2006年上海交通大学自主招生保送生测试数学试卷

合集下载

2006年上海普通高等学校招生考试数学模拟试卷

2006年上海普通高等学校招生考试数学模拟试卷

2006年上海市普通高等学校招生考试数学模拟试卷(三)一、填空题(本大题满分48分,每小题4分,共12小题) 1.复数i215+的共轭复数是_____________. 2.不等式0))((≥---cx b x a x 的解集是),3(]2,1[∞+- ,则不等式0))((≤---b x a x cx 的解集为 .3.已知O 是坐标原点,经过)2,3(P 且与OP 垂直的直线方程是________________. 4.关于x 的方程)(01)2(2R m mi x i x ∈=+++-有一实根为n ,则=+nim 1. 5.函数x x y 24cos sin +=的最小正周期为_________. 6.若正整数m 满足m m 102105121<<-,则m = . 7.已知函数)(1x fy -=的图象过)0,1(,则)121(-=x f y 的反函数的图象一定过点 .8.若规定⎪⎪⎭⎫ ⎝⎛++++=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛222d c b d c c a d b b a c b a d c b a d c b a d c b a ,计算:=⎪⎪⎭⎫⎝⎛-20123____________.9.四位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若四位同学的总分为0,则这4位同学不同得分情况的种数是 .10.2004年元月9日,第十届全国运动会筹备委员会正式成立,由二名主任和6名副主任组成主席团成员.若章程规定:表决一项决议必须在二名主任都同意,且副主任同意的人数超过半数才能通过.一次主席团全体成员表决一项决议,结果有6人同意,则决议通过的概率是 (结果用分数表示)11.若B A ,分别是椭圆)0(11222>=++a y a x 与y x ,正半轴的交点,F 是右焦点,且AFB ∆ 的面积为41,则实数=a .12.某纺织厂的一个车间有()N n n n ∈>,7台织布机,编号分别为1,2,3,…,n ;该车间有技术工人n 名,编号分别为1,2,3,…,n 。

2006年全国普通高等学校招生统一考试(上海卷)数学(文史类)

2006年全国普通高等学校招生统一考试(上海卷)数学(文史类)

考试结束前★机密2006年全国普通高等学校招生统一考试(上海卷)数学(文史类)考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚。

2.本试卷共有22道试题,满分 150分,考试时间 120分钟。

请考生用钢笔或圆珠笔将答案直接写在试卷上。

一、填空题(本大题满分 48 分)本大题共有 12 题。

只要求直接填写结果,每个空格填对得 4 分,否则一律得零分。

1.已知集合{}1,3,A m =-, 集合{}3,4B =,若A B ⊆.则实数m =______. 2.已知两条直线12:330.:4610.l ax y l x y +-=+-=若12//l l ,则a =______. 3.若函数()(0.1)x f x a a a =>≠且的反函数的图像过点(2,-1),则 a=______.4.计算: 23(1)lim61n n n n →∞+=+______. 5.若复数(2)(1)z m m i =-++为纯虚数(i 为虚数单位),其中m R ∈,则z = ______. 6.函数sin cos y x x =的最小正周期是______.7.已知双曲线的中心原点,一个顶点的坐标是(3,0),且焦距与虚轴长之比为 5:4则双曲线的标准方程是______.8.方程233log (10)1log x x -=+的解是______.9.已知实数,x y 满足3025000x y x y x y +-≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩.则y -2x 的最大值是 .10.在一个小组中有 8名女同学和 4名男同学,从中任意地挑选 2名同学担任交通安全宣 传志愿者,那么选到的两名都是女同学的概率是______(结果用分数表示)。

11.若曲线21xy =+与直线y b =没有公共点,则 b 的取值范围是______.12.如图,平面中两条直线1l 和2l 相交于点 O ,对于平面上任意一点 M ,若 p 、q 分别是M 到直线1l 和2l 的距离,则称有序非负实数对 (p 、q )是点 M 的“距离坐标”。

