第三章 位姿描述和齐次变换.
合集下载
机器人学技术基础课程-位姿描述和齐次变换

2、齐次变换在研究空间机构动力学、机器人控制算法、计算 机视觉等方面也得到广泛应用。
位姿描述与齐次变换
1 刚体位姿的描述 2 坐标变换 3 齐次坐标系和齐次变换 4 齐次变换矩阵的运算 5 变换方程
2.1 刚体位姿的描述
为了完全描述一个刚体在空间的位姿,通常将刚体与某 一坐标系固连,坐标系的原点一般选在刚体的特征点上,如 质心、对称中心等。
YˆB ZˆA
ZˆB Xˆ A ZˆB YˆA
ZˆB ZˆA
XB n
2.1.4 旋转矩阵的意义
若坐标系B可由坐标系A,通过绕A的某一坐标轴获得,则绕 x,y,z三轴的旋转矩阵分别为:
1 0 0
c 0 s
c s 0
R(x, ) 0
Ay
y
所以: A Axaˆx Ayaˆy Azaˆz
2.1.2 方位的描述
矢量: A Axaˆx Ayaˆy Azaˆz
模的计算: | A | Ax2 Ay2 Az2
z
Az
A
方向角与方向余弦:, ,
o
Ay
Ax
y
x
cos Ax = A aˆx , cos Ay = A aˆy , cos Az A aˆz
两矢量的叉积又可表示为:
aˆx aˆy aˆz A B Ax Ay Az
Bx By Bz
2.1.2 方位的描述
空间物体B的方位(Orientation)可由某个固接于此物体的坐标系{B}的三 个单位主矢量[xB,yB,zB]相对于参考坐标系A的方向余弦组成的3x3矩阵描述.
BAR n o a a
位姿描述与齐次变换
1 刚体位姿的描述 2 坐标变换 3 齐次坐标系和齐次变换 4 齐次变换矩阵的运算 5 变换方程
2.1 刚体位姿的描述
为了完全描述一个刚体在空间的位姿,通常将刚体与某 一坐标系固连,坐标系的原点一般选在刚体的特征点上,如 质心、对称中心等。
YˆB ZˆA
ZˆB Xˆ A ZˆB YˆA
ZˆB ZˆA
XB n
2.1.4 旋转矩阵的意义
若坐标系B可由坐标系A,通过绕A的某一坐标轴获得,则绕 x,y,z三轴的旋转矩阵分别为:
1 0 0
c 0 s
c s 0
R(x, ) 0
Ay
y
所以: A Axaˆx Ayaˆy Azaˆz
2.1.2 方位的描述
矢量: A Axaˆx Ayaˆy Azaˆz
模的计算: | A | Ax2 Ay2 Az2
z
Az
A
方向角与方向余弦:, ,
o
Ay
Ax
y
x
cos Ax = A aˆx , cos Ay = A aˆy , cos Az A aˆz
两矢量的叉积又可表示为:
aˆx aˆy aˆz A B Ax Ay Az
Bx By Bz
2.1.2 方位的描述
空间物体B的方位(Orientation)可由某个固接于此物体的坐标系{B}的三 个单位主矢量[xB,yB,zB]相对于参考坐标系A的方向余弦组成的3x3矩阵描述.
