河流动力学实验
河流动力学实验报告材料模版

河流动力学实验(一)大学水利水电学院二〇一二年十月实验一 泥沙颗粒分析试验一、实验目的及项目1、掌握实验室中运用筛分法及移液管体分析河床质、悬移质沙样的方法。
2、掌握绘制泥沙颗粒级配曲线的方法,求出泥沙样品的50d ,pj d,ϕ=等特征值。
二、筛分析法:适用于粒径大于0.1毫米(或:0.、0.060毫米)的泥沙颗粒分析。
(一)试验设备1、粗筛:园孔,孔径为200、100、60、40、20、10、5、2毫米。
2、细筛:方孔,孔径为5.0、2.0、1.0、0.5、0.25、0.1、(或0.、0.06)毫米。
3、洗筛:孔径为0.1毫米。
4、其他:振筛机、烘箱、天平、毛刷、盛沙杯等。
(二)操作步骤1、检查沙样:用玻璃棒在沙样中搅拌,如玻璃棒没有粘附沙粒。
则可以为已风干,否则应作风干处理,如沙样过多,则用四分法取出代表性沙样分析。
2、将分取沙样,(大约100-300克左右)放在天平上称出总重量,准确至0.01克。
3、根据沙样的最大粒径,准备好粗、细筛数只,并按孔径由大到小依次排列备用。
4、将沙样倾入粗筛之最上一层,加盖后,放在振筛机上振筛15分钟。
5、从最上一层开始,顺序将各级筛取下,在纸上用手扣打摇晃,直至无沙漏下为止,漏下之沙放在下一级筛,卡在孔径中之沙。
应计入本层筛之。
6、将留在各级筛上之沙,扫入编号杯,分别称重。
7、测记最大粒径:在最上一层筛,找出最大一颗粒沙子,量其粒径为沙样最大粒径。
(三)实验记录大学水利水电学院质筛分析记录计算表 表一分析:核算:三、移液管法(一)试验设备1、移液管分析仪一套,本仪器只适用于粒径小于0.1mm及浓度为0.3~2%的泥沙颗粒分析。
2、盛沙杯:容量为100ml的玻璃杯7个。
3、沉降筒:容量为600ml的玻璃量筒一个。
4、温度计:量度50℃,最小刻度0.1℃一支。
5、电动天平:感量万分之一克。
6、悬移质水样:(通过0.1mm洗筛冲洗)。
7、搅拌器:轮径5cm,孔径为3mm。
河流水动力学与水质模拟方法研究

河流水动力学与水质模拟方法研究随着经济的快速发展和人口的增长,全球范围内的水资源管理问题变得日益重要。
河流的水动力学和水质模拟方法研究对于有效管理和保护水资源至关重要。
本文将重点讨论河流水动力学和水质模拟方法的研究现状、挑战和应用前景。
首先,我们来了解河流水动力学的研究方法。
水动力学是研究水在河流中运动的科学,它关注着水流的速度、水位和水压等变化规律。
通过水动力学模型,人们可以模拟能够有效预测洪水、泥沙运移、河道变形等事件。
目前,常见的水动力学模型包括一维模型、二维模型和三维模型。
其中,一维模型适用于直线或弯曲较小的河流段,二维模型适用于较为复杂的河流段,而三维模型则可应用于高度复杂的河道网络。
然而,河流水动力学模拟仍然面临着一些挑战。
首先是模型参数的确定。
模型参数的准确性直接影响着模拟结果的可靠性,因此需要大量的实地或实验数据来进行调整和验证。
其次是模型计算的精度和效率。
由于河流系统具有高度非线性和空间变化特征,模型的计算复杂度很高,需要采用高性能计算方法和优化算法来提高计算效率和精度。
此外,模型的不确定性和稳定性也需要进一步研究。
水质模拟方法是研究河流中污染物扩散和传输的科学。
水质模拟方法可以帮助我们理解河流中污染物的传播规律和影响因素,从而采取相应的控制措施,保护水资源和生态环境。
目前,常见的水质模拟方法包括物理模型、统计模型和数学模型。
物理模型基于物理原理,通过实验或数值模拟的方法来研究水质变化规律。
统计模型主要是利用历史观测数据和统计方法来预测未来的水质变化。
数学模型则是利用数学方程和计算方法来模拟水体中污染物的传输和转化过程。
然而,水质模拟方法也面临着一些挑战。
首先是污染物源的确定和监测。
