第三章 三角恒等变换
第三章 3.2 简单的三角恒等变换

§3.2 简单的三角恒等变换学习目标 1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.知识点一 半角公式思考 半角公式对任意角都适用吗? 答案 不是,要使得式子有意义的角才适用. 知识点二 辅助角公式 辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).⎝⎛⎭⎫其中tan θ=ba1.若α≠k π,k ∈Z ,则tan α2=sin α1+cos α=1-cos αsin α恒成立.( √ )2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中φ所在的象限由a ,b 的符号决定,φ与点(a ,b )同象限.( √ )3.sin x +3cos x =2sin ⎝⎛⎭⎫x +π6.( × ) 提示 sin x +3cos x =2⎝⎛⎭⎫12sin x +32cos x =2sin ⎝⎛⎭⎫x +π3.题型一 应用半角公式求值例1 已知sin θ=45,5π2<θ<3π,求cos θ2和tan θ2.考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值解 ∵sin θ=45,且5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.∵5π4<θ2<3π2,∴cos θ2=-1+cos θ2=-55. tan θ2=sin θ1+cos θ=2.反思感悟 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sin α1+cos α=1-cos αsin α,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正弦、余弦值时,常先利用sin 2α2=1-cos α2,cos 2α2=1+cos α2计算. (4)下结论:结合(2)求值. 跟踪训练1 已知cos α=33,α为第四象限角,则tan α2的值为________. 考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案2-62解析 方法一 ⎝⎛⎭⎪⎫用tan α2=±1-cos α1+cos α来处理因为α为第四象限角,所以α2是第二或第四象限角.所以tan α2<0.所以tan α2=-1-cos α1+cos α=-1-331+33 =-2-3=-128-4 3 =-12(6-2)2=2-62.方法二 ⎝⎛⎭⎫用tan α2=1-cos αsin α来处理因为α为第四象限角,所以sin α<0. 所以sin α=-1-cos 2α=-1-13=-63. 所以tan α2=1-cos αsin α=1-33-63=2-62.方法三 ⎝⎛⎭⎫用tan α2=sin α1+cos α来处理因为α为第四象限角,所以sin α<0. 所以sin α=-1-cos 2α=-1-13=-63. 所以tan α2=sin α1+cos α=-631+33=-63+3=2-62.题型二 三角函数式的化简 例2 化简:2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α.考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 解 2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α=cos 2α2cos ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4+α·sin 2⎝⎛⎭⎫π4+α =cos 2αsin ⎝⎛⎭⎫π2+2α=cos 2αcos 2α=1. 反思感悟 三角函数式化简的要求、思路和方法(1)化简的要求:①能求出值的应求出值.②尽量使三角函数种数最少.③尽量使项数最少.④尽量使分母不含三角函数.⑤尽量使被开方数不含三角函数.(2)化简的思路:对于和式,基本思路是降次、消项和逆用公式;对于三角分式,基本思路是分子与分母约分或逆用公式;对于二次根式,注意二倍角公式的逆用.另外,还可以用切化弦、变量代换、角度归一等方法.跟踪训练2 化简:(1-sin α-cos α)⎝⎛⎭⎫sin α2+cos α22-2cos α(-π<α<0).考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值解 原式=⎝⎛⎭⎫2sin 2α2-2sin α2cos α2⎝⎛⎭⎫sin α2+cos α22×2sin2α2=2sin α2⎝⎛⎭⎫sin α2-cos α2⎝⎛⎭⎫sin α2+cos α22⎪⎪⎪⎪sin α2=sin α2⎝⎛⎭⎫sin 2α2-cos 2α2⎪⎪⎪⎪sin α2=-sin α2cos α⎪⎪⎪⎪sin α2.因为-π<α<0,所以-π2<α2<0,所以sin α2<0,所以原式=-sin α2cos α-sinα2=cos α.题型三 三角函数式的证明例3 求证:1+sin 4θ-cos 4θ2tan θ=1+sin 4θ+cos 4θ1-tan 2θ.考点 三角恒等式的证明 题点 三角恒等式的证明 证明 要证原式,可以证明1+sin 4θ-cos 4θ1+sin 4θ+cos 4θ=2tan θ1-tan 2θ.∵左边=sin 4θ+(1-cos 4θ)sin 4θ+(1+cos 4θ)=2sin 2θcos 2θ+2sin 22θ2sin 2θcos 2θ+2cos 22θ =2sin 2θ(cos 2θ+sin 2θ)2cos 2θ(sin 2θ+cos 2θ)=tan 2θ,右边=2tan θ1-tan 2θ=tan 2θ,∴左边=右边, ∴原式得证.反思感悟 证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简、左右归一或变更论证.对恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一,变更论证等方法.常用定义法、化弦法、化切法、拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法. 跟踪训练3 求证:2sin x cos x(sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x .