数学练习题交通大学2000-2008年保送生数学试题

数学练习题交通大学2000-2008年保送生数学试题

交通大学2000年保送生数学试题一、选择题(本题共15分,每小题3分.在每小题给出的4个选项中,只有一项正确,把所选项的字母填在括号内)1.若今天是星期二,则31998天之后是 ( ) A .星期四 B .星期三 C .星期二 D .星期一2.用13个字母A ,A ,A ,C ,E ,H ,I ,I ,M ,M ,N ,T ,T 作拼字游戏,若字母的各种排列是随机的,恰好组成“MA THEMA TICIAN”一词的概率是 ( )A .4813!B .21613!C .172813!D .813!3.方程cos 2x -sin 2x +sin x =m +1有实数解,则实数m 的取值范围是( )A .18m ≤B .m >-3C .m >-1D .138m -≤≤4.若一项数为偶数2m 的等比数列的中间两项正好是方程x 2+px +q =0的两个根,则此数列各项的积是 ( ) A .p m B .p 2m C .q m D .q 2m 5.设f ’(x 0)=2,则000()()limh f x h f x h h→+--( )A .-2B .2C .-4D .4二、填空题(本题共24分,每小题3分)1.设f (x )1,则1(2)f x dx =⎰__________.2.设(0,)2x π∈,则函数(222211sin )(cos )sin cos x x x x++的最小值是__________. 3.方程316281536xxx⋅+⋅=⋅的解x =__________.4.向量2a i j =+在向量34b i j =+上的投影()b a =__________.5.函数2y x =+的单调增加区间是__________.6.两个等差数列200,203,206,…和50,54,58…都有100项,它们共同的项的个数是__________. 7.方程7x 2-(k +13)x +k 2-k -2=0的两根分别在区间(0,1)和(1,2)内,则k 的取值范围是__________.8.将3个相同的球放到4个盒子中,假设每个盒子能容纳的球数不限,而且各种不同的放法的出现是等可能的,则事件“有3个盒子各放一个球”的概率是________. 三、证明与计算(本题61分)1.(6分)已知正数列a 1,a 2,…,a n ,且对大于1的n 有1232n a a a n +++=,1212n n a a a +=. 试证:a 1,a 2,…,a n 中至少有一个小于1.2.(10分)设3次多项式f (x )满足:f (x +2)=-f (-x ),f (0)=1,f (3)=4,试求f (x ).3.(8分)求极限112lim (0)p p pp n n p n+→∞+++>.4.(10分)设2,0(),0x bx c x f x lx m x ⎧++>=⎨+≤⎩在x =0处可导,且原点到f (x )中直线的距离为13,原点到f (x )中曲线部分的最短距离为3,试求b ,c ,l ,m 的值.(b ,c >0)5.(8分)证明不等式:341sin cos 2x x ≤+≤,[0,]2x π∈.6.(8分)两名射手轮流向同一目标射击,射手甲和射手乙命中目标的概率都是12.若射手甲先射,谁先命中目标谁就获胜,试求甲、乙两射手获胜的概率.7.(11分)如图所示,设曲线1y x=上的点与x 轴上的点顺次构成等腰直角三角形△OB 1A 1,△A 1B 2A 2,…,直角顶点在曲线1y x=上.试求A n 的坐标表达式,并说明这些三角形的面积之和是否存在.OyxB 1A 2A 1B 22000年交大联读班试题1. 直线y ax b =+关于y x =-的对称直线为_______________。