BAR n o a a
工业机器人运动学

注意:对于旋转关节,绕z 轴的旋转角 ( θ角)是关节变量。对于滑动关节, 沿 z轴的连杆长度d 是关节变量;
3.8 机器人正运动学方程的D-H参数表示法
一.连杆坐标系的建立
本地参考坐标系步骤:
(1)通常关节不一定平行或相交。因此 ,通常z轴是斜线,但总有一条距离最短的 公垂线,它正交于任意两条斜线。通常在 公垂线方向上定义本地参考坐标系的x轴。 所以如果an表示 zn-1与zn之间的公垂线, 则xn的方向将沿an 。同样,在 zn与 zn+1之 间的公垂线为,xn+1的方向将沿an +1。
3T6
S4C5C6
C4 S6
S5C6 0
S4C5S6 C4C6 S5S6 0
S4S5 C5 0
0
0 1
C1 0 S1 0
A1
S1 0
0 1
C1 0
0 0
0
0
0
1
3.8 机器人正运动学方程的D-H参数表示法
nx = C1 [ C2 ( C4C5C6 - S4S6 ) - S2S5C6 ] - S1( S4C5S6 + C4S6 ) ny = S1 [ C2 ( C4C5C6 - S4S6 ) - S2S5C6 ] + C1( S4C5S6+C4S6 ) nz = -S2 ( C4C5C6 - S4S6 ) - C2S5C6 ox = C1 [ -C2 ( C4C5S6 + S4C6 ) + S2S5C6 ] - S1( -S4C5S6 + C4S6 ) oy = S1 [ -C2 ( C4C5C6 + S4C6 ) + S2S5S6 ] + C1( -S4C5S6 + C4S6 ) oz = S2 ( C4C5C6 + S4C6 ) + C2S5S6 ax = C1 ( C2C4S5 + S2C5 ) – S1S4C5 ay = S1 ( C2C4S5 + S2C5 ) + C1S4S5 az = –S2C4S5 + C2C5 px = C1S2d3 – S1d2 py = S1S2d3 + C1d2 pz = C2d3
机器人运动学坐标变换

xi cos x j sin y j 0 z j yi sin x j cos y j 0 z j zi 0 x j 0 y j 1 z j
2017年2月19日星期日
工 业 机 器 人
第3章
3.2.1 直角坐标变换
工 业 机 器 人
第3章
3.1.1 机器人位姿的表示
姿态可h o p(x,y,z) h
o yh y
3.1 机器人的位姿描述
z
余弦值组成3×3的姿态
矩阵来描述。
cos(x , x h ) cos(x , yh ) cos(x , z h ) R cos(y , x h ) cos(y , yh ) cos(y , z h ) cos(z , x h ) cos(z , yh ) cos(z , z h )
2017年2月19日星期日
工 业 机 器 人
R
x , ij
第3章
3.2.1 直角坐标变换
2、旋转变换
②绕x轴旋转α角的 旋转变换矩阵为:
机器人运动学
zi
3.2 齐次变换及运算
zj
α
0 0 1 0 cos sin 0 sin cos
xj
yj oi oj
xi x j cos y j sin yi x j sin y j cos zi z j
xi
yi
xj
2017年2月19日星期日
工 业 机 器 人
第3章
3.2.1 直角坐标变换
2、旋转变换
机器人运动学
3.2 齐次变换及运算
① 绕z轴旋转θ角 若补齐所缺的有些项,再作适当变形,则有:
第三章 数学基础—齐次坐标和齐次变换New2

解1:用画图的简单方法
解2:用分步计算的方法 ① Rot(x, 90°)
1 0 P' 0 0 0 0 0 -1 1 0 0 0 0 1 1 2 3 0 0 3 2 1 1 1
(3-1)
o
i
n
a
运动学正逆求解问题
Where is my hand?
运动学正问题
Direct Kinematics HERE!
How do I put my hand here?
运动学逆问题
Inverse Kinematics: Choose these angles!
3.2 位置和姿态的描述
一、位置描述 对于直角坐标系 {A} ,空间内任一点 P 的位置可有 3×1 的列 A 向量rP (或位置向量)
中各轴的投影分量,很容易得到在重合时,有:
1 0 0 R 0 1 0 0 0 1
由图2-5可知, jv 在y轴上的投影为
k z cos
j y cos
, jv 在z轴上的投影
为 k z sin , kw 在y轴上的投影为 j y sin , kw 在z轴上的投影为 ,所以有:
② Rot(z, 90°)
0 - 1 1 0 P '' 0 0 0 0
0 0 P ''' - 1 0 0 1 0 0
0 0 1 0
1 0 0 0
0 1 3 3 1 0 0 2 2 1 1 1
A B
T
A
B rP A T rP B
A B
T
理解: 1 )是 {A} 和 {B} 两个坐标系下点或方位齐次坐标的线性映 射,一旦这两个坐标系之间的位姿关系确定,它也就确定 了。 2)是{B}坐标系相对{A}坐标系的位姿矩阵。
[课件](工业机器人)位姿描述与齐次变换PPT
位姿描述与齐次变换PPT](https://img.taocdn.com/s3/m/711ba841caaedd3383c4d3c4.png)
六、齐次表达
根据几何学知识,上面第四小节中给定点的绝对位置为:
Ap b a b a b a c s cs b a
写成三维形式,有:
a a a c s 0a Apbbbs c 0b
3. 试按照运动顺序计算相关基本变换矩阵相乘结果
c s 0 a
Tra(An a,A sb,A0)Ro(zA t,)s0
c
0
0 b 1 0
0
1
4. 计算结果比较
两种方法结果相同!但后一种方法简单!
