PE d d +=+≥=,等号成立当且仅当PE 垂直于准线, 故||||PE PF +的最小值为2 (2)设()11,A x y ,()22,B x y由题意知,直线l 斜率存在,设直线l 的方程为:y kx b =+ 将y kx b =+与24x y =联立得2440x kx b --=,由韦达定理得12124,4x x k x x b +==-, 由()0,2M 到直线l的距离为12d ==得:2244b b k -=,又||AB ==点O 到直线l 的距离为2d =所以2|ABC S b b ∆=== 15.已知曲线C 上的任意一点到直线l :x=-12的距离与到点F (102,)的距离相等. (1)求曲线C 的方程;(2)若过P (1,0)的直线与曲线C 相交于A ,B 两点,Q (-1,0)为定点,设直线AQ 的斜率为k 1,直线BQ 的斜率为k 2,直线AB 的斜率为k ,证明:22212112k k k +-为定值. 【答案】(1)y 2=2x ;(2)见解析 【解析】(1)由条件可知,此曲线是焦点为F 的抛物线,p 122=,p=1. ∴抛物线的方程为y 2=2x ;(2)根据已知,设直线AB 的方程为y=k (x -1)(k ≠0), 由()2y k x 1y 2x⎧=-⎨=⎩,可得ky 2-2y -2k=0.设A (211y y 2,),B (222y y 2,),则122y y k +=,y 1y 2=-2.∵1112211y 2y k y y 212==++,2222222y 2y k y y 212==++. ∴22221222221212(y 2)(y 2)11k k 4y 4y +++=+=22222212212212(y 2)y (y 2)y 4y y +++31 =()42422222122112122212y y y y 8y y 4y y 4y y ++++=()2221212128y y 32(y y )2y y 4162+++-+= =22482k 42k+=+.∴222121124k k k +-=.。