污染物源是水质模拟的基础,需要通过实地监测和模型估算来确定。
然而,由于污染物的复杂来源和多样性,确定准确的污染物源是非常困难的。
其次是水质模型的精度和准确性。
水质模型的精度直接影响着模拟结果的可信度,因此需要采用准确的反演方法和优化算法来提高模型的精度和准确性。
河流水流动力学的观测与分析

河流水流动力学的观测与分析引言河流是地球表面最重要的水文系统之一,其水流动力学是水资源管理、环境保护以及自然灾害预防等领域的重要研究内容。
准确观测和深入分析河流水流动力学,对于提高水资源的开发利用效率、改善环境质量、保护河流生态系统具有重要意义。
本文将介绍河流水流动力学观测的基本原理和常用方法,并重点关注河流水流动力学分析的关键要素。
我们将介绍水流速度观测、水位观测、流量观测以及底床变动观测等内容,并结合实际案例阐述分析方法与数据利用。
水流速度观测水流速度是河流水流动力学的重要参数之一,准确测量水流速度能够帮助我们了解河流的运动规律以及底床状况。
常用的水流速度观测方法包括浮标法、浮游生物法、溶液探测仪法等。
其中,浮标法是最常用的方法之一,通过在水面放置浮标并跟踪其运动轨迹,可以计算得到水流速度。
水位观测水位是河流水流动力学中的重要参数之一,观测河流水位能够帮助我们了解河流的水量变化以及波动情况。
常用的水位观测方法包括使用水位计、压阻水位计、声纳水位计等。
这些方法各有特点和适用范围,需要根据具体情况选择合适的观测设备。
流量观测流量是河流水流动力学中最为关键的参数之一,准确测量河流的流量可以帮助我们了解河流的水量供给情况、水资源管理以及洪水预警等重要问题。
常用的流量观测方法包括流速-流量曲线法、激光测距仪法、船只测流法等。
我们将详细介绍这些方法的原理和操作步骤,并提供实际案例进行分析说明。
底床变动观测河床的变动对于河流的水力特性和生态环境都具有重要影响,因此观测河床变动是水流动力学研究中的重要内容之一。
常用的底床变动观测方法包括水准测量法、地面控制点法、测量声纳测深法等。
我们将介绍这些方法的原理和应用范围,并通过对实际观测数据的分析来揭示河床变动对河流水流动力学的影响。
河流水流动力学的分析方法河流水流动力学的数据观测得到之后,需要进行深入的分析才能发现其中的规律和内在联系。
在本节中,我们将介绍一些常用的河流水流动力学分析方法,包括统计分析、数学模型以及人工智能技术的应用。
河流水动力学研究

河流水动力学研究河流是自然界中重要的水资源系统,对于生态环境、经济发展和人类生活起着至关重要的作用。
河流水动力学研究是对河流水流运动及相应的物理、化学、生物过程进行科学分析和数学模拟的学科,旨在深入了解河流的运行机制和变化规律,为水资源管理、环境保护和水灾防治等领域提供科学依据。
一、河流水动力学的背景与概念河流水动力学研究首先需要了解河流的背景与概念。
河流是地表水循环过程中的一部分,其形成与降水和不同地形特征有关。
河流水动力学主要关注水流的形态、速度、压力、泥沙输移和水质变化等。
通过对这些参数的研究,我们可以揭示河流的特征,如形状和横截面形态的变化,水流的流速分布,水体中悬浮物和溶质的输移、沉积等。
二、主要研究内容1. 水流的形态演化水流的形态演化是河流水动力学研究的重要内容之一。
它包括河道横截面的变化、内部流态的演化以及河岸线的变迁。
通过研究这些变化,可以了解河流在不同环境条件下的形态响应,并为河流的治理、防洪和水利工程设计提供依据。
2. 水流的速度分布水流的速度分布是河流水动力学研究的另一个重要方面。
水流的速度受到很多因素的影响,如地形坡度、河床粗糙度和侧向段流等。
通过分析水流的速度分布,可以了解河流的水力特性,如流速变化的规律、湍流发展和能量转移等。
这对于河流水资源开发利用和河道结构设计具有重要意义。