问题:是否仅仅按照运动变换顺序将相关的基本变 换矩阵相乘,即可以得到齐次变换阵?
0 0 0 0 0 10
O B 在A中位置,记作 A pOB
B在
A 中姿态,记作
A B
R
。
分成两块,不便于记忆!
齐次变换矩阵
若写成如下齐次形式,有:
c s 0 aa
A 1ps0 0
c
0 0
0 1 0
A 中的位置,然后与
b
A坐标原点值相加即可
得到该点绝对位置。
OA
由几何法,得:
aacbs 写成矩阵形式
b as bc
Y A
YB
b
b
XB a
OB
a
X A
a
XA
相
a c sa 对
bs cb
坐 标 值
b 1 0b 1 0B A 0R
Ap 1OBB 1pA BTB 1p
七、齐次变换矩阵
1. 构成:分为4块。左上角是姿态矩阵,为一单位正交 矩阵;右上角为对象坐标系原点位置值;左下角为 三个0 0 0,简记为0;右下角为1。
根据几何学知识,上面第四小节中给定点的绝对位置为:
Ap b a b a b a c s cs b a
写成三维形式,有:
a a a c s 0a Apbbbs c 0b
3. 试按照运动顺序计算相关基本变换矩阵相乘结果
c s 0 a
Tra(An a,A sb,A0)Ro(zA t,)s0
c
0
0 b 1 0
0
1
4. 计算结果比较
两种方法结果相同!但后一种方法简单!
问题:是否仅仅按照运动变换顺序将相关的基本变 换矩阵相乘,即可以得到齐次变换阵?
0 0 0 0 0 10
O B 在A中位置,记作 A pOB
B在
A 中姿态,记作
A B
R
。
分成两块,不便于记忆!
齐次变换矩阵
若写成如下齐次形式,有:
c s 0 aa
A 1ps0 0
c
0 0
0 1 0
A 中的位置,然后与
b
A坐标原点值相加即可
得到该点绝对位置。
OA
由几何法,得:
aacbs 写成矩阵形式
b as bc
Y A
YB
b
b
XB a
OB
a
X A
a
XA
相
a c sa 对
bs cb
坐 标 值
b 1 0b 1 0B A 0R
Ap 1OBB 1pA BTB 1p
七、齐次变换矩阵
1. 构成:分为4块。左上角是姿态矩阵,为一单位正交 矩阵;右上角为对象坐标系原点位置值;左下角为 三个0 0 0,简记为0;右下角为1。
第3章 机器人位姿的数学描述与坐标变换

x=a(1-cos) , y=a(1-sinθ)
第3章 机器人位姿的数学描述与坐标变换
3.1 机器人位姿的数学描述
#假设机器人的连杆和关节都是刚体 (1)首先,建立一个参考坐标系; (2)然后,在刚体上任意建立一个刚体坐标系。
Z Z'
O' Y'
O
X'
X Y
第3章 机器人位姿的数学描述与坐标变换
刚体位置:
,
)
=
?