理科数学2010-2019高考真题分类训练专题九解析几何第二十六讲椭圆答案

理科数学2010-2019高考真题分类训练专题九解析几何第二十六讲椭圆答案

专题九 解析几何第二十六讲 椭圆答案部分1. 解析2x =,则22AF x =,所以23BF AB x ==.由椭圆定义122BF BF a +=,即42x a =.又1224AF AF a x +==,22AF x =,所以12AF x =. 因此点A 为椭圆的上顶点,设其坐标为()0,b .由222AF BF =可得点B 的坐标为3,22b ⎛⎫- ⎪⎝⎭.因为点B 在椭圆()222210x y a b a b+=>>上,所以291144a +=.解得23a =.又1c =,所以22b =.所以椭圆方程为22132x y +=.故选B. 2.解析(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在轴上的椭圆,不含左右顶点.3. 解析 由题意,c e a ====所以22244a b a -=,即2234a b =.故选B .4. 解析 设(,)M m n ,,0m n >,椭圆C :22:13620x y C +=的6a =,b =,2c =,23c e a ==,由于M 为C 上一点且在第一象限,可得12||||MF MF >, 12MF F △为等腰三角形,可能1||2MF c =或2||2MF c =,即有2683m +=,即3m =,n = 2683m -=,即30m =-<,舍去.可得M .2010-2018年1.D 【解析】由题意可得椭圆的焦点在x 轴上,如图所示,OyxPF 2F 1A设12||2=F F c ,所以12∆PF F 为等腰三角形,且12=120∠oF F P ,∴212||||2PF F F c ==,∵2||OF c =,∴点P 坐标为(2cos 60,2sin 60)c c c +oo,即点(2)P c .∵点P 在过点A∴26c a =+14c a =.∴14e =,故选D .2.C 【解析】由题意25=a,=a .由椭圆的定义可知,P 到该椭圆的两个焦点的距离之和为2=a ,故选C .3.B 【解析】由题意可知29a =,24b =,∴2225c a b =-=,∴离心率3c e a ==,选B4.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,3c e a ==,故选A .5.A 【解析】设(0,)E m ,则直线AE 的方程为1x y a b -+=,由题意可知(,)mc M c m a--,(0,)2m和(,0)B a 三点共线,则22mc m m m a c a--=--,化简得3a c =,则C 的离心率13c e a ==.故选A . 6.A 【解析】由题意知2211m n -=+,即222m n =+,222221222221111()2m n n n e e m n n n -+++=⋅=⋅+4242422111122n n n n n n ++==+>++,所以121e e >.故选A .7.D【解析】由题意可设,sin )Q αα,圆的圆心坐标为(0,6)C ,圆心到Q 的距离为||CQ ===,当且仅当2sin 3α=-时取等号,所以max max ||||PQ CQ r +==≤,所以Q P ,两点间的最大距离是.8.D 【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b += ① 2222221x y a b+= ② ①-②得1212121222()()()()0x x x x y y y y a b+-+-+=, ∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D.9.C 【解析】∆21F PF 是底角为30o 的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==10.5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =u u u r u u u r ,得1212212(1)x x y y -=⎧⎨-=-⎩,即122x x =-,1232y y =-.因为点A ,B 在椭圆上,所以222222224(3)44x x m x y m⎧+-=⎪⎪⎨⎪+=⎪⎩,得21344y m =+,所以2222221591(32)(5)444244x m y m m m =--=-+-=--+≤,所以当5m =时,点B 横坐标的绝对值最大,最大值为2.1112;【解析】设椭圆的右焦点为(,0)F c ,双曲线N 的渐近线与椭圆M 在第一象限内的交点为A,由题意可知(2c A ,由点A 在椭圆M 上得,22223144c c a b+=,∴22222234b c a c a b +=,222b ac =-,∴22222222()34()a c c a c a a c -+=-,∴4224480a a c c -+=,∴428+40e e -=椭椭,∴24e =±椭,∴1e =椭(舍去)或1e 椭,∴椭圆M1,∵双曲线的渐近线过点(,)22c A,渐近线方程为y =,故双曲线的离心率2e ==双.12【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭,由90BFC ∠=︒可得0BF CF ⋅=u u u r u u u r,2b BF c ⎛⎫=+- ⎪ ⎪⎝⎭u u u r,2b CF c ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,则22231044c a b -+=,由222b a c =-可得223142c a =,则c e a ==. 13.22325()24-+=x y 【解析】 由题意圆过(4,0),(0,2),(0,2)-三个点,设圆心为(,0)a ,其中0a >,由4-=a 32a =,所以圆的方程为22325()24-+=x y .14.2【解析】设11(,)A x y ,22(,)B x y ,分别代入椭圆方程相减得 1212121222()()()()0x x x x y y y y a b-+-++=,根据题意有12122,2x x y y +=+=, 且121212y y x x -=--,所以22221()02a b +⨯-=,得222a b =,整理222a c =,所以2e =. 15.12【解析】设MN 交椭圆于点P ,连接1F P 和2F P ,利用中位线定理可得AN BN +=122222412F P F P a a +=⨯==.16.3【解析】由题意可得2(,)b A c a,2(,)b B c a -,由题意可知点D 为1F B 的中点,所以点D 的坐标为2(0,)2b a-,由B F AD 1⊥,所以11AD F B k k ⋅=-,22ac =,解得e = 17.22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b -- 将点B 坐标带入椭圆方程得22221()53()13b c b --+=,又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩∴椭圆方程为22312x y +=.18.13-【解析】由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==a c e ,故答案为13-. 19.5【解析】由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.故5c e a ==.即椭圆的离心率为5. 20.(0,1)±【解析】设点A 的坐标为(,)m n ,B 点的坐标为(,)c d.12(F F ,可得1()F A m n =u u u r,2()F B c d =u u u u r ,∵125F A F B =u u u r u u u u r ,∴,55m nc d +==,又点,A B 在椭圆上, ∴2213m n +=,225()135n +=,解得0,1m n ==±, ∴点A 的坐标是(0,1)±.21.【解析】(1)由已知得(1,0)F ,l 的方程为1=x .由已知可得,点A的坐标为(1,2或(1,2-. 所以AM的方程为2y x =-2y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则1<x2x MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由11=-y kx k ,22=-y kx k 得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,2122421+=+k k x x ,21222221-=+x k k x .则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.22.【解析】(1)设11(,)A x y ,22(,)B x y ,则2211143x y +=,2222143x y +=. 两式相减,并由1212y y k x x -=-得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=, 于是34k m=-.①由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22xFA===-u u u r.同理2||22xFB=-u u u r.所以121||||4()32FA FB x x+=-+=u u u r u u u r.故2||||||FP FA FB=+u u u r u u u r u u u r,即||FAu u u r,||FPu u u r,||FBu u u r成等差数列.设该数列的公差为d,则1212||||||||||2d FB FA x x=-=-=u u u r u u u r将34m=代入①得1k=-.所以l的方程为74y x=-+,代入C的方程,并整理得2171404x x-+=.故122x x+=,12128x x=,代入②解得||28d=.所以该数列的公差为28或28-.23.【解析】设椭圆的焦距为2c,由已知知2259ca=,又由222a b c=+,可得23a b=.由已知可得,FB a=,AB=,由FB AB⋅=可得6ab=,从而3a=,2b=.所以,椭圆的方程为22194x y+=.(2)设点P的坐标为11(,)x y,点Q的坐标为22(,)x y.由已知有120y y>>,故12sinPQ AOQ y y∠=-.又因为2sinyAQOAB=∠,而4OABπ∠=,故2AQ=.由AQAOQPQ=∠,可得1259y y=.由方程组22194y kxx y=⎧⎪⎨+=⎪⎩,,消去x,可得1y=易知直线AB 的方程为20x y +-=,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由1259y y =,可得5(1)k += 两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.24.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点1P ,所以点2P 在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.