上海交通大学2002-2010年保送生考试数学试题

上海交通大学2002-2010年保送生考试数学试题

一、填空题(每小题 5 分,共 50 分)
1.方程 x2

px −
1 2 p2
= 0 的两根 x1, x2 满
2 ,则 p=_________(p∈R).
2. sin8 x + cos8 x = 41 , x ∈ (0, π ) ,则 x=________________.
128
3,14 台,现在为使各小学的电脑数相等,各向相邻小学移交若干台,且要使移交的电 脑的总台数最小,因此,从第一小学向第二小学移交了________台,从第二小学向第三 小学移交了______台,从第五小学向第一小学移交了________台,移动总数是_________ 台. 二、计算与证明题(本题共 86 分) 17.(本题 12 分)(1)设 n 为大于 2 的整数,试用数学归纳法证明下列不等式:
任意正整数 n 都有 an = r [ n + s ] + t 恒成立([x]表示不超过 x 的最大整数).
60

3
2 3
3
=9
3
>8
=2
= 3log32 , 所以 b
>
c , a > b > c. 所以输出的数为 a.
例 6 (2001 年上海市高考题) 对任意函
数 f ( x ) , x ∈D 可按图所示构造一个数列发
3.f(x)=ax4+x3+(5−8a)x2+6x−9a,证明:(1)总有 f(x)=0;(2)总有 f(x)≠0.
4.
f1
(x)
=
1− x x +1
,对于一切自然数
n,都有
f n+1 (x) =

历年自主招生考试数学试题大全2018年上海交通大学自主招生数学试题Word版

历年自主招生考试数学试题大全2018年上海交通大学自主招生数学试题Word版

2018年上海交通大学自主招生考试数学试题一、填空题(每题5分,共50分)1.已知方程2212x px p--=0(p R ∈)的两根12,x x 满足441222x x +≤,则p= . 2.设8841sin cos ,0,1282x x x π⎛⎫+=∈ ⎪⎝⎭,则x = . 3.已知,n Z ∈且1200411112004n n +⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,则n= .4.如图,将3个12cm×12cm 的正方形沿邻边的中点剪开,分成两部分,将这6部分接在一个边长为2的正六边形上,若拼接后的图形是一个多面体的表面展开图.则该多面体的体积为 . 第4题图523333,,,x y x y Q -=∈则(x ,y )= .6.化简:()()122222246812n n +-+-++-= . 7.若3z =1,且z ∈C ,则3z +22z +2z +20= .8.一只蚂蚁沿l×2×3立方体表面爬,从一条对角线一端爬到另一端所爬过的最短距离为 .9.4封不同的信放人4个写好地址的信封中,全装错的概率为 ,恰好只有一封信装错的率为 .10.已知等差数列{a n }中,a 3+a 7+a 11+a 19=44,则a 5+a 9+a 16= .二、解答题(本大题共50分)1.已知方程x 3+ax 2+b x +c =0的三根分别为a 、b 、c ,且a 、b 、c 是不全为零的有理数,求a 、b 、c 的值.2.是否存在三边为连续自然数的三角形,使得(l )最大角是最小角的两倍?(2)最大角是最小角的三倍?若存在,分别求出该三角形;若不存在,请说明理由. 3.已知函数y =2281ax x b x +++的最大值为9,最小值为1.求实数a 、b 的值。

4.已知月利率为y ,采用等额还款方式,若本金为1万元,试推导每月等额还款金额m 关于y 的函数关系式(假设贷款时间为2年).5.对于数列{}n a :1,3,3,3,5,5,5,5,5,⋯, 即正奇数k 有k 个·是否存在整数r ,s ,t ,使得对于任意正整数n , 都有n a r t =+恒成立([x ]表示不超过x 的最大整数)?。

2006年全国普通高等学校招生统一考试数学理试卷参考答案答案(上海卷)

2006年全国普通高等学校招生统一考试数学理试卷参考答案答案(上海卷)