考点 三角恒等式的证明 题点 三角恒等式的证明 证明 左边=2sin x cos x⎝⎛⎭⎫2sin x 2cos x 2-2sin 2 x 2⎝⎛⎭⎫2sin x 2cos x 2+2sin 2x 2=2sin x cos x4sin 2x 2⎝⎛⎭⎫cos 2x 2-sin 2x 2=sin x2sin 2 x 2=cos x 2sin x 2=2cos 2x 22sin x 2cosx 2=1+cos xsin x=右边.所以原等式成立. 题型四 辅助角公式的应用例4 已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 考点 简单的三角恒等变换的综合应用 题点 辅助角公式与三角函数的综合应用 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12 =2⎩⎨⎧⎭⎬⎫32sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-12cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1,有2x -π3=2k π+π2(k ∈Z ),即x =k π+5π12(k ∈Z ),∴所求x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+5π12,k ∈Z . 反思感悟 (1)为了研究函数的性质,往往要充分利用三角变换公式转化为正弦型(余弦型)函数,这是解决问题的前提.(2)解此类题时要充分运用两角和(差)的正弦、余弦、正切公式、二倍角公式、辅助角转换公式消除差异,减少角的种类和函数式的项数,以便于讨论函数性质. 跟踪训练4 已知函数f (x )=cos ⎝⎛⎭⎫π3+x ·cos ⎝⎛⎭⎫π3-x ,g (x )=12sin 2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值时x 的集合. 考点 简单的三角恒等变换的综合应用 题点 辅助角公式与三角函数的综合应用 解 (1)f (x )=⎝⎛⎭⎫12cos x -32sin x ·⎝⎛⎭⎫12cos x +32sin x =14cos 2x -34sin 2x =1+cos 2x 8-3(1-cos 2x )8=12cos 2x -14, ∴f (x )的最小正周期为T =2π2=π.(2)h (x )=f (x )-g (x )=12cos 2x -12sin 2x=22cos ⎝⎛⎭⎫2x +π4, 当2x +π4=2k π(k ∈Z ),即x =k π-π8(k ∈Z )时,h (x )有最大值22.此时x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π-π8,k ∈Z .利用半角公式化简求值典例 已知等腰三角形的顶角的余弦值为725,则它的底角的余弦值为( )A.34B.35C.12D.45考点 简单的三角恒等变换的综合应用题点 三角恒等变换与三角形的综合应用 答案 B解析 设等腰三角形的顶角为α,底角为β,则cos α=725.又β=π2-α2,所以cos β=cos ⎝⎛⎭⎫π2-α2=sin α2=1-7252=35,故选B. [素养评析] 从实际问题提炼出等腰三角形底角、顶角间的关系,利用半角公式进行恒等变换化简,进而求值,这正是数学核心素养数学抽象的具体体现.1.若cos α=13,α∈(0,π),则cos α2的值为( )A.63 B .-63 C .±63 D .±33考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A解析 由题意知α2∈⎝⎛⎭⎫0,π2,∴cos α2>0,cos α2=1+cos α2=63. 2.已知sin θ=-35,3π<θ<72π,则tan θ2的值为( )A .3B .-3 C.13 D .-13考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 B解析 ∵3π<θ<7π2,sin θ=-35,∴cos θ=-45,tan θ2=sin θ1+cos θ=-3.3.已知2sin α=1+cos α,则tan α2等于( )A.12B.12或不存在 C .2D .2或不存在考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值答案 B解析 2sin α=1+cos α,即4sin α2cos α2=2cos 2α2,当cos α2=0时,tan α2不存在,当cos α2≠0时,tan α2=12.4.化简2sin 2α1+cos 2α·cos 2αcos 2α的结果为( )A .tan αB .tan 2αC .1D .2 考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 B解析 原式=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α.5.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( ) A.π6 B.π3 C.π2 D.2π3考点 利用简单的三角恒等变换化简求值 题点 利用辅助角公式化简求值 答案 D解析 f (x )=sin(2x +θ)+3cos(2x +θ) =2sin ⎝⎛⎭⎫2x +π3+θ. 当θ=23π时,f (x )=2sin(2x +π)=-2sin 2x 是奇函数.6.已知在△ABC 中,sin A ·cos 2C 2+sin C ·cos 2A 2=32sin B ,求证:sin A +sin C =2sin B .考点 三角恒等式的证明 题点 三角恒等式的证明证明 由sin A ·cos 2C 2+sin C ·cos 2A 2=32sin B ,得sin A ·1+cos C 2+sin C ·1+cos A 2=32sin B ,即sin A +sin C +sin A ·cos C +sin C ·cos A =3sin B , ∴sin A +sin C +sin(A +C )=3sin B , ∴sin A +sin C +sin(π-B )=3sin B , 即sin A +sin C +sin B =3sin B , ∴sin A +sin C =2sin B .1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式. 2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中φ满足: ①φ与点(a ,b )同象限; ②tan φ=b a ⎝ ⎛⎭⎪⎫或sin φ=b a 2+b 2,cos φ=a a 2+b 2.3.