(2)设直线2P A 与直线2P B 的斜率分别为1k ,2k ,如果l 与x 轴垂直,设l :x t =,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为 (t,(t,).则121k k +-=-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设11(,)A x y ,22(,)B x y ,则122841kmx x k +=-+,21224441m x x k -=+. 而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)25.【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-u u u r ,0(0.)NM y =u u u u r.由NP =u u u r u u u r得 0x x =,02y y =. 因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-u u u r ,(1,)PF m n =---u u u r ,33OQ PF m tn ⋅=+-u u u r u u u r, (,)OP m n =u u u r ,(3,)PQ m t n =---u u u r,由1OP PQ ⋅=u u u r u u u r 得2231m m tn n --+-=,又由(1)知222m n +=, 故330m tn +-=.所以0OQ PF ⋅=u u u r u u u r ,即OQ PF ⊥u u u r u u u r.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F . 26.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b =因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>.当01x =时,2l 与1l 相交于1F ,与题设不符. 当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为. 27.【解析】(Ⅰ)设F 的坐标为(,0)c -.依题意,12c a =,2pa =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=. 所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =. (Ⅱ)设直线AP 的方程为1(0)x my m =+≠,与直线l 的方程1x =-联立,可得点2(1,)P m --,故2(1,)Q m-.将1x my =+与22413y x +=联立,消去x , 整理得22(34)60m y my ++=,解得0y =,或2634my m -=+.由点B 异于点A ,可得点222346(,)3434m mB m m -+-++. 由2(1,)Q m-,可得直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+, 故2223(,0)32m D m -+.所以2222236||13232m m AD m m -=-=++. 又因为APD △22162232||2m m m ⨯⨯=+,整理得23|20m m -+=,解得||m =,所以m =. 所以,直线AP的方程为330x +-=,或330x -=. 28.【解析】(I)由题意知c e a ==,22c =,所以1a b ==,因此椭圆E 的方程为2212x y +=.(Ⅱ)设()()1122,,,A x y B x y ,联立方程2211,2x y y k x ⎧+=⎪⎪⎨⎪=-⎪⎩得()22114210k x x +--=, 由题意知0∆>,且()12122111221x x x x k +==-+,所以121=-=AB x .由题意可知圆M 的半径r为1233r AB ==由题设知124k k =,所以21k =因此直线OC的方程为1y =.联立方程2211,2,4x y y x k ⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++,因此OC =.由题意可知1sin21SOT rOC r OCr∠==++,而1OC r=2=令2112t k =+, 则()11,0,1t t>∈,因此1OC r==≥,当且仅当112t =,即2t =时等号成立,此时1k =,所以1sin 22SOT ∠≤,因此26SOT π∠≤, 所以SOT ∠最大值为3π. 综上所述:SOT ∠的最大值为3π,取得最大值时直线l的斜率为12k =±.29.【解析】(Ⅰ)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (Ⅱ)由(Ⅰ)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.30.【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,故12229M x x kb x k +==-+,299M M by kx b k =+=+. 于是直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-.所以直线OM 的斜率与l 的斜率的乘积为定值. (Ⅱ)四边形OAPB 能为平行四边形. 因为直线l 过点(,)3mm , 所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . 由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981P k m x k =+,即P x =. 将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+. 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x =.=2(3)23(9)mk k k -⨯+.解得14k =24k =. 因为0,3i i k k >≠,1i =,2,所以当l的斜率为44+OAPB 为平行四边形.31.【解析】(Ⅰ)由题意得2221,,.b caa b c =⎧⎪⎪=⎨⎪⎪=+⎩解得2a =2.故椭圆C 的方程为2212x y +=. 设M (N x ,0).因为0m ≠,所以11n -<<.直线PA 的方程为11n y x m--=, 所以M x =1m n -,即(,0)1mM n-. (Ⅱ)因为点B 与点A 关于x 轴对称,所以(,)B m n -, 设(,0)N N x ,则N x =1mn+.“存在点(0,)Q Q y 使得OQM ∠=ONQ ∠等价”,“存在点(0,)Q Q y 使得OM OQ=OQ ON”即Q y 满足2Q M N y x x =.因为1M m x n =-,1N mx n=+,2212m n +=, 所以22221Q MN m y x x n ===-.所以Q y或Q y =.故在y 轴上存在点Q ,使得OQM ∠=ONQ ∠. 点Q的坐标为或(0,.32.【解析】(1)由题设条件知,点M 的坐标为21(,)33a b ,又OM k =2b a =,进而得,2a c b ===,故5c e a ==. (2)由题设条件和(I )的计算结果可得,直线AB1yb+=,点N 的坐标为1,)22b -,设点N 关于直线AB 的对称点S 的坐标为17(,)2x ,则线段NS 的中点T的坐标为117,)244x b +-+.又点T 在直线AB 上,且1NS AB k k ⋅=-,从而有1117441712x b b b +-++=⎨+⎪=⎪⎪⎪⎩,解得3b =,所以b = 故椭圆E 的方程为221459x y +=.33.【解析】(Ⅰ)由题意知42=a ,则2=a ,又2c a =,222a cb -=, 可得1=b ,所以椭圆C 的方程为1422=+y x . (Ⅱ)由(I )知椭圆E 的方程为141622=+y x . (i )设λ=||||),,(00OP OQ y x P ,由题意知),(00y x Q λλ--, 因为142020=+y x ,又14)(16)(2020=-+-y x λλ,即1)4(42020=+y x λ, 所以2=λ,即2||||=OP OQ . (ii )设),(),,(2211y x B y x A ,将m kx y +=代入椭圆E 的方程, 可得01648)41(222=-+++m kmx x k , 由0>∆,可得 22164k m +<,则有222122141164,418k m x x k km x x +-=+-=+, 所以22221414164||km k x x +-+=-. 因为直线m kx y +=与y 轴交点的坐标为),0(m ,所以OAB ∆的面积||||2121x x m S -=22241||4162k m m k +-+=222241)416(2km m k +-+=222241)414(2k m k m ++-= 令t km =+2241,将m kx y +=代入椭圆C 的方程, 可得 0448)41(222=-+++m kmx x k , 由0∆≥,可得 2241k m +≤,由①②可知 10≤<t ,因此t t t t S 42)4(22+-=-=,故 S ≤当且仅当1=t 时,即2241k m +=时取得最大值32,由(i )知,ABQ ∆面积为S 3, 所以ABQ ∆面积的最大值为36.34.【解析】2(c,0)=3F c c (I )设,由条件知,222=2, 1.2c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (Ⅱ)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12241PQ x k =-=+从而O PQ d OPQ =∆又点到直线的距离所以的面积1=2OPQ S d PQ ∆⋅=244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即 OPQ ι∆所以,当的面积最大时,的方程为2222y x y x =-=--或.35.【解析】(Ⅰ)设直线l 的方程为()0y kx m k =+<,由22221x y a b⎪⎨+=⎪⎩,消去y 得,()22222222220b a k x a kmx a m a b +++-=,由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为22222222,a km b m b a k b a k ⎛⎫- ⎪++⎝⎭,由点P 在第一象限, 故点P的坐标为22⎛⎫⎝; (Ⅱ)由于直线1l 过原点O ,且与l 垂直,故直线1l 的方程为0x ky +=,所以点P 到直线1l的距离d =,整理得22d =,因为22222b a k ab k +≥,2222a b ≤=-,当且仅当2bk a=时等号成立, 所以点P 到直线1l 的距离的最大值为b a -.36.【解析】(Ⅰ)根据c 22(,),23b M c b ac a=将222b a c =-代入223b ac =,解得1,22c ca a==-(舍去) 故C 的离心率为12. (Ⅱ)由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D是线段1MF 的中点,故24b a=,即24b a = ① 由15MN F N =得112DF F N =。