2006年全国普通高等学校招生统一考试 上海数学试卷(理工农医类)答案要点及评分标准说明1. 本解答列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分.2. 评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分.解答 一、(第1题至第12题)1.1 2.23.12 4.165.1i -+ 6.57.221164x y += 8.5 9.13510.36 11.011k b =-<<,12.10a ≤ 二、(第13题至第16题)三、(第17题至第22题)17.解:ππ2cos cos 244y x x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭cos22x x = ·························································································· 6分 π2sin 26x ⎛⎫=+⎪⎝⎭. ····························································································· 8分∴函数ππ2cos cos 244y x x x ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭的值域是[]22-,,最小正周期是π. ·········· 12分 18.解:连接BC ,由余弦定理得222201022010cos120700BC =+-⨯⨯⨯=,于是,BC = ····································································································· 4分s i n 12020ACB ∠=sin ACB ∴∠=, ························································ 8分 90ACB ∠<,41ACB ∴∠≈, ············································································ 10分 所以,乙船应朝北偏东71方向沿直线前往B 处救援. ············································ 12分 19.解:(1)在四棱锥P ABCD -中,由PO ⊥平面ABCD ,得PBO ∠是PB 与平面ABCD 所成角,60PBO ∠=. ··············································· 2分在Rt AOB △中,sin301BO AB ==,又PO BO ⊥,于是,tan 60PO BO ==ABCD S =∴四棱锥P ABCD -的体积123P ABCD V -=⨯=. ··············································· 6分 (2)解法一:以O 为坐标原点,射线OB OC OP ,,分别为x 轴,y 轴,z 轴的正半轴,建立空间直角坐标系. ··········································································································· 7分 在Rt AOB △中,OA =于是,点AB D P ,,,的坐标分别是(0(100)(100)(00A B D P -,,,,,,.E 是PB 的中点,则点E 的坐标是1022⎛ ⎝⎭,,,于是,30(02DE AP ⎛== ⎝⎭,,. ····································································· 11分设DE 与AP的夹角为θ,有3cos 4θ==,arccos 4θ= ∴异面直线DE 与PA所成角的大小是. ························································ 14分A解法二:取AB 的中点F ,连接EF DF ,.由E 是PB 的中点,得EF PA ∥,∴FED ∠是异面直线DE 与PA 所成角(或它的补角). ··································· 8分 在Rt AOB △中,cos30OA AB OP ===,于是,在等腰直角POA △中,PA =2EF =. 而在正ABD △和正PBD △中,DE DF == ························································ 11分12cos EFFED DE ∠===,∴异面直线DE 与PA所成角的大小是arccos4. ························································ 14分 20.证明:(1)设过点(30)T ,的直线l 交抛物线22y x =于点1122()()A x y B x y ,,,. 当直线l 的斜率不存在时,直线l 的方程为3x =,此时,直线l与抛物线相交于点(3(3A B ,,3OA OB ∴=. ···························································· 1分 当直线l 的斜率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠.由22(3)y x y k x ⎧=⎨=-⎩,,得2260ky y k --=,则126y y =-. ····················································· 3分又221221122x y x y == 1,, 2121212121()34OA OB x x y y y y y y ∴=+=+= .综上所述,命题“如果直线l 过点(30)T ,,那么3OA OB =”是真命题. ······················ 6分解:(2)逆命题是:设直线l 交抛物线22y x =于A B ,两点,如果3OAOB =·,那么该直线过点(30)T ,.