j i
R(,q
,
)
=
R(Z
,
)
R(Y
,q
)R(Z
,
)
绕动坐标轴依次转动时,每 个旋转矩阵要从左往右乘。
Z2
Zj
Zi (Z1)
q
q
Yj
(Y2 )
q Y1
Yi
Xi
X1 X2 X j
第3章 机器人位姿的数学描述与坐标变换
cos − sin 0 cosq 0 sinq cos − sin 0
R(Z
i
,q
)
=
s
inq
cosq
0
0
0 1
Zi Zj
q Xi
Xj
Yj q
Yi
第3章 机器人位姿的数学描述与坐标变换
1 0
0
j i
R(
X
i
,q
)
=
0
cosq
−
s in q
0 sinq cosq
cosq 0 sinq
j i
R(Yi
,q
)
=
0
1
0
− sinq 0 cosq
3机器人的位姿描述与坐标变换

利用旋转矩阵的正交性质:
假设:
整理得:
旋转变换通式
讨论:
(1)
(2)
(3)
例:坐标系B原来与A重合,将坐标系B绕过原点O的轴线
转动
,求旋转矩阵
解答:
1)
2)
3)带入旋转通式得:
2、等效转轴与等效转角
转轴和转角
旋转矩阵
1
2?
1)将方程两边矩阵的主对角线元素分别相加,则
2)将方程两边矩阵的非对角线元素成对相减得:
►绕多个坐标轴旋转的转动矩阵
1)、绕固定坐标系旋转
2)、绕运动坐标系旋转
ZYZ欧拉角
注意:多个旋转矩阵连乘时,次序不同则含义不同。1)绕新的动坐标轴依次转动时,每个旋转矩阵要从左往右乘,即旋转矩阵的相乘顺序与转动次序相同;2)绕旧的固定坐标轴依次转动时,每个旋转矩阵要从右往左乘,即旋转矩阵的相乘顺序与转动次序相反。
解:
1)
2)
Z
i
X
i
Y
i
P
坐标系j由坐标系i旋转而成
求点P在i坐标系的坐标:
已知点P在j坐标系的坐标:
P
☺
►姿态矢量矩阵
坐标系j相对于i的方位
旋转矩阵的性质:
旋转矩阵
►绕一个坐标轴旋转的转动矩阵
1)RX
2)RY
3)RZ
转动矩阵的特点:(1) 主对角线上有一个元素为1,其余均为转角的余弦/正弦;(2) 绕轴转动的次序与元素1所在的行、列号对应;(3) 元素1所在的行、列,其它元素均为0;(4) 从元素1所在行起,自上而下,先出现的正弦为负,后出现的为正,反之依然。
2、变换矩阵T的相乘 ★矩阵相乘的顺序一般不可换,特殊可换的情况为变换都是同参考系下的平移或绕同一坐标轴的旋转。
假设:
整理得:
旋转变换通式
讨论:
(1)
(2)
(3)
例:坐标系B原来与A重合,将坐标系B绕过原点O的轴线
转动
,求旋转矩阵
解答:
1)
2)
3)带入旋转通式得:
2、等效转轴与等效转角
转轴和转角
旋转矩阵
1
2?
1)将方程两边矩阵的主对角线元素分别相加,则
2)将方程两边矩阵的非对角线元素成对相减得:
►绕多个坐标轴旋转的转动矩阵
1)、绕固定坐标系旋转
2)、绕运动坐标系旋转
ZYZ欧拉角
注意:多个旋转矩阵连乘时,次序不同则含义不同。1)绕新的动坐标轴依次转动时,每个旋转矩阵要从左往右乘,即旋转矩阵的相乘顺序与转动次序相同;2)绕旧的固定坐标轴依次转动时,每个旋转矩阵要从右往左乘,即旋转矩阵的相乘顺序与转动次序相反。
解:
1)
2)
Z
i
X
i
Y
i
P
坐标系j由坐标系i旋转而成
求点P在i坐标系的坐标:
已知点P在j坐标系的坐标:
P
☺
►姿态矢量矩阵
坐标系j相对于i的方位
旋转矩阵的性质:
旋转矩阵
►绕一个坐标轴旋转的转动矩阵
1)RX
2)RY
3)RZ
转动矩阵的特点:(1) 主对角线上有一个元素为1,其余均为转角的余弦/正弦;(2) 绕轴转动的次序与元素1所在的行、列号对应;(3) 元素1所在的行、列,其它元素均为0;(4) 从元素1所在行起,自上而下,先出现的正弦为负,后出现的为正,反之依然。