理科数学2010-2019高考真题分类训练专题九解析几何第二十五讲直线与圆答案

理科数学2010-2019高考真题分类训练专题九解析几何第二十五讲直线与圆答案

专题九 解析几何 第二十五讲 直线与圆答案部分 2019年1.解析 由直线l 的参数方程消去t ,可得其普通方程为4320x y -+=. 则点(1,0)到直线l 的距离是d ==2. 解析 解法一:由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-,解得000)x x =>. 所以曲线4(0)y x x x=+>上,点P 到直线0x y +=的距离最小,4=. 解法二:由题意可设点P 的坐标为4,x x x ⎛⎫+⎪⎝⎭()0x >,则点P 到直线0x y +=的距离222242x d ⎛⎫+ ⎪==⨯⨯=…,当且仅当x =所以点P 到直线0x y +=的距离的最小值为4. 3.解析 解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==.所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,联结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H. 以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--. 所以P (−13,9),22(134)(93)15PB =-+++=. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,联结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟. 在线段AD 上取点M (3,154),因为22221533454OM ⎛⎫=++= ⎪⎝⎭,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由22(4)(93)15(4)AQ a a =-+-=>,得a =4321+,所以Q (4321+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4321+,9)时,d 最小,此时P ,Q 两点间的距离4321(13)17321PQ =+--=+.因此,d 最小时,P ,Q 两点间的距离为17321+(百米). 4.解析:解法一:如图,由圆心与切点的连线与切线垂直,得1122m +=-,解得2m =-. 所以圆心为(0,-2),则半径22(20)(12)5r =--+-+=. 解法二:由22034(1)41m r m ⨯-+==+++,得2m =-,所以55r ==2010-2018年1.A 【解析】圆心(2,0)到直线的距离d == 所以点P到直线的距离1d ∈.根据直线的方程可知A ,B 两点的坐标分别为(2,0)A -,(0,2)B -,所以||AB = 所以ABP ∆的面积111||2S AB d ==.因为1d ∈,所以[2,6]S ∈,即ABP ∆面积的取值范围是[2,6].故选A . 2.12【解析】直线的普通方程为20x y +-=,圆的标准方程为22(1)1x y -+=, 圆心为(1,0)C ,半径为1,点C 到直线20x y +-=的距离2d ==以||AB ==11222ABC S ∆==. 3.C【解析】由题意可得d ====(其中cos ϕ=,sin ϕ=),∵1sin()1θϕ--≤≤,d1=+∴当0m =时,d 取得最大值3,故选C .4.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,c e a ==,故选A .5.A 【解析】如图建立直角坐标系,x则(0,1)A ,(0,0)B ,(2,1)D ,(,)P x y 所以圆的方程为224(2)5x y -+=, 所以(,1)AP x y =-u u u r ,(0,1)AB =-u u u r ,(2,0)AD =u u u r,由AP AB AD λμ=+u u u r u u u r u u u r ,得21x y μλ=⎧⎨-=-⎩,所以λμ+=12x y -+,设12x z y =-+,即102xy z -+-=, 点(,)P x y 在圆上,所以圆心到直线102xy z -+-=的距离小于半径,,解得13z ≤≤,所以z 的最大值为3, 即λμ+的最大值为3,选A .6.D 【解析】(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2)y k x +=-,即230kx y k ---=,则1d==,|55|k +=43k =-或34-.7.A 【解析】 设所求直线的方程为20x y c ++=(1)≠c,则=,所以c =250x y ++=或250x y +-=.8.C 【解析】设过,,A B C 三点的圆的方程为220x y Dx Ey F ++++=,则3100422007500D E F D E F D E F +++=⎧⎪+++=⎨⎪-++=⎩,解得2,4,20D E F =-==-, 所求圆的方程为2224200x y x y +-+-=,令0x =,得24200y y +-=, 设1(0,)M y ,2(0,)N y ,则124y y +=-,1220y y ⋅=-,所以12||||MN y y =-==9.C 【解析】圆C 标准方程为22(2)(1)4x y -+-=,圆心为(2,1)C ,半径为2r =,因此2110a +⨯-=,1a =-,即(4,1)A --,6AB ===.选C .10.A 【解析】当点M 的坐标为(1,1)时,圆上存在点(1,0)N ,使得45OMN ∠=o,所以01x =符合题意,排除B 、D ;当点M的坐标为时,OM =,过点M 作圆O 的一条切线MN ',连接ON ',则在Rt OMN '∆中,sin 2OMN '∠=<,则45OMN '∠<o ,故此时在圆O 上不存在点N ,使得°45OMN ∠=,即0x =合题意,排除C ,故选A .11.D 【解析】直线l 过点(0,3),斜率为1,所以直线l 的方程为30x y -+=. 12.B 【解析】因为圆C 的圆心为(3,4),半径为1,||5OC =,所以以原点为圆心、以m为半径与圆C 有公共点的最大圆的半径为6,所以m 的最大值为6,故选B . 13.C 【解析】由题意得12(0,0),(3,4)C C,121,r r ==1212||15C C r r =+==,所以9m =.14.D 【解析】设直线l 的倾斜角为θ,由题意可知min max 0,263ππθθ==⨯=.15.B 【解析】圆的标准方程为22(1)(1)2x y a ++-=-,则圆心(1,1)C -,半径r 满足22r a =-,则圆心C 到直线20x y ++=的距离d == 所以2422r a =+=-,故4a =-16.B 【解析】易知直线0x my +=过定点(0,0)A ,直线30mx y m --+=过定点(1,3)B ,且两条直线相互垂直,故点P 在以AB 为直径的圆上运动,故||||||cos ||sin PA PB AB PAB AB PAB +=∠+∠)4PAB π=∠+∈.故选B .17.A 【解析】由题意可知以线段AB 为直径的圆C 过原点O ,要使圆C 的面积最小,只需圆C 的半径或直径最小.又圆C 与直线240x y +-=相切,所以由平面几何知识,知圆的直径的最小值为点O 到直线240x y +-=的距离,此时2r =得r =,圆C 的面积的最小值为245S r ππ==. 18.A 【解析】根据平面几何知识,直线AB 一定与点(3,1),(1,0)的连线垂直,这两点连线的斜率为12,故直线AB 的斜率一定是2-,只有选项A 中直线的斜率为2-. 19.A 【解析】圆C 1,C 2的圆心分别为C 1,C 2,由题意知|PM |≥|PC 1|-1,|PN |≥|PC 2|-3,∴|PM |+|PN |≥|PC 1|+|PC 2|-4,故所求值为|PC 1|+|PC 2|-4的最小值. 又C 1关于轴对称的点为C 3(2,-3),所以|PC 1|+|PC 2|-4的最小值为|C 3C 2|-444=, 故选A .20.C 【解析】圆心(1,2),圆心到直线的距离d =,半径r =,所以最后弦长为4=.21.B 【解析】(1)当y ax b =+过()1,0A -与BC 的中点D 时,符合要求,此13b =, (2)当y ax b =+位于②位置时1,0b A a ⎛⎫-⎪⎝⎭,11,11b a b D a a -+⎛⎫⎪++⎝⎭,令1112A BD S ∆=得212b a b =-,∵0a >,∴12b < (3) 当y ax b =+位于③位置时21,11b b a A a a --⎛⎫⎪--⎝⎭,21,11b a b D a a -+⎛⎫⎪++⎝⎭, 令2212A CD S ∆=,即()111112112b b b a a --⎛⎫--= ⎪+-⎝⎭,化简得22241a b b -=-+,∵0a >, ∴22410b b -+<,解得1122b -<<+综上:112b -<<,选B 22.B 【解析】点M(a ,b )在圆221x y +=外,∴221a b +>.圆(0,0)O 到直线1ax by +=距离1d =<=圆的半径,故直线与圆相交.所以选B .23.C【解析】设直线斜率为k ,则直线方程为2(2)y k x -=-,即220kx y k -+-=,圆心(1,0)==12k =-.因为直线与直线10ax y -+=垂直,所以112k a =-=-, 即2a =,选C . 24.A 【解析】∵圆心到直线的距离等于1r =,排除B 、C ;相切于第一象限排除D ,选A.直接法可设所求的直线方程为:()0y x k k =-+>,再利用圆心到直线的距离等于1r =,求得k =25.C 【解析】抛物线24y x =的焦点坐标为(1,0),准线方程为1x =-,设11(,)A x y ,22(,)B x y ,则因为|AF |=3|BF |,所以1213(1)x x +=+,所以1232x x =+,因为1||y =32||y ,1x =92x ,所以1x =3,2x =13,当1x =3时,2112y =,所以此时1y ==±1y =1(3,(,3A B ,此时AB k =此时直线方程为1)y x =-。