研究形如f (x )=a sin x +b cos x 的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a ,b 应熟练掌握, 例如sin x ±cos x =2sin ⎝⎛⎭⎫x ±π4; sin x ±3cos x =2sin ⎝⎛⎭⎫x ±π3等.一、选择题1.已知cos α=15,α∈⎝⎛⎭⎫3π2,2π,则sin α2等于( ) A.105 B .-105 C.265 D.255考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A解析 ∵α∈⎝⎛⎭⎫3π2,2π,∴α2∈⎝⎛⎭⎫3π4,π, sin α2=1-cos α2=105. 2.设α是第二象限角,tan α=-43,且sin α2<cos α2,则cos α2等于( )A .-55 B.55 C.35 D .-35考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A解析 因为α是第二象限角,且sin α2<cos α2,所以α2为第三象限角,所以cos α2<0.因为tan α=-43,所以cos α=-35,所以cos α2=-1+cos α2=-55. 3.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .c <b <a B .a <b <c C .a <c <bD .b <c <a考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用 答案 C解析 a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°)=sin 24°, b =2sin 13°cos 13°=sin 26°,c =sin 25°, ∵当0°≤x ≤90°时,y =sin x 是单调递增的, ∴a <c <b .4.若cos α=-45,α是第三象限角,则1+tanα21-tanα2等于( )A .-12 B.12C .2D .-2考点 利用简单的三角恒等变换化简求值 题点 利用弦化切对齐次分式化简求值 答案 A解析 ∵α是第三象限角,cos α=-45,∴sin α=-35.∴1+tan α21-tan α2=1+sinα2cos α21-sin α2cosα2=cos α2+sin α2cos α2-sin α2=cos α2+sin α2cos α2-sin α2·cos α2+sin α2cos α2+sin α2=1+sin αcos α=1-35-45=-12.故选A.5.sin x cos x +sin 2x 可化为( ) A.22sin ⎝⎛⎭⎫2x -π4+12 B.2sin ⎝⎛⎭⎫2x +π4-12 C .sin ⎝⎛⎭⎫2x -π4+12 D .2sin ⎝⎛⎭⎫2x +3π4+1 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 A解析 y =12sin 2x +1-cos 2x 2=12sin 2x -12cos 2x +12=22⎝⎛⎭⎫22sin 2x -22cos 2x +12=22sin ⎝⎛⎭⎫2x -π4+12.故选A. 6.已知函数f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1,则函数f (x )的单调递增区间为( ) A.⎣⎡⎦⎤2k π-π3,2k π+π6(k ∈Z ) B.⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ) C.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ) D.⎣⎡⎦⎤2k π-π6,2k π+π3(k ∈Z ) 考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C解析 因为f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1=32sin 2x -12cos 2x +cos 2x =32sin 2x +12cos 2x =sin ⎝⎛⎭⎫2x +π6,所以函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ),故选C. 7.已知sin θ=m -3m +5,cos θ=4-2m m +5⎝⎛⎭⎫π2<θ<π,则tan θ2等于( ) A .-13B .5C .-5或13D .-13或5 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换化简求值答案 B解析 由sin 2θ+cos 2θ=1,得⎝ ⎛⎭⎪⎫m -3m +52+⎝ ⎛⎭⎪⎫4-2m m +52=1, 解得m =0或8,当m =0时,sin θ<0,不符合π2<θ<π. ∴m =0舍去,故m =8,sin θ=513,cos θ=-1213,tan θ2=1-cos θsin θ=1+1213513=5. 二、填空题8.已知α∈⎝⎛⎭⎫0,π2,sin 2α=12,则sin ⎝⎛⎭⎫α+π4=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 32解析 因为1-2sin 2⎝⎛⎭⎫α+π4=cos ⎝⎛⎭⎫2α+π2=-sin 2α, 所以sin 2⎝⎛⎭⎫α+π4=34, 因为α∈⎝⎛⎭⎫0,π2, 所以α+π4∈⎝⎛⎭⎫π4,3π4, 所以sin ⎝⎛⎭⎫α+π4=32. 9.化简:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x 1+cos x=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 tan x 2解析 原式=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x 1+cos x =sin 2x 1+cos 2x ·cos x 1+cos x =2sin x cos x 2cos 2x ·cos x 1+cos x=sin x 1+cos x=tan x 2. 