3. 泥沙输移与沉积泥沙的输移与沉积是长期以来受到广泛关注的问题。
泥沙对河流的影响非常显著,既可作为固体悬负荷形成悬浮负荷保护水生生物,也可通过沉积形成陆地,或者在洪水期间形成堆积物,增加洪水的泥沙负荷。
因此,研究河流的泥沙输移与沉积对于水资源管理和环境保护具有重要意义。
三、研究方法与技术1. 实地观测和监测实地观测和监测是河流水动力学研究的基础。
通过采集河流水文数据和泥沙样本,并结合岩土工程地质、水动力学和地貌学等学科的方法,可以全面了解河流的动力学特征和变化规律。
2. 数学模型数学模型是河流水动力学研究的重要工具。
河流动力学课程规范讲授实验

通过本课程的学习,使学生了解冲积河流在自然状态下以及受人工建筑物影响以后所发生变化的基本特性。流域上产生的泥沙进入支流、干流河道后,对河道的水流运动、河道演变及沿河的工业、农业、生活取排水工程有重要影响。领会学习处理复杂问题的思路及方法,能初步掌握河流泥沙运动的基本规律,分析水流泥沙运动与河道演变对环境的影响。通过本课程的学习,让本专业的学生掌握泥沙运动的观测、采集、分析、计算方法,运用所学知识去分析工程中遇到的泥沙问题。
教学手段:1.理论讲授和实例讲解相结合。
2.通过课堂现场互动,达到“以学生为本、师生互动”的目的,充分调动学生的学习积极性和主动性。
3
掌握
9
第九章
高含沙水流问题
高含沙水流的基本特性与泥沙运动及河床演变特点。
能解决高含沙水流问题
2
掌握
10
第十章
异重流
异重流的现象、一般特性、基本力学规律;
水库异重流和河渠异重流。
掌握异重流的现象、特性以及基本力学规律。了解一般常见的异重流
3
掌握
“要求”指学生对知识、能力掌握的熟练程度,填写:了解、熟悉、掌握。
5
第五章
沙坡运动及动床阻力
沙坡形态和运动状态、沙坡的发展过程和形成机理;床面形态的判别标准、沙坡尺度及其运行速度;动床阻力。
能熟练掌握沙坡运动与动床阻力
3
熟悉
6
第六章
推移质输沙率
推移质简介;均匀推移质输沙率公式与非均匀推移质输沙率公式;估算推移质输沙率的其他方法;用统计理论处理推移质输沙率问题的新进展。
教学手段:1.理论讲授和实例讲解相结合。
2.通过课堂现场互动,达到“以学生为本、师生互动”的目的,充分调动学生的学习积极性和主动性。
河流动力学

10次7次1次18次17次15次14次13次9次4次5次3次作业一1、有一卵石,d=0.1m,从水深h=10m的水面抛入水中,水的流速U=1m/s,若不考虑动水流动的影响,求卵石沉到河底的水平距离?2、什么是泥沙的沉速?球体沉速与等容泥沙的沉速是否相同?为什么?3、试比较岗恰洛夫、沙玉清、张瑞瑾的泥沙沉速公式,说明在层流、紊流、过渡区中泥沙沉速的计算公式有何不同?如何判别层流、紊流、过渡区这三种绕流状态?第二次作业1、已知某河流床沙d90=0.9mm,推移质平均粒径D=0.5mm,比降J=0.0004,单宽流量q=3m3/(m . s),水深h=1.89m。
忽略岸壁影响,试用Meyer-Peter公式计算推移质单宽输沙率。
2 已知:梯形断面渠道,底宽b=5m,边坡系数m=2,流量Q=40m3/s,坡降J=0.0008,运动粘滞系数ν=10-6m2/s,泥沙粒径D35=0.3mm,D65=0.9mm,水深H=1.93m。
设断面平均流速U由沙粒阻力决定,河床为粗糙床面,求沙粒阻力对应的水力半径R’。
3、有一沉沙池,设计水深h=3m,水温20℃,来流流量为4.5m3/s,不计紊动对泥沙颗粒沉速的影响,问:在尽量节约工程量的前提下,为保证将来水中粒径D≥0.5mm的泥沙颗粒完全除去,沉沙池的长度和宽度各应不小于多少?4、已知宽浅型冲积河道,河宽B=850m,流量Q=2500m3/s,比降J=3/10000,D50=0.06mm。