2、变换矩阵T的相乘 ★矩阵相乘的顺序一般不可换,特殊可换的情况为变换都是同参考系下的平移或绕同一坐标轴的旋转。
机器人运动学

R3
Z
三个平移自由度 T1, T2, T3
三个旋转自由度 R1, R2, R3
T3
T1
T2
Y R2
X
2019/3/31
R1
2.2 刚体位姿描述
方位描述
第三章
机器人运动学
利用固定于物体的坐标系描述方位 (orientation)。方位又称为姿 态 (pose)。
在刚体 B上设置直角坐标系 {B} ,利用与 {B} 的坐标轴平行 的三个单位矢量表示B的姿态。
A
p R ( x , ) p
B
zB
zA
Bp
P
yB
{A}
1 0 R ( x , ) 0 c 0 s
c R ( y , ) 0 s 0 s 1 0 , 0 c
0 s c
s c 0 0 0 1
2019/3/31
i A iB A jB r11 r12
第三章
机器人运动学
2.2 刚体位姿描述
位置与姿态的表示 相对于参考坐标系{A},坐标系{B}的原点位置和坐标轴的 方位可以由位置矢量和旋转矩阵描述。刚体B在参考坐标 系{A}中的位姿利用坐标系{B}描述。
{ B}
当表示位置时 当表示方位时
zA
iB
jB
A
kA 坐标系{B}的三个单位主矢量在坐标系{A}中的描述:
pBo
kB
yA
{ A iB , A jB , A k B }
坐标系{B}相对于坐标系{A}的姿态描述:
A B
O
R { iB , jB , k B }
A A A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
zB zA yB OB OA xA 30ox
B
zA zB OA yA OB 30o
30o
yB
yA
(10,5,0)
xA 30o xB
所以有:
cos300 A 0 0 R R ( z , 30 ) sin 30 B 0
A
sin 300 cos300 0
0 0.866 0.5 0 0 0.5 0.866 0 1 0 1 0
6.矩阵的运算 (1)矩阵的加法:两同型矩阵的对应元素相加。
(2)矩阵与数相乘:该数与矩阵各元素相乘。
(3)矩阵与矩阵相乘:
(4) 矩阵的转置:把矩阵的行换成同序数的列,记为
7. 矩阵的逆(逆矩阵)
8. 分块矩阵:分块后的矩阵与普通矩阵的运算相同。
9. 正交矩阵:如果 如果
,则A为正交矩阵。它满足: 是正交矩阵,则
四、矢量的叉积(矢量积或叉乘积)
其中矢量c的模为:
叉乘积
其中θ是a和b间小于等于1800的夹角,若将a按右手法则绕c 转θ角至b,右手拇指指向为c的正方向(如上图所示),c与a、b 两者垂直。 若a和b用分量的形式表示为: 则
a和b的点乘为:
将点乘和叉乘应用于右手笛卡尔坐标系的单位矢量i,j,k,有:
和
都是正交矩阵,因此满足
由
与
互逆,可得
若把
写成行向量的形式
,则其中 满足六个约束条件
每一个元素都是一个列向量。容易得出 (称正交条件):
旋转矩阵的几何意义:旋转矩阵在几何上表示了发生相互旋 转的两坐标系各主轴之间的相互方位关系。
因此写出三个基本的旋转矩阵,即分别绕x、y和z轴转θ角的旋转 矩阵:
原点位置);(2)如果给出OE({E}系的原点)在{B}中的位置矢
量为(1,2,2),画出两坐标系的相对位姿关系;(3)求a,
b,c的值。 解:
xB xE yE zE
zB zE xE yB xB yE
zB
(1,2,2)
zE xE yB
(1)
yB
zB
(2)
xB yE
(3) a=0,b=1,c=0
三、一般变换
A B PBO P 1 1
A
A B A P B R P PBO
11
简写成 综合地表示了平移和旋转变换。