10.已知cos ⎝⎛⎭⎫α-π4=45,α∈⎝⎛⎭⎫0,π4,则cos 2αsin ⎝⎛⎭⎫α+π4=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 65解析 因为cos ⎝⎛⎭⎫α-π4=45,α∈⎝⎛⎭⎫0,π4,所以sin ⎝⎛⎭⎫α-π4=-35,sin ⎝⎛⎭⎫π4-α=35. 所以cos 2αsin ⎝⎛⎭⎫α+π4=sin ⎝⎛⎭⎫2α+π2sin ⎝⎛⎭⎫α+π4=2cos ⎝⎛⎭⎫α+π4 =2sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π4=2sin ⎝⎛⎭⎫π4-α=65. 11.设0≤α≤π,不等式8x 2-8x sin α+cos 2α≥0对任意x ∈R 恒成立,则α的取值范围是________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 Δ=(8sin α)2-4×8×cos 2α≤0,即2sin 2α-cos 2α≤0,所以4sin 2α≤1,所以-12≤sin α≤12. 因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π. 三、解答题12.求证:tan 3x 2-tan x 2=2sin x cos x +cos 2x . 考点 三角恒等式的证明题点 三角恒等式的证明证明 ∵左边=tan 3x 2-tan x 2=sin3x 2cos 3x 2-sin x 2cos x 2 =sin3x 2cos x 2-cos 3x 2sin x 2cos 3x 2cos x 2=sin ⎝⎛⎭⎫3x 2-x 2cos 3x 2cos x 2=sin x cos 3x 2cos x 2=2sin x cos ⎝⎛⎭⎫3x 2+x 2+cos ⎝⎛⎭⎫3x 2-x 2 =2sin x cos x +cos 2x =右边. ∴原等式得证.13.(2018·浙江宁波高三期末)已知函数f (x )=2sin x ·cos x +1-2sin 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值与最小值.考点 简单的三角恒等变换的应用题点 辅助角公式与三角函数的综合应用解 (1)因为f (x )=sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4, 所以f (x )的最小正周期为π.(2)因为-π3≤x ≤π4,所以-5π12≤2x +π4≤3π4. 当2x +π4=π2,即x =π8时,f (x )取得最大值2; 当2x +π4=-5π12,即x =-π3时, f (x )min =f ⎝⎛⎭⎫-π3=sin ⎝⎛⎭⎫-2π3+cos ⎝⎛⎭⎫-2π3=-3+12, 即f (x )的最小值为-3+12.14.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①f (x )=2sin x cos x +1;②f (x )=2sin ⎝⎛⎭⎫x +π4; ③f (x )=sin x +3cos x ;④f (x )=2sin 2x +1.其中是“同簇函数”的有( )A .①②B .①④C .②③D .③④考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C解析 ①式化简后为f (x )=sin 2x +1,③式化简后为f (x )=2sin ⎝⎛⎭⎫x +π3,①④中振幅不同,平移后不能重合.②③振幅、周期相同,平移后可以重合.15.证明:sin 10°·sin 30°·sin 50°·sin 70°=116. 考点 三角恒等式的证明题点 三角恒等式的证明证明 原式=sin 10°·sin 30°·sin 50°·sin 70°=12cos 20°·cos 40°·cos 80°=2sin 20°·cos 20°·cos 40°·cos 80°4sin 20°=sin 40°·cos 40°·cos 80°4sin 20°=sin 80°cos 80°8sin 20°=116·sin 160°sin 20°=116=右边,所以原等式得证.。
三角恒等变换

第三章三角恒等变换(一)三角恒等变换常用公式 1.公式βα+C :_____________________________________)cos(=+βα;2.公式βα-C :_____________________________________)cos(=-βα。
3.公式βα+S :_____________________________________)sin(=+βα;4.公式βα-S :_____________________________________)sin(=-βα;5.公式βα+T :___________________)tan(=+βα。
6.公式βα-T :___________________)tan(=-βα。
7.公式α2S :_____________2sin =α。
8.公式α2C :________________________________________2cos ===α。
9.公式α2T :________________2tan =α。
10.将α2sin 1±化为一个平方式:_________________________。
11.二倍角公式α2C 的几种变形形式:⑴=+α2cos 1_______________; ⑵=-α2cos 1_______________;⑶降幂公式=α2sin ________________; ⑷降幂公式=α2cos ________________。
12.将ααcos sin b a +化为一个角的一个三角函数___________________________。
(二)三角恒等变换常用方法利用两角和与差的正弦、余弦、正切公式解决三角函数式的求值、化简、证明问题一般可用“差异分析法”。
所谓“差异分析”,就是考察所给问题中1.角的差异;2.函数名称的差异;3.运算符号的差异。
分析这些差异的联系,从解决差异入手,施行适当的变换(角的变换、函数名的变换、运算符号的变换等),不断消除差异,从而达到目标。
三角恒等变换

2, π 2cos4=-1, 2,最小值为-
3π f 4 =
3π π 2sin 2 -4=-
所以函数 1.