试用李昌华、刘建民方法求其平均水深和流速,并求此种情况下的糙率n和Darcy-Weisbach 系数f各为多少?第三次作业1.某灌区的干渠引水量Q=20m3/s,水中浮沙的中值粒径d50=0.03mm,水温T=20℃,运动粘滞系数ν=1×10-6m2/s。
渠道过水断面为梯形,边坡系数m=1,底宽b=9.35m,水深h=2m。
求此渠道水流每天的输沙量。
2.河心滩把河流分成左右两条支河,左支的平均河宽B1 =260m,水深h1 =2.6m,右支的平均河宽B2 =130m,水深h2 =1.6m,两支河长度相等,干流和两支流的n均为0.03,河床泥沙平均粒径为d=0.25mm,若干流流量为Q=1200m3/s,河宽B=300m,水深h=3.0m,问:(1)左右两支河的流量为多少?(2)两支河是否发生冲刷或淤积?第四次作业1、为什么要将运动泥沙分为床沙质和冲泻质?它们各有什么特点?2、用扩散理论研究含沙量沿垂线分布得到什么结果?适用于什么条件?还存在什么问题?可怎样改进?3、简述从理论上推导河相关系的方法。
河流水动力学行为研究进展

河流水动力学行为研究进展河流是地球上最重要的水资源之一,为人类提供了水和其他重要资源。
在河流生态系统中,水动力过程是至关重要的因素,影响着河流的生态状态和流域开发。
因此,河流水动力学行为的研究一直是地理学、水文学、生态学等领域的重要研究方向。
本文将介绍河流水动力学行为的研究进展。
1. 剪切流和涡流河流水动力学中最常见的现象是剪切流和涡流。
剪切流是河水在河道中移动时,由地表形态和地球自转等自然因素引起的惯性力和摩擦力所导致的现象。
涡流是指河水运动时,在洪流、弯道、河流交汇等地方产生的旋涡现象。
研究表明,剪切流和涡流对河流生态环境和水力资源的影响很显著。
特别是涡流,容易导致河道淤积、水位升高,拉长水流路径和影响流态的稳定性。
因此,在河流调控和资源开发中,需要考虑涡流与水力相互作用的因素。
2. 龙卷涡研究龙卷涡是河流中一种比较罕见的涡流现象,是一种旋转的空气体和水体组成的旋风。
龙卷涡的产生与河流特定环境和流量有关。
研究表明,龙卷涡在河流生态系统中的作用非常重要。
由于龙卷涡携带的强风能够将树木和岩石移动,导致岸边生态系统的破坏。
而龙卷涡对水体的扰动也会导致水生生物受到伤害。
因此,对龙卷涡的研究也成为了河流生态系统研究的重要方向之一。
3. 波浪和水流的相互作用在河流中,波浪和水流的相互作用也是研究的重要方向之一。
波浪的产生和传播是河流水动力学中常见的现象,对河流水力资源和生态环境有着很大的影响。
研究表明,波浪和水流相互作用的结果会导致水流速度和水位的变化,影响河流床面的形态和沉积物的运动。
因此,对波浪和水流相互作用的研究既可为河流生态保护提供理论依据,也为水利工程设计提供实践指导。
4. 数值模拟和实验研究河流水动力学行为的研究,涉及到很多复杂的物理过程。
因此,为了更好地理解和预测河流水动力学行为,研究者利用数值模拟和实验研究的方法进行研究。
数值模拟通过计算机模拟河流水动力学行为,可快速获得大量数据。
同时,数值模拟也可以帮助研究者识别和分析河流中的复杂物理过程,从而更好地了解河流水动力学行为的发生机理。
河道动力学及其模拟研究

河道动力学及其模拟研究一、引言河道是自然流域系统的重要组成部分,其运动过程涉及水文、水动力学、地貌、生态等多学科。
对河道的动力学及其模拟研究,对于河流水资源、水生态环境等方面的管理和保护具有重要的理论与实践意义。
二、河道动力学的概念及研究内容河道动力学是研究河流在地理空间和时间上运动特征、演变规律及其相互关系的一门学科。
其研究内容包括:1. 河流水文学:研究自然降水和人工水文调节的影响下河道水文变化的规律。
2. 河流水力学:研究河流水力学特征及河床形态变化与水流运动的关系。
3. 河流地貌学:研究河床地貌形态演化机制及其影响因素。