2010-2019高考数学理科真题分类汇编专题九 解析几何第二十六讲 椭圆含答案

2010-2019高考数学理科真题分类汇编专题九  解析几何第二十六讲  椭圆含答案

专题九 解析几何第二十六讲 椭圆2019年1.(2019全国I 理10)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 2.(2019全国II 理21(1))已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;3.(2019北京理4)已知椭圆()222210x y a b a b +=>>的离心率为12,则(A )22.2a b =(B )2 2.34a b=(C )2a b=(D )34a b=4.(2019全国III 理15)设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.2010-2018年一、选择题1.(2018全国卷Ⅱ)已知1F ,2F 是椭圆22221(0)+=>>:x y C a b a b的左,右焦点,A 是C 的左顶点,点P 在过A 12△PF F 为等腰三角形,12120∠=︒F F P ,则C 的离心率为A .23B .12C .13D .142.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( )A .B .C .D .3.(2017浙江)椭圆22194x y +=的离心率是A .B C .23D .59 4.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3 B .3 C .3 D .135.(2016年全国III)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .346.(2016年浙江)已知椭圆1C :2221x y m +=(1m >)与双曲线2C :2221x y n-=(0n >)的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则A .m n >且121e e >B .m n >且121e e <C .m n <且121e e >D .m n <且121e e <7.(2014福建)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .268.(2013新课标1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为 A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=19.(2012新课标)设1F 、2F 是椭圆E :)0(12222>>=+b a by a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆ 是底角为o30的等腰三角形,则E 的离心率为 A 、21 B 、32 C 、43 D 、54二、填空题10.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =,则当m =___时,点B 横坐标的绝对值最大.11.(2018北京)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.12.(2016江苏省)如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b+=>>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是 .13.(2015新课标1)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 的正半轴上,则该圆的标准方程为_________.14.(2014江西)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .15.(2014辽宁)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.(2014江西)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.17.(2014安徽)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为_____.18.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于19.(2012江西)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.20.(2011浙江)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =;则点A 的坐标是 .三、解答题21.(2018全国卷Ⅰ)设椭圆:C 2212+=x y 的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.22.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)M m (0)m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:||FA ,||FP ,||FB 成等差数列,并求该数列的公差.23.(2018天津)设椭圆22221x x a b+=(0a b >>)的左焦点为F ,上顶点为B .已知椭圆的离A 的坐标为(,0)b ,且FB AB ⋅= (1)求椭圆的方程;(2)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求k 的值. 24.(2017新课标Ⅰ)已知椭圆C :22221(0)x y a b a b+=>>,四点1(1,1)P ,2(0,1)P ,3(2P =-,4(1,2P =中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.25.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .26.(2017江苏)如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.27.(2017天津)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △AP 的方程.28.(2017山东)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l:1y k x =E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k,且12k k ,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求S O T ∠的最大值,并求取得最大值时直线l 的斜率.x29.(2016年北京)已知椭圆C :22221(0)x y ab a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.30.(2015新课标2)已知椭圆C :2229x y m +=(0m >),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边行?若能,求此时l 的斜率;若不能,说明理由.31.(2015北京)已知椭圆C :()222210x y a ba b+=>>的离心率为,点()01P ,和点()A m n ,()0m ≠都在椭圆C 上,直线PA 交x 轴于点M . (Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.32.(2015安徽)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM(Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程. 33.(2015山东)平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,左、右焦点分别是1F 、2F .以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222144x y a b+=,P 为椭圆C 上任意一点,过点P 的直线=+y kx m交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .( i )求||||OQ OP 的值; (ii )求△ABQ 面积的最大值.34. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.35.(2014浙江)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.36.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .37.(2014安徽)设1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,过点1F的直线交椭圆E 于,A B 两点,11||3||AF BF = (Ⅰ)若2||4,AB ABF =∆的周长为16,求2||AF ; (Ⅱ)若23cos 5AF B ∠=,求椭圆E 的离心率.38.(2014山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>,直线y x =被椭圆C 截得的线段长为5. (I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点. (ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.39.(2014湖南)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.40.(2014四川)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标. 41.(2013安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点P .12短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△B D M 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.43. (2013天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x(Ⅰ) 求椭圆的方程;第20题图(Ⅱ) 设A , B 分别为椭圆的左、右顶点, 过点F 且斜率为k 的直线与椭圆交于C ,D两点. 若··8AC DB AD CB +=, 求k 的值.44.(2013山东)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F ,离心率为2,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l . (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.45.(2012北京)已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M ,N . (Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMNk 的值. 46.(2013安徽)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a , b 的值.47.(2012广东)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点到(0,2)Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.48.(2011陕西)设椭圆C: ()222210x y a b a b +=>>过点(0,4),离心率为35(Ⅰ)求C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 49.(2011山东)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE交椭圆C 于点G ,交直线3x =-于点(3,)D m -. (Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG 的外接圆方程;若不能,请说明理由.50.(2010新课标)设1F ,2F 分别是椭圆E :2x +22y b=1(01b <<)的左、右焦点,过1F的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求AB ;(Ⅱ)若直线l 的斜率为1,求b 的值.51.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =. (Ⅰ)求椭圆C 的离心率; (Ⅱ)如果|AB |=154,求椭圆C 的方程.专题九 解析几何第二十六讲 椭圆答案部分1. 解析 2x =,则22AF x =,所以23BF AB x ==.由椭圆定义122BF BF a +=,即42x a =.又1224AF AF a x +==,22AF x =,所以12AF x =. 因此点A 为椭圆的上顶点,设其坐标为()0,b .由222AF BF =可得点B 的坐标为3,22b ⎛⎫-⎪⎝⎭. 因为点B 在椭圆()222210x y a b a b+=>>上,所以291144a +=. 解得23a =.又1c =,所以22b =.所以椭圆方程为22132x y +=.故选B. 2.解析(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.3. 解析 由题意,c e a ====所以22244a b a -=,即2234a b =.故选B .4. 解析 设(,)M m n ,,0m n >,椭圆C :22:13620x y C +=的6a =,b =2c =,23c e a ==,由于M 为C 上一点且在第一象限,可得12||||MF MF >, 12MF F △为等腰三角形,可能1||2MF c =或2||2MF c =,即有2683m +=,即3m =,n = 2683m -=,即30m =-<,舍去.可得M .2010-2018年1.D 【解析】由题意可得椭圆的焦点在x 轴上,如图所示,OyxPF 2F 1A设12||2=F F c ,所以12∆PF F 为等腰三角形,且12=120∠F F P ,∴212||||2PF F F c ==,∵2||OF c =,∴点P 坐标为(2cos 60,2sin 60)c c c +,即点(2)P c .∵点P 在过点A,且斜率为6的直线上,∴26c a =+,解得14c a =.∴14e =,故选D .2.C 【解析】由题意25=a,=a P 到该椭圆的两个焦点的距离之和为2=a ,故选C .3.B 【解析】由题意可知29a =,24b =,∴2225c a b =-=,∴离心率3c e a ==,选B4.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,c e a ==,故选A .5.A 【解析】设(0,)E m ,则直线AE 的方程为1x y a b -+=,由题意可知(,)mc M c m a--,(0,)2m和(,0)B a 三点共线,则22mc m m m a c a--=--,化简得3a c =,则C 的离心率13c e a ==.故选A . 6.A 【解析】由题意知2211m n -=+,即222m n =+,222221222221111()2m n n n e e m n n n -+++=⋅=⋅+4242422111122n n n n n n ++==+>++,所以121e e >.故选A .7.D【解析】由题意可设,sin )Q αα,圆的圆心坐标为(0,6)C ,圆心到Q 的距离为||CQ ===,当且仅当2sin 3α=-时取等号,所以max max ||||PQ CQ r +==≤,所以Q P ,两点间的最大距离是8.D 【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b += ① 2222221x y a b+= ② ①-②得1212121222()()()()0x x x x y y y y a b +-+-+=,∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D. 9.C 【解析】∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==10.5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =,得1212212(1)x x y y -=⎧⎨-=-⎩,即122x x =-,1232y y =-.