π 3π f(x)在区间8, 4 上的最大值为
【考情分析】
两角和与差的三角函数公式及倍角公式一直是高考数学的 热点内容之一,可对其直接考查,主要是作为工具在有关三角 函数的解答题中进行考查,各种题型均可能出现,难度不大, 分值4~6分.
π α α 2 cos2 . α,再升幂或化为sin2± 1± cos2±
(4)asin α + bcos α→ 辅 助 角 公 式 asin α + bcos α = b a +b · sin(α + φ) , 其 中 tan φ = a 或 asin α + b cos α =
2
升幂:1+cos 2α=2cos2 α, 1-cos 2α=2sin2 α.
(4) 角的变换.角的变换沟通了已知角与未知角之间的联 系,使公式顺利运用,解题过程被简化.常见的变换有: α=(α+β)-β, 1 α=β-(β-α),α=2[(α+β)+(α-β)] , 1 α=2[(α+β)-(β-α)] , α+β=(2α+β)-α 等. (5)公式的逆用和变用.
sin 47° -sin 17° cos 30° 6.(2013· 重庆高考) =( cos 17° 3 A.- 2 1 C.2 1 B.-2 3 D. 2
)
sin 47° -sin 17° cos 30° 解析: cos 17° sin17° +30° -sin 17° cos 30° = cos 17° sin 17° cos 30° +cos 17°sin 30° -sin 17°cos 30° = cos 17° 1 =sin 30° =2,选 C. 答案:C
高一数学人教A版必修4课件:第三章 三角恒等变换

当 t=12时,ymax=54;
当 t=- 2时,ymin=- 2-1.
∴函数的值域为-
2-1,54.
理网络·明结构
跟踪训练2 求函数f(x)=sin x+cos x+sin x·cos x,x∈R的最值及
取到最值时x的值.
解 设sin x+cos x=t,
则 t=sin x+cos x=
=右边. 2x
∴tan
32x-tan
2x=cos
2sin x x+cos
. 2x
理网络·明结构
跟踪训练 3 已知 cosπ4+x=35,1172π<x<74π,求sin12-x+ta2nsxin2x的值.
解
sin
2x+2sin2x sin =
2x+2sinco2xscxos
x
1-tan x
1+tan x
理网络·明结构
例 1 已知 α、β 为锐角,cos α=45,tan(α-β)=-13,求 cos β 的值. 解 ∵α 是锐角,cos α=45,∴sin α=35,tan α=34. ∴tan β=tan[α-(α-β)]=1t+antαan-αttaannαα--ββ=193.
∵β 是锐角,故 cos β=95010.
理网络·明结构
例2 求函数y=sin x+sin 2x-cos x(x∈R)的值域. 解 令sin x-cos x=t, 则由 t= 2sinx-π4知 t∈[- 2, 2], 又sin 2x=1-(sin x-cos x)2=1-t2. ∴y=(sin x-cos x)+sin 2x=t+1-t2 =-t-122+54.