该命题是一个假命题. ··············································································· 8分CBFAPEDO例如:取抛物线上的点1(22)12A B ⎛⎫⎪⎝⎭,,,,此时3OAOB = ·, ········································ 11分 直线AB 的方程是2(1)3y x =+,而(30)T ,不在直线AB 上. ········································· 14分 说明:由抛物线22y x =上的点1122()()A x y B x y ,,,满足3OA OB = ·,可得126y y =-或122y y =.如果126y y =-,可证得直线AB 过点(30),;如果122y y =,可证得直线AB 过点(10)-,,而不过点(30),. 21.证明:(1)当1n =时,22a a =,则21a a a =; ··························································· 1分 当221n k -≤≤时,1(1)2n n a a S +=-+,1(1)2n n a a S -=-+,1(1)n n n a a a a +-=-,1n na a a +∴=. ∴数列{}n a 是等比数列. ······································································································ 4分 解:(2)由(1)得12n n a a -=, (1)(1)12(1)21212222n n n n n nn nk n a a a aa--++++--∴===……, ·················································· 8分1(1)11(122)2121n n n n b n n k n k k --⎡⎤=+=+=⎢⎥--⎣⎦ ,,, . ······················································ 10分 (3)设32n b ≤,解得12n k +≤,又n 是正整数,于是当n k ≤时,32n b <; 当1n k +≥时,32n b >. ··································································································· 12分原式12123333322222k k k b b b b b +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+-++-⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……121()()k k k b b b b +=++-++……211(21)(01)22212121k k k k k k k k k k k ⎡⎤⎡⎤+-+-⎢⎥⎢⎥=+-+=⎢⎥⎢⎥---⎢⎥⎢⎥⎣⎦⎣⎦. ··············································· 14分由2421k k -≤,得2840k k -+≤,44k -+≤,又2k ≥,∴当234567k =,,,,,时,原不等式成立. ··········································································· 16分 22.解:(1)函数2(0)by x x x=+>的最小值是6=, 2log 9b ∴=. ························································································································ 3分 (2)设120x x <<,222221212122222112()1c c c y y x x x x x x x x ⎛⎫-=+--=-- ⎪⎝⎭·. ··················· 5分12x x <时,21y y >,函数22c y x x =+在)+∞上是增函数;当120x x <<21y y <,函数22c y x x=+在(0上是减函数.又22c y x x=+是偶函数,于是,该函数在(--,∞上是减函数,在)⎡⎣上是增函数.(3)可以把函数推广为nn ay x x=+(常数0a >),其中n 是正整数. 当n 是奇数时,函数nn a y x x=+在(0上是减函数,在)⎡+⎣∞上是增函数;在(--,∞上是增函数,在)⎡-⎣上是减函数.当n 是偶数时,函数nn a y x x =+在(上是减函数,在)⎡+⎣∞上是增函数;在(--,∞上是减函数,在)⎡-⎣上是增函数. ······················································ 12分2211()nnF x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭0212323223231111n n r n rn nn n n n n n n r n C x C x C x C x x x x x ----⎛⎫⎛⎫⎛⎫⎛⎫=+++++++++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭……, 因此,()F x 在112⎡⎤⎢⎥⎣⎦,上是减函数,在[]12,上是增函数. ················································· 16分 所以,当12x =或2x =时,()F x 取得最大值9924n n⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;当1x =时,()F x 取得最小值12n +. ······································································ 18分。