3.3.1 齐次坐标
一般来说,以N+1维矢量表达N维位置矢量的方法称为齐次 坐标表示法。
在三维直角坐标系中,一个点可以表示 为
次坐标就是
,它的齐
PBO
10 5 0
A B A 最后得: P B R P PBO
A
9.098 12 . 562 0
3.3 齐次坐标与齐次变换
复合变换式 可以表示成等价的齐次变换式。
A A P B R 1 0
第三章 位姿描述和齐次变换
3.1 相关知识回顾
一、行列式和矩阵 1. 行列式按照行(或列)展开法则:行列式等于它的任意一行 (或列)各元素与其对应的代数余子式乘积之和。
2.行矩阵
3.列矩阵
4.矩阵相等:两同型矩阵(行数和列数都相等)对应元素相等。
5.单位矩阵:主对角线元素为1,其它所 有的元素都为0的方阵。
3.2 位姿描述与坐标变换
3.2.1 刚体位置姿态(位姿)描述
a) 位置的描述
采用直角坐标描述点的位置,因此,刚体F的位置描述,即 OB点在{A}中描述可用一个3×1的列矢量 (位置矢量)表示,即
其中Px、Py和Pz是点OB在{A}系中的三个坐标分量。
b) 姿态(方位)的描述 采用旋转矩阵来表示刚体姿态(方位) ,即由{B}系的三个 单位主矢量相对于坐标系{A}的方向余弦组成: xB yB zB
,即满足Px=ωPx/ω,Py=ωPy/ω,
行列式和矩阵的区别:矩阵是按一定方式排成的数表;行列式是
一个数。
二、直角坐标系
若基矢量相互正交,即它们在原点o处两 两相交成直角,则它们构成直角坐标系或笛卡 儿坐标系。 若按右手法则绕oz轴转900可以使ox轴转向 oy轴,则称为右手坐标系;按左手法则形成的 坐标系称左手坐标系。
斜角坐标系
(a)右手坐标系
本课程使用右手坐标系。
(b)左手坐标系
三、矢量的点积(内乘积或标量积)
其中θ是a和b两矢量间的夹角,如图所示。
令b=i (i为b方向上的单位矢量),则
标量积
换句话说:一个矢量在另一个矢量上的投影等于该矢量与另一矢 量方向上单位矢量的点积。 再令a=j (j 为a方向上的单位矢量),则
即两矢量方向上单位矢量的点乘等于两矢量夹角的余弦。
一般的情况:坐标系{B}的原点既不与{A}重合,方位也不相同。
{C}系与{B}系原点重合, 但方位不同,所以得
{C}系与{A}系原点不重合, 但方位相同,所以得 和
A
A PCO PBO
进而有
例3.2 已知坐标系{B}初始位姿与{A}重合,首先{B}相对{A}的zA轴 转30°,再沿{A}的xA轴移动10个单位,并沿{A}的yA轴移动5个单 位。求位置矢量 解: 和旋转矩阵 。若 ,求 。
xA yA zA
其中:cos cos(xB , x A ) 既表示了刚体F在{A}系中的方位,也描述了{B}系在{A}系中
的姿态。
3.2.2 坐标变换
一、坐标平移
如图所示,坐标系{B}与 {A}方向相同,但原点不重合。
坐标平移
此式称为平移方程。其中
是B系中的原点在A系中的表示。
二、坐标旋转
z' θ z y' θ y
x θ x’
x’ x y z y’ z’ x y x’ y’ z’ x y z
z' θ z
z z'
y' y
x θ x’
x’ y’
y' θ y标系
矩阵为
({B})到手爪坐标系
({E})的旋转变换
。(1)画出两坐标系的相互方位关系(不考虑{E}的
坐标旋转
如图所示,{B}与{A}有共同的坐标原点,但方位不同。令
和
分别是{A}和{B}中的单位主矢量,点P 在两
坐标系中各坐标轴上的坐标分量分别为:
和
所以有 利用点乘的性质和上式共同求解得
将
代入上面三式中并写成矩阵形式得
上式简写为:
此式称为坐标旋转方程。其中旋转矩阵 表示了坐标系{B}相
对于{A}的方位,正好与刚体姿态的描述相同。同理也可得