因为点A ,B 在椭圆上,所以222222224(3)44x x m x y m⎧+-=⎪⎪⎨⎪+=⎪⎩,得21344y m =+,所以2222221591(32)(5)444244x m y m m m =--=-+-=--+≤,所以当5m =时,点B 横坐标的绝对值最大,最大值为2.1112-;【解析】设椭圆的右焦点为(,0)F c ,双曲线N 的渐近线与椭圆M 在第一象限内的交点为A,由题意可知(2c A ,由点A 在椭圆M 上得,22223144c c a b+=,∴22222234b c a c a b +=,222b ac =-,∴22222222()34()a c c a c a a c -+=-,∴4224480a a c c -+=,∴428+40e e -=椭椭,∴24e =±椭,∴1e =椭(舍去)或1e 椭,∴椭圆M1,∵双曲线的渐近线过点(,)22cA,渐近线方程为y =,故双曲线的离心率2e ==双.12由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭,由90BFC ∠=︒可得0BF CF ⋅=,2b BF c ⎛⎫=- ⎪⎪⎝⎭,2b CF c ⎛⎫=- ⎪ ⎪⎝⎭,则22231044c a b -+=,由222b a c =-可得223142ca =,则c e a ==. 13.22325()24-+=x y 【解析】 由题意圆过(4,0),(0,2),(0,2)-三个点,设圆心为(,0)a,其中0a >,由4-=a 32a =,所以圆的方程为22325()24-+=x y .14.2【解析】设11(,)A x y ,22(,)B x y ,分别代入椭圆方程相减得 1212121222()()()()0x x x x y y y y a b -+-++=,根据题意有12122,2x x y y +=+=,且121212y y x x -=--,所以22221()02a b +⨯-=,得222a b =,整理222a c =,所以2e =. 15.12【解析】设MN 交椭圆于点P ,连接1F P 和2F P ,利用中位线定理可得AN BN +=122222412F P F P a a +=⨯==.162(,)b A c a,2(,)b B c a -,由题意可知点D 为1F B 的中点,所以点D 的坐标为2(0,)2b a-,由B F AD 1⊥,所以11AD F B k k ⋅=-22ac =,解得3e =. 17.22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b -- 将点B 坐标带入椭圆方程得22221()53()13b c b--+=, 又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩∴椭圆方程为22312x y +=.18.13-【解析】由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==a c e ,故答案为13-.19由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.故c e a ==.20.(0,1)±【解析】设点A 的坐标为(,)m n ,B 点的坐标为(,)c d.12(F F ,可得1()F A m n =,2()F B c d =,∵125F A F B =,∴,55m nc d +==,又点,A B 在椭圆上, ∴2213m n +=,22(5()135m n ++=,解得0,1m n ==±, ∴点A 的坐标是(0,1)±.21.【解析】(1)由已知得(1,0)F ,l 的方程为1=x .由已知可得,点A的坐标为或(1,. 所以AM的方程为2y x =-2y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则1<x2x MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由11=-y kx k ,22=-y kx k 得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,2122421+=+k k x x ,21222221-=+x k k x . 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+.从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.22.【解析】(1)设11(,)A x y ,22(,)B x y ,则2211143x y +=,2222143x y +=. 两式相减,并由1212y y k x x -=-得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=, 于是34k m=-.①由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =.于是1||(22xFA x ===-.同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=. 故2||||||FP FA FB=+,即||FA ,||FP ,||FB 成等差数列. 设该数列的公差为d ,则1212||||||||||2d FB FA x x =-=-= 将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故122x x +=,12128x x =,代入②解得||d =.或 23.【解析】设椭圆的焦距为2c ,由已知知2259c a =,又由222a b c =+,可得23a b =.由已知可得,FB a =,AB =,由FB AB ⋅=,可得6ab =,从而3a =,2b =.所以,椭圆的方程为22194x y +=.(2)设点P 的坐标为11(,)x y ,点Q 的坐标为22(,)x y . 由已知有120y y >>,故12sin PQ AOQ y y ∠=-. 又因为2sin y AQ OAB =∠,而4OAB π∠=,故2AQ =.由AQ AOQ PQ=∠,可得1259y y =. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y = 易知直线AB 的方程为20x y +-=,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由1259y y =,可得5(1)k += 两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.24.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点1P ,所以点2P 在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.(2)设直线2P A 与直线2P B 的斜率分别为1k ,2k ,如果l 与x 轴垂直,设l :x t =,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为 (t,(t,).则121k k +==-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设11(,)A x y ,22(,)B x y ,则122841kmx x k +=-+,21224441m x x k -=+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=. 即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)25.【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-,0(0.)NM y =.由2NP NM =得 0x x =,0y y =. 因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-,(1,)PF m n =---,33OQ PF m tn ⋅=+-,(,)OP m n =,(3,)PQ m t n =---,由1OP PQ ⋅=得2231m m tn n --+-=,又由(1)知222m n +=, 故330m tn +-=.所以0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F . 26.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b =因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符.当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --, 从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=.又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为. 27.【解析】(Ⅰ)设F 的坐标为(,0)c -.依题意,12c a =,2pa =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=. 所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =. (Ⅱ)设直线AP 的方程为1(0)x my m =+≠,与直线l 的方程1x =-联立,可得点2(1,)P m --,故2(1,)Q m-.将1x my =+与22413y x +=联立,消去x , 整理得22(34)60m y my ++=,解得0y =,或2634my m -=+.由点B 异于点A ,可得点222346(,)3434m mB m m -+-++. 由2(1,)Q m-,可得直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+, 故2223(,0)32m D m -+.所以2222236||13232m m AD m m -=-=++. 又因为APD △的面积为2,故22162232||2m m m ⨯⨯=+,整理得23|20m m -+=,解得||m =,所以m =. 所以,直线AP的方程为330x +-=,或330x -=. 28.【解析】(I)由题意知c e a ==,22c =,所以1a b ==,因此椭圆E 的方程为2212x y +=.(Ⅱ)设()()1122,,,A x y B x y ,联立方程2211,2x y y k x ⎧+=⎪⎪⎨⎪=⎪⎩得()22114210k x x +--=, 由题意知0∆>,且()12122111221x x x x k +=-+,所以121=-=AB x .由题意可知圆M 的半径r为1233r AB ==由题设知12k k =,所以214k k =因此直线OC的方程为1y =.联立方程2211,2,x y y ⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++,因此OC ==由题意可知1sin21SOT rOC r OCr∠==++,而1OC r=2 令2112t k =+, 则()11,0,1t t>∈,因此1OC r==≥,当且仅当112t =,即2t =时等号成立,此时1k =,所以1sin 22SOT ∠≤,因此26SOT π∠≤, 所以SOT ∠最大值为3π. 综上所述:SOT ∠的最大值为3π,取得最大值时直线l的斜率为12k =±.29.【解析】(Ⅰ)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab ac 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (Ⅱ)由(Ⅰ)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y .令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.30.【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,故12229M x x kb x k +==-+,299M M by kx b k =+=+. 于是直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 所以直线OM 的斜率与l 的斜率的乘积为定值. (Ⅱ)四边形OAPB 能为平行四边形. 因为直线l 过点(,)3mm , 所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . 由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981P k m x k =+,即P x =. 将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x =.=2(3)23(9)mk k k -⨯+.解得14k =24k =.因为0,3i i k k >≠,1i =,2,所以当l的斜率为44四边形OAPB 为平行四边形.31.【解析】(Ⅰ)由题意得2221,,2.b caa b c =⎧⎪⎪=⎨⎪⎪=+⎩解得2a =2.故椭圆C 的方程为2212x y +=. 设M (N x ,0).因为0m ≠,所以11n -<<.直线PA 的方程为11n y x m--=, 所以M x =1m n -,即(,0)1mM n-.(Ⅱ)因为点B 与点A 关于x 轴对称,所以(,)B m n -, 设(,0)N N x ,则N x =1mn+. “存在点(0,)Q Q y 使得OQM ∠=ONQ ∠等价”,“存在点(0,)Q Q y 使得OM OQ=OQ ON”即Q y 满足2Q M N y x x =.因为1M m x n =-,1N mx n=+,2212m n +=, 所以22221Q MN m y x x n===-. 所以Q y或Q y =.故在y 轴上存在点Q ,使得OQM ∠=ONQ ∠. 点Q的坐标为或(0,.32.【解析】(1)由题设条件知,点M 的坐标为21(,)33a b,又OM k =,从而2b a =,进而得,2a c b ===,故5c e a ==.(2)由题设条件和(I)的计算结果可得,直线AB1yb+=,点N的坐标为1,)2b-,设点N关于直线AB的对称点S的坐标为17(,)2x,则线段NS的中点T的坐标为117,)4244xb+-+.又点T在直线AB上,且1NS ABk k⋅=-,从而有11744171xb bbb+-++=⎨+⎪=⎪⎪⎪⎩,解得3b=,所以b=故椭圆E的方程为221459x y+=.33.【解析】(Ⅰ)由题意知42=a,则2=a,又ca=,222a c b-=,可得1=b,所以椭圆C的方程为1422=+yx.(Ⅱ)由(I)知椭圆E的方程为141622=+yx.(i)设λ=||||),,(0OPOQyxP,由题意知),(yxQλλ--,因为14220=+yx,又14)(16)(220=-+-yxλλ,即1)4(4220=+yxλ,所以2=λ,即2||||=OPOQ.(ii)设),(),,(2211yxByxA,将mkxy+=代入椭圆E的方程,可得01648)41(222=-+++mkmxxk,由0>∆,可得22164km+<,则有222122141164,418k m x x k km x x +-=+-=+,所以22221414164||k m k x x +-+=-.因为直线m kx y +=与y 轴交点的坐标为),0(m ,所以OAB ∆的面积||||2121x x m S -=22241||4162km m k +-+= 222241)416(2k m m k +-+=222241)414(2k m k m ++-= 令t k m =+2241,将m kx y +=代入椭圆C 的方程, 可得 0448)41(222=-+++m kmx x k , 由0∆≥,可得 2241k m +≤,由①②可知 10≤<t ,因此t t t t S 42)4(22+-=-=,故 S ≤当且仅当1=t 时,即2241k m +=时取得最大值32,由(i )知,ABQ ∆面积为S 3, 所以ABQ ∆面积的最大值为36.34.【解析】2(c,0)=3F c c (I )设,由条件知,222=2, 1.2c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (Ⅱ)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,2238=16(43)0,441k k k x k ±∆->>=+当即时,12PQ x=-=从而O PQ d OPQ=∆又点到直线的距离所以的面积1=2OPQS d PQ∆⋅=244,0,.44OPQtt t St tt∆=>==++则44,20.t t kt+≥==∆>因为当且仅当,即OPQι∆所以,当的面积最大时,的方程为22y x y x=-=-或.35.【解析】(Ⅰ)设直线l的方程为()0y kx m k=+<,由22221y kx mx ya b=+⎧⎪⎨+=⎪⎩,消去y得,()22222222220b a k x a kmx a m a b+++-=,由于直线l与椭圆C只有一个公共点P,故0∆=,即22220b m a k-+=,解得点P的坐标为22222222,a kmb mb a k b a k⎛⎫-⎪++⎝⎭,由点P在第一象限,故点P的坐标为22⎛⎫⎝;(Ⅱ)由于直线1l过原点O,且与l垂直,故直线1l的方程为0x ky+=,所以点P到直线1l的距离d=,整理得22d=,因为22222ba k abk+≥,2222a b ≤=-,当且仅当2bk a=时等号成立, 所以点P 到直线1l 的距离的最大值为b a -.36.【解析】(Ⅰ)根据c =22(,),23b M c b ac a=将222b a c =-代入223b ac =,解得1,22c ca a==-(舍去) 故C 的离心率为12. (Ⅱ)由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D是线段1MF 的中点,故24b a=,即24b a = ① 由15MN F N =得112DF F N =。