上海交通大学《高等数学》2006-2007学年期末试卷

上海交通大学《高等数学》2006-2007学年期末试卷

1上海交通大学《高等数学》2006-2007 学年期末考试及答案一、 单项选择题 (每小题3分, 共 15分) 1. 设 xoy 平面上区域D ={(x , y )| x 2+y2≤1, y ≥ x }, D 1 是D 在第一象限的部分, 则∫∫(xy 3 +sin 2 x sin y )dxdy 等于 ( )D(A ) 2 ∫∫ sin 2 x sin ydxdy ; D (C ) 4 ∫∫ (xy 3 + sin 2 x sin y )dxdy ;D 解 ∫∫(xy 3 + sin 2 x sin y )dxdyD= ∫∫ xy 3dxdy + ∫∫ sin 2x s in y dxdyD D= 2 ∫∫ sin 2x sin ydxdyD 答案: A(B ) 2 ∫∫ xy 3dxdy ;D (D ) 0 .2. 设 Ω ={(x , y , z ) | x 2+ y 2+ z2≤ 1}, 则三重积分∫∫∫e xdv = ( )Ω(A ) ; (B ) π; (C ); (D ) 2π .解 1 e xdv >dv = π, 排除答案 A 、 B ; 猜: C 或 De |x | : 1 → 2.718, 3π/ 4π = 1.125, 2π/ 4π= 1.52 3 3答案: D解 2 ∫∫∫ e xdv = ∫1 dx ∫∫ e xdydzΩ y 2 +z 2 ≤1−x 2= ∫1πe x (1 − x 2 )dx = 2π∫01e x (1 − x 2 )dx= −2π+4π∫01xe x dx= −2π+4πe − 4π(e − 1) = 2π答案: D解 3 ∫∫∫e xdv = ∫∫∫e zdv = ∫02πd θ∫0ππππd ϕ∫01eρcos ϕρ2sin ϕd ρΩ Ω= 2π∫0ππππd ϕ∫01eρcos ϕρ2sin ϕd ρD 1111π= 2π∫1d ρ[∫02 e ρcos ϕρ2 sin ϕd ϕ+∫ππππππππe −ρcos ϕρ2sin ϕd ϕ] 2= 2π∫01d ρ[ −ρe ρcos ϕ02 +ρe −ρcos ϕ|ϕϕ=ππππππππ] 2= 4π∫01ρ(e ρ − 1)d ρ= 2π答案: D3. 设 F = y i + zj + x k ,则 rot F = ( )(A )i + j + k ; (B )−( i + j + k ); (C )i − j + k ; (D )−i + j − k .解 rot F = ∂ ∂ ∂( −1, −1, −1)答案: B4. 幂级数x n 在收敛域[ −1,1) 上的和函数s (x ) = ( )(A )ln(1 − x ); (B )− ln(1 − x ); (C )− ; (D )−x ln(1 − x ) .解x n = xx n −1 = x ∫0x(x n −2 )dx= x ∫0x()dx = −x ln(1 − x )答案: D1,π 0 ≤ x <2≤ x ≤π展开成正弦级数, 其和函数s (x ) =b n sin nx , 则s (−) =(A ) −1; (B ) −2;(C ) 1;( )(D ) 2 .解 s (− 9π) = s (−π) = −s (π) = − 1 + 3= −22 2 2 2 答案: B二、 填空题 (每小题3分, 共 15分) 6. 设 u = z +,则div (grad u ) = .∂x ∂y ∂zϕ=π5. 设函数f (x ) = 45 − x , π解 div (grad u ) = div (x , y,1)x 2 + y 2 x 2 + y 2x 2 + y 2 − x ⋅ x x 2 + y 2 − y ⋅y= ( x 2 + y 2 ) + ( x 2 + y 2 ) + 0y 2 + x 2 1= =7. 设 f (x ) 是连续函数,F (t ) = ∫∫∫ f (x 2 + y 2 + z 2 )dv ,F ′(t ) = .x 2 +y 2 +z 2 ≤t 2解 F (t ) = 2π⋅ 2 ⋅ ∫0tf (ρ2 )ρ2d ρ, F ′(t ) = 4πt 2 f (t 2)8. 设 C 为曲线x = e t cos t , y = e t sin t , z = e t 上对应于t 从0 变到2 的这段弧, 则曲线积分ds = .解 该积分 = ∫02dt= ∫02dt =(1 − e −2)9. 全微分方程(x +y − 1)dx +(e y +x )dy = 0 的通解为 .解 1 (x + y − 1)dx + (e y + x )dy = 0⇒ (x − 1)dx +(ydx +xdy )+e y dy = 0⇒ d () +d (xy )+d (e y ) = 0⇒ 通解:+xy +e y = C解 2 u = ∫(x + y − 1)dx + (e y + x )dy= ∫0x(x − 1)dx + ∫0y(e y+x )dy=+ xy +e y − 1⇒ 通解:+xy +e y − 1 = Cx 2 + y 2 x 2 + y 2(x 2 + y 2 ) x 2 + y 2 x 2 + y 210. 