4. 河流生态学:研究河流生态系统结构、特征及其环境变化。
三、河道动力学的模拟研究方法河道动力学的模拟研究方法包括物理模型、数学模型和信息模型三个方面。
1. 物理模型:是通过建造实验设施,利用物理相似理论实现河道水流、输沙、河床演变等过程的真实再现的方法。
由于实验观测条件受限,模型的可行性有一定的限制。
2. 数学模型:通过建立河道动力学的数学表达式,用计算机或手工计算来得到河道流域水文、水动力学、地貌演变等信息,是目前模拟研究河流动态过程最常用的手段。
3. 信息模型:利用遥感图像、数字高程模型等资料,并通过计算机辅助处理和分析,识别河流流域特征、估算河道水位等方面的信息,是一种综合利用地理信息技术及水文水力学理论的模拟方法。
四、河道动力学模拟的应用与展望河道动力学模拟的应用领域主要包括水利工程设计、水资源管理、环境保护和水生态重建等方面。
未来,随着信息技术、遥感技术和人工智能的不断进步,河道动力学模拟的精度和效率将得到进一步提高。
同时,面向大数据和云计算的河道动力学模拟平台也将逐渐发展。
这将为研究河道演变规律、预测水文过程和建立水资源保护与利用决策提供更强有力的支持。
五、结论河道动力学及其模拟研究是一个复杂的学科,其涉及的学科领域和研究内容也非常广泛。
未来随着技术的进步和理论的不断深化,河道动力学及其模拟研究将有更加广阔的发展空间,为保障河流水资源和生态环境打下坚实的理论与实践基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泥沙颗粒分析及沉降速度实验
一、试验目的
1、了解在实验室进行泥沙颗粒分析及沉速实验的一般方法;
2、掌握筛分法和移液管法的适用性及操作过程;
3、掌握泥沙颗粒级配曲线的绘制方法及沙样特征值的确定方法;
4、泥沙沉降现象可结合移液管法的操作过程进行观察。
二、试验方法及适用范围
1、筛分法:适用于泥沙粒径大于0.075mm的颗粒。
2、移液管法:适用于粒径小于0.075mm的颗粒。
3、若沙样中粗细颗粒兼有,则要联合使用筛分法及移液管法。
三、实验方法原理
1、对d>0.1mm的泥沙,应用筛分法测量泥沙颗粒级配。
筛分法原理是利用孔径不同、逐级叠置的筛子,通过振动分选,再分别称出各级筛上的沙重,计算绘出沙样的级配曲线;
2、对d<0.1mm的泥沙,应用移液管法测量泥沙颗粒级配。
移液管法原理为根据泥沙在沉降筒中沉降快慢的不同,来测定不同粒级的泥沙的数量,通过计算分析绘出沙样的级配曲线。
四、筛分法实验
1、仪器设备:振筛机、烘箱、天平、盛沙杯、沉降筒、温度计、干燥器等。
试验筛:粗筛:圆孔孔径为60mm,40mm,20mm,10mm,5mm,2mm;细筛:孔径为2.0,1.0,0.5,0.25,0.1,0.075mm。
天平:称量1000g与称量200g;台秤:称量5kg。
振筛机:符合GB9909-88的技术条件。
其它:盛沙杯、沉降筒、温度计、干燥器等。
五、筛分法实验方法
1、将252.37g沙样放在精密天秤上称重,放入容量瓶的水中称其体积107ml,测出湿密度2.359g/ml。
2、将252.37g沙样放入干燥器中烘干,将烘干后的沙样作为试样放在天平/台
秤上称重为238.4g。
(称量准确至0.1g,当沙样质量多于500g时,准确至1g).
2、将试样倒入依次叠好的最上层筛中,进行筛析。
细筛宜放在振筛机上震摇,震摇时间一般为10-15min。
3、由最大孔径筛开始,顺序将各筛取下,在白纸上用手轻叩摇晃,如仍有土粒漏下,应继续轻叩摇晃,至无土粒漏下为止。
漏下的土粒应全部放入下级筛内。
并将留在各筛上的试样分别称量,准确至0.1g。
称量并计算出小于各级筛的泥沙总重量。
4、各细筛上及底盘内土质量总和与筛前所取试样的质量之差0.92%不大于1%。