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线答案

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线答案

专题九 解析几何第二十七讲 双曲线答案部分2019年1. 解析 双曲线22:142x y C -=的右焦点为(6,0)F ,渐近线方程为:2y x =±,不妨设点P 在第一象限,可得2tan POF ∠=,63(,)P ,所以PFO △的面积为: 13326224⨯⨯=.故选A . 2. 解析 因为双曲线2221(0)y x b b-=>经过点(3,4),所以221631b-=,解得22b =,即2b =. 又1a =,所以该双曲线的渐近线方程是2y x =±.3.解析 如图所示,因为1F A AB=uuu r uu u r,所以A 为1F B 的中点. 又O 为12F F 的中点,所以212AO BF P,212AO BF =. 因为120F B F B ⋅=uuu r uuu r,所以1290F BF ∠=︒, 且O 为12F F 的中点,所以12212OB F F OF c ===. 由212AO BF P得2121BOF AOF BF F ∠=∠=∠,所以2OB BF =, 因此2OPF △为等边三角形,260BOF ∠=︒,即渐近线的斜率为3,也即3ba=, 所以2212b e a=+=.4.A 解析:解法一:由题意,把2c x =代入222x y a +=,得2224c PQ a =-,再由PQ OF =,得2224ca c -=,即222a c =,所以222c a=,解得2c e a ==.故选A .解法二:如图所示,由PQ OF =可知PQ 为以OF 为直径圆的另一条直径,所以,22c c P ⎛⎫± ⎪⎝⎭,代入222x y a +=得222a c =, 所以222c a=,解得2c e a ==.故选A .解法三:由PQ OF =可知PQ 为以OF 为直径圆的另一条直径,则12222OP a OF ===,2c e a ==故选A .5.解析 根据渐进线方程为0x y ±=的双曲线,可得a b =,所以2c a =,则该双曲线的离心率为2ce a==C . 6.解析 因为抛物线24y x =的焦点为F ,准线为l ,所以()1,0F ,准线l 的方程为1x =-.因为与双曲线()222210,0x y a b a b=>>的两条渐近线分别交于点A 和点B ,且4AB OF =(为原点),所以2b AB a =,1OF =,所以24b a=,即2b a =, 所以225c a b a +=,所以双曲线的离心率为5ca==.故选D .2010-2018年1.B 【解析】由题可知双曲线的焦点在x 轴上,因为222314c a b =+=+=,所以2c =,故焦点坐标为(2,0)-,(2,0).故选B .2.B 【解析】因为双曲线2213-=x y的渐近线方程为=±y x ,所以60∠=o MON .不妨设过点F的直线与直线=y x 交于点M ,由∆OMN 为直角三角形,不妨设90∠=o OMN ,则60∠=o MFO ,又直线MN 过点(2,0)F ,所以直线MN的方程为2)=-y x ,由2)3⎧=-⎪⎨=⎪⎩y x y x,得32⎧=⎪⎪⎨⎪=⎪⎩x y,所以3(2M ,所以||==OM所以|||3==MN OM .故选B . 3.A 【解析】解法一由题意知,==ce a,所以=c,所以==b ,所以=b a=±=by x a,故选A .解法二由===c e a,得=ba,所以该双曲线的渐近线方程为=±=by x a.故选A . 4.C 【解析】不妨设一条渐近线的方程为by x a=, 则2F 到by x a =的距离d b ==, 在2Rt F PO ∆中,2||F O c =,所以||PO a =,所以1||PF =,又1||F O c =,所以在1F PO ∆与2Rt F PO ∆中,根据余弦定理得12cos cos aPOF POF c∠==-∠=-,即2223)0a c +-=,得223a c =.所以ce a==.故选C . 5.C 【解析】通解 因为直线AB 经过双曲线的右焦点,所以不妨取2(,)b A c a,2(,)b B c a -,取双曲线的一条渐近线为直线0bx ay -=,由点到直线的距离公式可得221bc b d c -==,222bc b d c +==, 因为126d d +=,所以226bc b bc b c c-++=,所以26b =,得3b =. 因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a+=,所以2294a a +=,解得23a =, 所以双曲线的方程为22139x y -=,故选C . 优解 由126d d +=,得双曲线的右焦点到渐近线的距离为3,所以3b =.因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a+=,所以2294a a +=,解得23a =, 所以双曲线的方程为22139x y -=,故选C . 6.A 【解析】双曲线C 的渐近线方程为0bx ay ±=,圆心(2,0)到渐近线的距离为2bd c==,圆心(2,0)到弦的距离也为d ==所以2b c =222c a b =+,所以得2c a =,所以离心率2ce a==,选A .7.B 【解析】由题意可得:b a =3c =,又222a b c +=,解得24a =,25b =,则C 的方程为2145x y 2-=.选B .8.B 【解析】设(,0)F c -,双曲线的渐近线方程为b y x a =±,由44PF k c c-==-,由题意有4bc a=,又c a =222c a b =+,得b =,a =.选B .9.D 【解析】不妨设A 在第一象限,(,)A x y ,所以2242x y by x ⎧+=⎪⎨=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩, 故四边形ABCD的面积为2324424bxy b b===+, 解得212b =.故所求的双曲线方程为2224=11x y -,选D . 10.A 【解析】由题意得22()(3)0m n m n +->,解得223m n m -<<,又由该双曲线两焦点间的距离为4,得M 2234m n m n ++-=,即21m =,所以13n -<<.11.A 【解析】设1(,0)F c -,将x c =-代入双曲线方程,得22221c y a b -=,化简得2by a=±,因为211sin 3MF F ∠=,所以222212112||tan ||222b MF b c a a MF F F F c ac ac -∠=====,12222c a e a c e -=-=210e --=,所以e =A . 12.D 【解析】由双曲线的标准方程2213y x -=得,右焦点(2,0)F ,两条渐近线方程为y =,直线AB :2x =,所以不妨设取(2,A,(2,B -,则||AB =,选D .13.B 【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B .14.D【解析】由题意1e ==2e ==∵()()b b m m b a a a m a a m +--=++,由于0m >,0a >,0b >, 所以当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22()()b b m a a m+<+,所以12e e <;当a b <时,1ba>,1b m a m +>+,而b b m a a m +>+,22()()b b m a a m +>+, 所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >.15.C 【解析】由题意,选项,A B 的焦点在x 轴,故排除,A B ,C 项的渐近线方程为2204y x -=,即2y x =±,故选C . 16.A 【解析】由题意知22a =,21b =,所以23c =,不妨设1(F,2F ,所以100(,)=-u u u u r MF x y,200,)=-u u u u rMF x y ,又∵00(,)M x y 在双曲线上,所以220012x y -=,即220022x y =+,222120003310MF MF x y y u u u r u u u r ⋅=-+=-<,所以0<<y ,故选A . 17.A 【解析】 由题意22(,0),(,),(,)b b A a B c C c a a-,由双曲线的对称性知D 在x 轴上,设(,0)D x ,由BD AC ⊥得2201b b a a c x a c-⋅=---,解得42()bc x a c a -=-,所以42()b c x a a c a c a -=<=+-,所以42222b c a b a <-=221b a⇒<01b a ⇒<<,而双曲线的渐近性斜率为ba±,所以双曲线的渐近线的斜率取值范围是(1,0)(0,1)-U ,选A .18.A 【解析】双曲线方程为22133x y m -=,焦点F到一条渐近线的距离为b =A .19.A 【解析】∵09k <<,∴90,250k k ->->,本题两条曲线都是双曲线,又25(9)(25)9k k +-=-+,∴两双曲线的焦距相等,选A .20.A 【解析】 依题意得22225b ac c a bìï=ïïï=íïïï=+ïî,所以25a =,220b =,双曲线的方程为 221520x y -=.21.B 【解析】由双曲线的定义得12||||||2PF PF a -=,又12||||3PF PF b +=,所以22221212(||||)(||||)94PF PF PF PF b a +--=-,即124||||9PF PF ab =,因此22949b a ab -=,即299()40b b aa --=,则(31b a +)(34ba-)=0,解得41(33b b a a ==-舍去),则双曲线的离心率53e ==. 22.C【解析】由题知,c a =54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C . 23.D 【解析】双曲线1C 的离心率是11cos e θ=,双曲线2C 的离心率是21cos e θ==,故选D . 24.A 【解析】设双曲线的焦点在x 轴上,则由作图易知双曲线的渐近线的离心率ba必须满b a <,所以21()33b a <≤,241()43b a<+≤,2<,又双曲线的离心率为c e a==23e <≤. 25.C 【解析】∵双曲线22215x y a -=的右焦点为(3,0),∴2a +5=9,∴2a =4,∴a =2∵c =3,∴32c e a ==,故选C . 26.A 【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又C 的渐近线为b y x a =±,点P(2,1)在C 的渐近线上,12ba∴=g ,即2a b =. 又222c a b =+,a ∴==,C 的方程为220x -25y =1.27.C 【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C . 28.A 【解析】圆22:(3)4C x y -+=,3,c =而32bc =,则22,5b a ==,应选A . 29.C 【解析】由双曲线方程可知渐近线方程为3y x a=±,故可知2a =.30.B 【解析】双曲线22221(0,0)x y a b a b -=>>的渐近线为by x a=±,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得22p-=-,即4p =, 又∵42p a +=,∴2a =,将(-2,-1)代入by x a=得1b =,∴c =2c =31.B 【解析】由双曲线E 的中心为原点,(3,0)P 是E 的焦点可设双曲线的方程为2222221(9)x y a b a b -=+=,设1122(,),(,)A x y B x y ,即 2222112222221,1x y x y a b a b -=-= 则22121222121212015115312y y x x b b x x a y y a -+-+=⋅=⋅==-+-+,则22225,5,44b b a a ===,故E 的方程式为22145x y -=.应选B . 32.D 【解析】设双曲线的方程为22221(0,0)x y a b a b -=>>,其渐近线为x aby ±=,∵点(4,2)-在渐近线上,所以12b a =,由2e ==. 33.C 【解析】由题意,F (-1,0),设点P 00(,)x y ,则有2200143x y +=, 解得22003(1)4x y =-,因为00(1,)FP x y =+u u u r ,00(,)OP x y =u u u r,所以2000(1)OP FP x x y ⋅=++u u u r u u u r =00(1)OP FP x x ⋅=++u u u r u u u r 203(1)4x -=20034x x ++, 此二次函数对应的抛物线的对称轴为02x =-,因为022x -≤≤,所以当02x =时,OP FP ⋅u u u r u u u r 取得最大值222364++=,选C . 34.12y x =±【解析】由题意2a =,1b =,∴12b y x x a =±=±. 35.2【解析】不妨设双曲线的一条渐近线方程为b y x a =b ==,所以222234b c a c =-=,得2c a =,所以双曲线的离心率2ce a==. 36.232a x c ==,渐近线的方程为y x =,设3(,22P,则3(,22Q -,1(2,0)F -,2(2,0)F , 所以四边形12F PF Q的面积为1211||||422F F PQ =⨯=. 37.3【解析】如图所示,AH MN ⊥,AM AN b ==,MAN ∠=60°, x所以30HAN ∠=o,又MN 所在直线的方程为by x a=, (,0)A a 到MN的距离AH =,在Rt HAN ∆中,有cos HA HAN NA ==,即2=因为222c a b =+,得2a c =,所以3c e a ==. 38.2y x =±【解析】设11(,)A x y ,22(,)B x y ,由抛物线的定义有1212||||22p p AF BF y y y y p +=+++=++,而||2p OF =, 所以1242py y p ++=⨯,即12y y p +=,由2222212x y a b x py⎧-=⎪⎨⎪=⎩得2222220a y pb y a b -+=,所以21222pb y y a +=, 所以222pb p a=,即a =,所以渐近性方程为2y x =±. 39.2【解析】221,a b m ==,所以1c a ==,解得2m =. 40.2【解析】不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线图象如图 ∵OABC 为正方形,2=OA∴==c OB ,π4∠=AOB ∵直线OA 是渐近线,方程为=b y x a ,∴tan 1=∠=bAOB a又∵2228+==a b c ∴2=a41.2【解析】由题意||2BC c =,所以||3AB c =,于是点3(,)2cc 在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==,应填2. 42.3【解析】因为双曲线()22210x y a a -=>的一条渐近线为y =,所以1a=故3a =. 43.2(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以c 的最大值为直线10x y -+=与渐近线0x y -== 44.32【解析】22122:1(0,0)x y C a b a b -=>>的渐近线为b y x a =±,则2222(,)pb pb A a a ,2222(,)pb pb B a a -,22:2(0)C x py p =>的焦点(0,)2p F , 则22222AFpb pa a k pb b a-==,即2254b a =,2222294c a b a a +==,32c e a ==. 45.y x =±【解析】抛物线的准线2p y =-,与双曲线的方程联立得2222(1)4p x a b =+,根据已知得2222(1)4p a c b+= ①,由||AF c =得2224p a c += ②,由①②得22a b =,即a b =,所以所求双曲线的渐近线方程为y x =±.46by x a=±可解得交点为(,)33am bm A b a b a --,(,)33am bm B b a b a -++,而13AB k =,由||||PA PB =,可得AB 的中点3333(,)22am am bm bmb a b a b a b a -+-+-+与点)0,(m P 连线的斜率为-3,可得224b a =,所以2e =. 47.221312x y -= 2y x =±【解析】设与2214y x -=具有相同渐近线的双曲线C 的方程为224y x k -=,将点()2,2代入C 的方程中,得3k =-.∴双曲线的方程为221312x y -=,渐近线方程为2y x =±.48.45【解析】。