级数 的敛散性为 .解 un +1 == n + 1 = 1, 收敛u n n ! (2n + 1)(2n + 2) 2(2n )!三、计算下列各题 (第 1小题6分, 第2 小题8分, 共 14分) 11. 设 z 是方程x +y − z = e z所确定的x , y 的隐函数, 求∂2z解 ∂z = − 1 = 1 ∂z = − 1 =1 ∂x −1 − e z 1 + e z,∂y −1 − e z 1 +e z= () y = −= − = −12. 计算曲面z = y 2 − x 2 夹在圆柱面x 2 +y 2 = 1 和x 2 +y 2 = 9 之间部分 的面积.解 1 +2+ 2=, 则所求面积I = ∫∫dxdy1≤x 2 +y 2 ≤9 = ∫02πd θ∫13rdr= 2π⋅ (1 + 4r 2 ) |13 = (37 − 5)四、计算下列各题 (每小题 10分, 共30分)13. 计算曲线积分(x +e sin y )dy − (y − )dx , 其中C 是位于第一象限中的直线x +y = 1 与位于第二象限中的圆弧x 2 +y 2 = 1 构成的曲线, 方向从A (1, 0) 经过B (0,1), 再到C (−1, 0) .解 L : y = 0, 方向从(−1, 0) 到(1, 0), 并记C + L 所围区域为D , 则所求曲线积分I = −∫C +L L= 2dxdy − ∫−1 2dx∂x ∂y .1 1π π2 214. 试求参数λ, 使当曲线C 落在区域D ={(x , y )| y > 0}时, 曲线积分(x 2 +y 2 )λdx −(x 2 +y 2 )λdy 与路径无关, 并求u (x , y ) = ∫(x 2 + y 2 )λdx −(x 2 + y 2 )λdy .解 记P =(x 2 + y 2)λ, Q = −(x 2 + y 2)λ, 则∂P2λxy 2 (x 2 + y 2)λ−1− x (x 2 + y 2)λ=∂Q 2x (x 2 + y2)λ+ 2λx 3 (x 2 + y 2)λ−1= −= ⇒ 2λxy 2 + x (x 2 + y 2 ) + 2λx 3 = 0⇒λ= −解 1 = ⇒ u =+ϕ(y )= −及 u (0,1) = 0 ⇒ u =− 1解 2 u (x , y ) = ∫dx −dy= ∫1y0dy + ∫0xdxx 2 + y 2y15. 求 ∫∫2xzdydz + yzdzdx − z 2dxdy , 其中Σ 为Σz = 与 z = 所围立体表面的外侧.解 记Σ 所围立体为Ω, 则∫∫ 2xzdydz + yzdzdx − z 2dxdy = ∫∫∫ zdxdydzΣ Ω∂x y 2∂P ∂Q∂y ∂x ∂y y 2= − 1= + 1 − 1 == zdz dxdy +∫ 22 2zdz dxdyx 2 +y 2 ≤z 2 x 2 +y 2 ≤8 −z 2= ∫02z ⋅πz 2dz + 2z ⋅π(8 − z 2 )dz = 8π 五、(本题 10 分) 16. 将函数f (x ) =展开为x − 1 的幂级数.解 f (x ) =4x − 3 = 2 +12 1 1= ⋅ −3 1 +1 − (x − 1)= −n(x − 1)n −(x − 1)n=( −1)nn +1− 1 (x − 1)n, 0 < x < 2六、(本题8 分) 17. 设 f (x ) =(x − 1)n , 求f (n ) (1) .解 f (x ) = (x − 1)nf (k ) (1) =, (k = 0,1, 2, )f (n ) (1) == e −1七、(本题8 分)18. 设 f (x ) 在(−1,1) 内具有三阶连续导数, 且f ′′′(0) ≠ 0, 证明: 级数∞ 1 1绝对收敛.(2x +1)(x − 2) 2x +1 x − 22 1 2(x − 1) +3 (x − 1) − 1 = + 证明 lim x →∑ {n [f ( ) − f ( − )] − 2f ′(0)}n =1 n n( )( ) = lim = > 0→ lim n f n 1 − f − n 1− 2f ' 0= f ''' 0 > 0f (x ) − f ( −x ) − 2xf '(0) f ′(x ) + f ′( −x ) − 2f '(0) f ′′(x ) − f ′′( −x ) ( ) ( )x →0 6 3( ) n →∞ 1 32故由级数收敛, 可知级数∞ 1 1n lim 3 x →0 xlim 2 ∑ {n [f ( ) − f ( − )] − 2f ′(0)}n =1 n n绝对收敛.x →0 3x limx →0 6x ===f ′′′ x + f ′′′ −x f ''' 0。