脑会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常宝贵的,不要全部用来玩手机哦~
第三章三角恒等变换

第三章 三角恒等变换3.1.1两角差的余弦公式(2课时)主备教师:鲍美华一、内容及其解析本节的内容是两角差余弦公式,主要内容是两角差的余弦公式的推导,这一部分的知识是在第一章三角函数的基础上学习的,学习这一部分的内容的关键是要理解两角差的余弦的推导,它的难点也就在于此,余弦公式是其它公式学习的基础,教科书中给出了两种推导公式的方法,都是借助前面的知识推导而得。
学习这一部分的内容要熟悉各个公式及其推导过程,并熟悉他们内在联系。
二、目标及其解析(一)目标定位(1)理解两角差的余弦公式的推导.(2)通过简单运用,使学生初步理解公式的结构及其功能.(二)目标解析(1)课本中介绍了两种方法推导余弦公式,一种是利用单位圆、一种是利用向量的知识。
(2)要熟记余弦公式cos()cos cos sin sin αβαβαβ-=+。
三、问题诊断分析在本节主要存在的问题是学生难以理解余弦公式推导过程。
产生这一个问题的原因是学生前面学习的知识没有掌握好。
这样老师只能是边讲边回顾,尽可能让学生理解,最后达到应用的效果。
四、教学支持条件分析的一般模式在本节课的教学中准备使用多媒体辅助教学。
五、教学过程(一)问题与问题解析问题 一:如何用角α、β的正弦、余弦值来表示cos()αβ+呢?小问题1:你认为cos()cos cos αβαβ-=-吗?结论:不妨以特例作验证,容易发现cos30cos(6030)cos60cos30︒=︒-︒≠︒-︒因此cos()cos cos αβαβ-≠-。
小问题2:你认为要获得相应的表达式需要哪些已学过的知识?结论: 由于这里涉及的是三角函数的问题,是α-β 这个角的余弦问题,所以可以考虑联系单位圆上的三角函数线或向量的知识。
小问题3:怎样联系单位圆上的三角函数线来探索公式?讲解中注意:1、怎样做出角α,β,α-β的终边;2、怎样做出角α-β的余弦线以及α,β的正弦线,余弦线。
3、怎样利用几何直观寻求余弦线的表示。
第三章 三角恒等变换(北师大)

第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切 3.1.1两角和与差的正弦、余弦和正切基础必会练练基础(必写)知识点1余弦公式的应用 1. cos15°的值是( ) A . B .C .D .1.C 【解析】:∵cos15°=cos (45°﹣30°) =cos45°cos30°+sin45°sin30° =×+×=.故选:C .2. cos23°cos37°﹣sin23°sin37°的值为( ) A .0B .C .D .2.B 【解析】:cos23°cos37°﹣sin23°sin37°=cos (23°+37°)=cos60°=,故选:B .3. 已知sin α=-35,α∈(3π2,2π),则cos(π4-α)的值为( )(A)210 (B)-210 (C)7210 (D)-72103.A 【解析】:∵sin α=-35,α∈(3π2,2π), ∴cos α=45,∴cos π4cosα+sin π4sinα=22×45+22×(-35)=210.故选A. 4. .cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α)=________4. cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=12.5. 已知α、β、γ∈(0,π2),sin α+sin γ=sin β,cos β+cos γ=cos α,求β-α的值. 5.【解析】:由已知,得sin γ=sin β-sin α,cos γ=cos α-cos β. 平方相加得(sin β-sin α)2+(cos α-cos β)2=1.∴-2cos(β-α)=-1.∴cos(β-α)=12.∴β-α=±π3.∵sin γ=sin β-sin α>0,∴β>α.,∴β-α=π3. 知识点2:正弦公式的应用1.sin72°cos18°+cos72°sin18°的值为( ) A .1B .C .﹣D .1.A 【解析】:由sin72°cos18°+cos72°sin18°=sin (72°+18°)=sin90°=1. 故选:A .2.已知sinα=,则=( ) A .B .C .D .2.B 【解析】:∵sinα=,∴cosα=﹣=﹣, ∴=sinα﹣cosα=﹣(﹣)×=.故选:B .3.已知角α的终边经过点(﹣3,4),则的值( )A .B .﹣C .D .﹣3.C 【解析】:∵角α的终边经过点(﹣3,4),则sinα=,cosα=, ∴=sinαcos+cosαsin=﹣×=,故选:C . 4.已知cos (α﹣β)=,sinβ=﹣,且α∈(0,),β∈(﹣,0),则sinα=( )A.B.C.﹣D.﹣4.A【解析】:∵α∈(0,),β∈(﹣,0),∴α﹣β∈(0,π),又cos(α﹣β)=,sinβ=﹣,∴sin(α﹣β)==,cosβ==,则sinα=sin[(α﹣β)+β]=sin(α﹣β)cosβ+cos(α﹣β)sinβ=×+×(﹣)=.故选A5.计算:=.5.【解析】:原式====sin30°=.故答案为:。
高中数学第三章三角恒等变换3.1.2两角和与差的正弦、余弦、正切公式(1)课件新人教A版必修4

2
2
(2) 3 sin x cos x.
解:(1)1 cos x 3 sin x (2) 3 sin x cos x
2
2
sin 30 cos x cos 30 sin x
2( 3 sin x 1 cos x)
2
2
sin(30 x);
2(sin x cos 30 cos x sin 30 )
解:原式 sin(72 18 ) sin 90 1.