2019年高考数学试题分类汇编解析几何附答案详解

2019年高考数学试题分类汇编解析几何附答案详解

2019年高考数学试题分类汇编解析几何一、选择题.1、(2019年高考全国I 卷理科10)双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40° B .2cos40°C .1sin50︒D .1cos50︒答案:C解析:由题可知,130tan ︒=-a b 即,50tan ︒=a b 则有︒︒=50cos 50sin 2222a b ,即︒︒=-50cos 50sin 22222a a c 所以︒︒=-50cos 50sin 1222e ,︒=50cos 12e ,故选D 2、(2019年高考全国I 卷理科10,文科12)已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=答案:B解析:设x B F =||2,则x B F B F AF AB B F 3||3||||||||2221==+== 由椭圆定义得x a B F B F 42||||21==+,故,23||,2||12aB F a B F ==a AF a AF a AF =-==||2||,||212在21F AF ∆和21F BF ∆中,由余弦定理得a c a a c a F AF 1224cos 22221=⨯⨯-+=∠ a a c a a c a F BF 2222212221249441cos -=⨯⨯-+=∠ 21F AF ∠、21F BF ∠互补得a a a 122=-,解得32=a ,22=b ,方程为12322=+y x 。

故选B 3、(2019年高考全国II 卷理科8,文科9)若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p=A .2B .3C .4D .8 答案:D解析:易知抛物线的焦点为)0,2(p,故椭圆焦点在x 轴上 由p p p b a c 23222=-=-=,则p p 2)2(2=,解得p=8。

2010-2019高考数学(理科)真题分类汇编-专题9 解析几何-第二十六讲 椭圆

2010-2019高考数学(理科)真题分类汇编-专题9  解析几何-第二十六讲  椭圆

+
y2 20
= 1 的两个焦点,M

C
上一点且在第
一象限.若△MF1F2 为等腰三角形,则 M 的坐标为___________.
2010-2018 年
一、选择题
1.(2018
全国卷Ⅱ)已知
F1
,F2
是椭圆
C:x a
2 2
+
y2 b2
= 1 (a
b 0) 的左,右焦点,A 是 C

左顶点,点 P 在过 A 且斜率为
uuur | FB | 成等差数列,并求该数列的公差.
23.(2018 天津)设椭圆
x2 a2
+
x2 b2
=1(a
b
0 )的左焦点为 F
,上顶点为 B
.已知椭圆的离
心率为 5 ,点 A 的坐标为 (b, 0) ,且 FB AB = 6 2 . 3
(1)求椭圆的方程;
(2)设直线 l : y = kx(k 0) 与椭圆在第一象限的交点为 P ,且 l 与直线 AB 交于点 Q .
A、B 两点.若 AB 的中点坐标为(1,-1),则 E 的方程为
A.4x52 +3y62 =1
B.3x62 +2y72 =1
C.2x72 +1y82 =1
D.1x82 +y92=1
9.(2012
新课标)设 F1 、 F2 是椭圆 E

x2 a2
+
y2 b2
= 1(a
b 0) 的左、右焦点, P
为直线
x
=
3a 2
上一点,
F2 PF1
是底角为 30o 的等腰三角形,则 E 的离心率为
A、 1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题九 解析几何第二十八讲 抛物线2019年1.(2019全国II 理8)若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .82.(2019北京理18(1))已知抛物线2:2C x py =-经过点(2,-1).求抛物线C 的方程及其准线方程; 3.(2019全国I 理19)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若4AF BF +=,求l 的方程;(2)若3AP PB =uu u r uu r,求AB .4. (2019全国III 理21)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.2010-2018年一、选择题1.(2018全国卷Ⅰ)设抛物线C :24=y x 的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则⋅FM FN = A .5B .6C .7D .82.(2017新课标Ⅰ)已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则||||AB DE +的最小值为A .16B .14C .12D .103.(2016年四川)设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF上的点,且PM =2MF ,则直线OM 的斜率的最大值为A B .23C D .1 4.(2016年全国I)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知||AB =||DE =C 的焦点到准线的距离为A .2B .4C .6D .85.(2015浙江)如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是A .11BF AF -- B .2211BF AF -- C .11BF AF ++ D .2211BF AF ++6.(2015四川)设直线l 与抛物线24y x =相交于,A B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24,7.(2014新课标1)已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF = A .72 B .52C .3D .2 8.(2014新课标2)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30°的直线交C 于,A B 两点,O为坐标原点,则△OAB 的面积为( )A B C .6332 D .949.(2014辽宁)已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4310.(2013新课标1)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =则POF ∆的面积为( )A .2B .C .D .411.(2013江西)已知点()2,0A ,抛物线2:4C x y =的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则||:||FM MN =A .B .1:2C .1:D .1:312.(2012新课标)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A 、B 两点,34||=AB ,则C 的实轴长为 A 、2B 、22C 、4D 、813.(2012山东)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为A .2x y =B .2x y =C .28x y =D .216x y = 14.(2011新课标)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为A .18B .24C .36D .48 二、填空题15.(2018全国卷Ⅲ)已知点(1,1)M -和抛物线C :24y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k =______.16.(2017新课标Ⅱ)已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则||FN = .17.(2015陕西)若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p =18.(2014湖南)如图4,正方形ABCD DEFG 和正方形的边长分别为,()a b a b <,原点O 为AD 的中点,抛物线22(0)y px p =>经过,bC F a=两点,则.19.(2013北京)若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 .20.(2012陕西)右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.21.(2010浙江)设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________. 三、解答题22.(2018北京)已知抛物线C :22y px =经过点(1,2)P .过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.23.(2018全国卷Ⅱ)设抛物线24=:C y x 的焦点为F ,过F 且斜率为(0)>k k 的直线l 与C 交于A ,B 两点,||8=AB .(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.24.(2018浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :24y x =上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆2214y x +=(0x <)上的动点,求PAB ∆面积的取值范围. 25.(2017新课标Ⅲ)已知抛物线C :22y x =,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点(4,2)P -,求直线l 与圆M 的方程.26.(2017浙江)如图,已知抛物线2x y =.点11(,)24A -,39(,)24B ,抛物线上的点(,)P x y 13()22x -<<,过点B 作直线AP 的垂线,垂足为Q .x(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求||||PA PQ ⋅的最大值.27.(2017北京)已知抛物线C :22y px =过点(1,1)P .过点1(0,)2作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程;(Ⅱ)求证:A 为线段BM 的中点.28.(2016年全国III)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线1l ,2l 分别交C 于A ,B两点,交C 的准线于P ,Q 两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(Ⅱ)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.29.(2015新课标1)在直角坐标系xoy 中,曲线C :24x y =与直线y kx a =+(0)a >交与M ,N 两点,(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.30.(2014山东)已知抛物线)>0(2:2p px y C =的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有FA FD =,当点A 的横坐标为3时,ADF ∆为正三角形。

(Ⅰ)求C 的方程;(Ⅱ)若直线l l //1,且1l 和C 有且只有一个公共点E , (ⅰ)证明直线AE 过定点,并求出定点坐标;(ⅱ)ABE ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由。

31.(2014陕西)如图,曲线C 由上半椭圆22122:1(0,0)y x C a b y a b+=>>≥和部分抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B ,其中1C (Ⅰ)求,a b 的值;(Ⅱ)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l 的方程.32.(2013广东)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (Ⅰ)求抛物线C 的方程;(Ⅱ)当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ)当点P 在直线l 上移动时,求AF BF ⋅的最小值.33.(2012新课标)设抛物线C :)0(22>=p py x 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B 、D 点.(Ⅰ)若oBFD 90=∠,ABD ∆的面积为24,求p 的值及圆F 的方程;(Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m 、n 距离的比值.34.(2011新课标)在平面直角坐标系xoy 中, 已知点(0,1)A -,B 点在直线3y =-上,M 点满足//MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.。

相关文档
最新文档