上海交通大学2002-2010年保送生考试数学试题

上海交通大学2002-2010年保送生考试数学试题

y
20.(本题 14 分)设数列{an}满足关系 an+1 = 2an2 −1 (n = 1, 2,L) ,若 N 满足
aN = 1(N = 2, 3,L) , 试证明:(1) | a1 |≤ 1;
(2)
a1
=
cos
kπ 2N −2
(k 为整数)
21.(本题 16 分)设 f (x) =| lg x |, a,b 为实数,且
10.若 a,b 满足关系: a 1− b2 + b 1− a2 = 1 ,则 a2+b2=____________. 11. (x2 +1− 1 )9 的展开式中 x9 的系数是_____________.
2x
12.当1 ≤ a < 2 时,方程 a2 − x2 = 2 − | x | 的相异实根个数共有_____________个.
7.
(1 −
1 22
)(1 −
1 32
)L(1

1 n2
)
的值为_____________.
8.函数
y
=
sec2 sec2
x x
− +
tgx tgx
的值域为______________.
9.若圆内接四边形 ABCD 的边长 AB=4,BC=8,CD=9,DA=7,则 cosA=__________.
上海交通大学 2002 年保送生考试数学试题
一、填空题(本题共 64 分,每小题 4 分)
1.设方程 x3=1 的一个虚数根为ω, 则ω 2n + ω n +1 (n 是正整数)=__________.
2.设 a,b 是整数,直线 y=ax+b 和 3 条抛物线:y=x2+3,y=x2+6x+7 与 y=x2+4x+5 的交点个数 分别是 2,1,0,则(a,b)=___________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年上海交通大学冬令营选拔测试
数学试题
说明:考试时间2小时,考生根据自己情况选题作答,综合优秀或单科突出给予A的认定。

满分l00分。

一、填空题(每题5分.共50分)
1.矩形中,,,过作相距为的平
行线,则.
2.一个正实数与它的整数部分,小数部分成等比数列,那么这个
正实数是.
3.的末尾有连续个零.
4.展开式中,项的系数为.
5.在地面距离塔基分别为100、200、300的处测得塔顶的仰角分别为,且,则塔高为.
6.三人玩剪子、石头、布的游戏,在一次游戏中,三人不分输赢的概率为;在一次游戏巾,甲获胜的概率为.
7.函数在上单调递增,则实数的取值范围
是.
8.是的非实数根,.
9.2张100元,3张50元,4张10元人民币,共可组成种不同的面值.
10.已知,则数列()前l00项和为.
二、解答题(第11题8分,第12、13、14题每题10分,第15题12分)
11.,,有两个相等根,
求证:成等差数列
12.椭圆,一顶点,是否存在这样的以为直角顶点的内接于椭圆的等腰直角三角形,若存在,求出共有几个.若不存在,请说明理由.
13.已知,是实数,是复数,求的最大值.
14.若函数形式为,其中为关于的多项式,
为关于的多项式,则称为类函数,判断下列函数是否是类函数,并说明理由.
(1);
(2).
15.设,解方程.。

相关文档
最新文档