第十三页,共31页。
例1 已知 sin 3 , 是第四象限角,求 sin( ),
5
4
cos( )的值.
4
解:由sin=-
3 5
,
是第四象限角,得
cos 1 sin2 1 ( 3)2 4 , 55
于是有sin( ) sin cos cos sin
第七页,共31页。
探究(tànjiū)二:两角和与差的正弦公式
1.利用哪些公式可以实现正弦(zhèngxián)、余弦的互 化?
提示(tíshìs)i:n cos( ) 2
sin(
)
cos
2
(
)
第八页,共31页。
2.由两角和与差的余弦公式如何推导两角和与 差的正弦(zhèngxián)公式?
(2) 2 cos x 6 sin x.
解:(1)原式 (2 2 sin x 2 cos x)
2
2
2sin(x ).
4
(2)原式 2 (2 1 cos x 3 sin x)
2
2
2 2 sin( x).
6
第二十一页,共31页。
1.(2015·四川高考)下列函数中,最小正周期为π且图象关
第三章__三角恒等变换_小结

1 sin 2 (4)sin6α+ cos6α=________________; 4
2
1
1
sin 2
2
3
公式的正用、反用、变形使用:
[sin( ) sin( )]
[cos( ) cos( )]
[cos( ) cos( )]
头 尾 头
1 2
1 2
sin sin
1 2
尾
Hale Waihona Puke 和差化积公式sin sin 2 sin
2
cos
一、知识点回顾 cos( ) cos cos sin sin cos( ) cos cos sin sin
以-β代β C(α+β)
诱导 公式
C(α-β)
诱导 公式
S(α+β)
以β代 -β
S(α-β)
sin( ) sin cos cos sin
tan tan 1 tan tan
一、知识点回顾
cos 2 cos
C 2α T 2α
sin 2 2 cos 1 2 1 2 sin
2 2
以-β代β C(α+β)
诱导 公式
C(α-β)
诱导 公式
T(α+β)
tan 2 2 tan
1 tan
2
T(α-β)
S(α+β)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 三角恒等变换§3.1 两角和与差的正弦、余弦和正切公式一、课标要求:本节的中心内容是建立相关的十一个公式,通过探索证明和初步应用,体会和认识公式的特征及作用. 二、编写意图与特色本节内容可分为四个部分,即引入,两角差的余弦公式的探索、证明及初步应用,和差公式的探索、证明和初步应用,倍角公式的探索、证明及初步应用. 三、教学重点与难点1. 重点:引导学生通过独立探索和讨论交流,导出两角和差的三角函数的十一个公式,并了解它们的内在联系,为运用这些公式进行简单的恒等变换打好基础;2. 难点:两角差的余弦公式的探索与证明.3.1.1 两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础. 二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等. 三、学法与教学用具 1. 学法:启发式教学 2. 教学用具:多媒体 四、教学设想:(一)导入:我们在初中时就知道 cos 452=,cos30= ,由此我们能否得到()cos15cos 4530?=-= 大家可以猜想,是不是等于cos 45cos30- 呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-= (二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也可以用角α的余弦线来表示,大家思考:怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索()cos αβ-与cos α、cos β、sin α、sin β之间的关系,由此得到cos()cos cos sin sin αβαβαβ-=+,认识两角差余弦公式的结构.思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2、怎样利用向量的数量积的概念的计算公式得到探索结果? 展示多媒体课件比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处. 思考:()cos ?αβ+=,()()cos cos αβαβ+=--⎡⎤⎣⎦,再利用两角差的余弦公式得出()()()()cos cos cos cos sin sin cos cos sin sin αβαβαβαβαβαβ+=--=-+-=-⎡⎤⎣⎦(三)例题讲解例1、利用和、差角余弦公式求cos75、cos15的值. 解:分析:把75、15构造成两个特殊角的和、差.()1cos75cos 4530cos 45cos30sin 45sin 3022224=+=-=-=()12c o s 15c o s 4530c o s 45c o s 30s i n 4530222=-=+=+⨯点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=- ,要学会灵活运用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===-所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角α、β的象限,也就是符号问题,学会灵活运用. (五)作业:§3.1.2 两角和与差的正弦、余弦、正切公式一、教学目标理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用. 二、教学重、难点1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用. 三、学法与教学用具 学法:研讨式教学 四、教学设想:(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:()cos cos cos sin sin αβαβαβ+=-;()cos cos cos sin sin αβαβαβ-=+.这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢? 提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗?让学生动手完成两角和与差正弦和正切公式.()()sin cos cos cos cos sin sin 2222ππππαβαβαβαβαβ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-+=-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦sin cos cos sin αβαβ=+.()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-⎡⎤⎣⎦让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手)()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ+++==+-.通过什么途径可以把上面的式子化成只含有tan α、tan β的形式呢?(分式分子、分母同时除以cos cos αβ,得到()tan tan tan 1tan tan αβαβαβ++=-.注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?()()()()tan tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβαβ+---=+-==⎡⎤⎣⎦--+注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.(二)例题讲解例1、已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.解:因为3sin ,5αα=-是第四象限角,得4cos 5α===,3sin 35tan 4cos 45ααα-===- ,于是有43sin sin cos cos sin 44455πππααα⎛⎫⎛⎫-=-=-=⎪ ⎪⎝⎭⎝⎭43cos cos cos sin sin 44455πππααα⎛⎫⎛⎫+=-=-= ⎪ ⎪⎝⎭⎝⎭两结果一样,我们能否用第一章知识证明?3tan tan144tan 7341tan tan 144παπαπα---⎛⎫-===- ⎪⎛⎫⎝⎭++- ⎪⎝⎭例2、利用和(差)角公式计算下列各式的值:(1)、si n 72c o s 42c o s 72s i n 42-;(2)、co s 20c o s 70s i n 20s i n 70-;(3)、1tan151tan15+-. 解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象.(1)、()1s i n 72c o s 42c o s 72s i n 42s i n7242s i n 302-=-==; (2)、()co s 20c o s 70s i n 20s i n 70c o s 2070c o s 900-=+==;(3)、()1t a n 15t a n 45t a n 15t a n 4515t a n 6031t a n 151t a n 45t a n 15++==+==--.例3x x解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?)(1cos sin 30cos cos30sin 3022x x x x x x x ⎫=-=-=-⎪⎪⎭思考:=我们是构造一个叫使它的正、余弦分别等于12的.小结:本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用. 作业:§3.1.3 二倍角的正弦、余弦和正切公式一、教学目标以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用. 二、教学重、难点教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用. 三、学法与教学用具 学法:研讨式教学 四、教学设想:(一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式,()sin sin cos cos sin αβαβαβ+=+;()cos cos cos sin sin αβαβαβ+=-;()tan tan tan 1tan tan αβαβαβ++=-.我们由此能否得到sin 2,cos 2,tan 2ααα的公式呢?(学生自己动手,把上述公式中β看成α即可), (二)公式推导:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos 2cos cos cos sin sin cos sin ααααααααα=+=-=-;思考:把上述关于cos2α的式子能否变成只含有sin α或cos α形式的式子呢?22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-; 22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--.注意:2,22k k ππαπαπ≠+≠+ ()k z ∈(三)例题讲解 例1、已知5sin 2,,1342ππαα=<<求sin 4,cos 4,tan 4ααα的值. 解:由,42ππα<<得22παπ<<.又因为5sin 2,13α=12cos 213α===-.于是512120sin 42sin 2cos 221313169ααα⎛⎫==⨯⨯-=-⎪⎝⎭; 225119cos 412sin 21213169αα⎛⎫=-=-⨯= ⎪⎝⎭;120sin 4120169tan 4119cos 4119169ααα-===-. 例2、已知1tan 2,3α=求tan α的值. 解:22tan 1tan 21tan 3ααα==-,由此得2tan 6tan 10αα+-=解得tan 2α=-tan 2α=-(四)小结:本节我们学习了二倍角的正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用. (五)作业:3.2 简单的三角恒等变换(3个课时)一、课标要求:本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.二、编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 三、教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 四、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力. 五、学法与教学用具 学法:讲授式教学 六、教学设想:学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容. 例1、试以cos α表示222sin,cos ,tan 222ααα.解:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题.因为2cos 12sin 2αα=-,可以得到21cos sin22αα-=; 因为2cos 2cos12αα=-,可以得到21cos cos 22αα+=.又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点. 例2、求证: (1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)、sin sin 2sincos22θϕθϕθϕ+-+=.证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-.两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sin cos22θϕθϕθϕ+-+=.思考:在例2证明中用到哪些数学思想?例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式. 例3、求函数sin y x x =+的周期,最大值和最小值.解:sin y x x =+这种形式我们在前面见过,1sin 2sin cos 2sin 223y x x x x x π⎛⎫⎛⎫==+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以,所求的周期22T ππω==,最大值为2,最小值为2-.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业:《三角恒等变换》复习课(2个课时)一、教学目标进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:二、知识与方法:1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、2π±β代替β、α=β等换元法可以推导出其它公式。