人教新版高中数学必修一《指数函数》习题

合集下载

人教版数学高一必修一同步训练 指数函数(一)

人教版数学高一必修一同步训练  指数函数(一)

3.1.2 指数函数(一)一、基础过关1.下列以x 为自变量的函数中,是指数函数的是 ( )A .y =(-4)xB .y =πxC .y =-4xD .y =a x +2(a >0且a ≠1)2.函数f (x )=(a 2-3a +3)a x 是指数函数,则有( )A .a =1或a =2B .a =1C .a =2D .a >0且a ≠1 3.函数y =21x 的值域是( )A .(0,+∞)B .(0,1)C .(0,1)∪(1,+∞)D .(1,+∞)4.如果某林区森林木材蓄积量每年平均比上一年增长11.3%,经过x 年可以增长到原来的y 倍,则函数y =f (x )的图象大致为( )5.函数f (x )=a x 的图象经过点(2,4),则f (-3)的值为____________. 6.函数y =8-23-x (x ≥0)的值域是________. 7.比较下列各组数中两个值的大小: (1)0.2-1.5和0.2-1.7;(2)(14)13和(14)23; (3)2-1.5和30.2.8.判断下列函数在(-∞,+∞)内是增函数,还是减函数.(1)y =4x ;(2)y =⎝⎛⎭⎫14x ;(3)y =2x3. 二、能力提升9.设函数f (x )=⎩⎪⎨⎪⎧2x , x <0,g (x ), x >0. 若f (x )是奇函数,则g (2)的值是( )A .-14B .-4C.14 D .4 10.函数y =a |x |(a >1)的图象是( )11.若f (x )=⎩⎪⎨⎪⎧a x(x >1),(4-a2)x +2 (x ≤1),是R 上的单调递增函数,则实数a 的取值范围为 ________.12.求函数y =⎝⎛⎭⎫12x 2-2x +2(0≤x ≤3)的值域. 三、探究与拓展13.当a >1时,判断函数y =a x +1a x -1是奇函数.答案1.B 2.C 3.C 4.D 5.186.4,8)12.解 令t =x 2-2x +2,则y =⎝⎛⎭⎫12t, 又t =x 2-2x +2=(x -1)2+1, ∵0≤x ≤3,∴当x =1时,t min =1; 当x =3时,t max =5. 故1≤t ≤5, ∴⎝⎛⎭⎫125≤y ≤⎝⎛⎭⎫121, 故所求函数的值域为⎣⎡⎦⎤132,12.13.证明 由a x -1≠0,得x ≠0,故函数定义域为{x |x ≠0},易判断其定义域关于原点对称. 又f (-x )=a -x +1a -x -1=(a -x +1)a x (a -x -1)a x =1+a x 1-a x =-f (x ),∴f (-x )=-f (x ),∴函数y =a x +1a x -1是奇函数.。

4.2指数函数(一)—基础练习-【新教材】人教A版(2019)高中数学必修第一册同步练习

4.2指数函数(一)—基础练习-【新教材】人教A版(2019)高中数学必修第一册同步练习
1) 求 c , m 的值
2) 若空气中一氧化碳浓度不高于 0.5 ppm 为正常,问至少排气多少分钟,这个地下车库中的一氧化碳含量才能 达到正常状态?
19.已知函数 f (x) bax (a , b 为常数且 a 0 , a 1) 的图象经过点 A(1,8) , B(3,32) (1)试求 a , b 的值;
4.2 指数函数(一)
一、单选题
1.若函数 f (x) (1 a 3)ax 是指数函数,则 f (1) 的值为 (
)
2
2
A.2
B. 2 2
C. 2 2
D. 2
2.函数 f (x) 1 2x 1 的定义域为 (
)
x3
A. (3 , 0]
B. (3 ,1]
C. ( , 3) (3 , 0]
D. ( , 3) (3 ,1]
14.函数 f (x) 3x 5 的值域是 .
15.已知
y
f (x) 是定义在 R
上的奇函数,且当 x 0 时,
f (x)
1 4x
1 2x
,则当 x 0 时,
f
(x)
f (x) 的值域为 .
;函数
16.已知函数
f
x
a x ,x 1
2 3a x 1,x
1
(1)若函数 f (x) 在 ( ,1] 上为减函数,则实数 a 的取值范围是 ;
A.10 天
B.15 天
C.19 天
6.已知
a
1.50.2

b
1.30.01

c
(
2
1
)3
,则
(
)
3
A. b c a
B. a b c

人教版数学高一-(新课标人教版A)数学必修一 2-1-2-2指数函数同步练习

人教版数学高一-(新课标人教版A)数学必修一 2-1-2-2指数函数同步练习

双基达标 (限时20分钟)1.若指数函数f (x )=(a +1)x 是R 上的减函数,那么a 的取值范围为( ).A .a <2B .a >2C .-1<a <0D .0<a <1解析 由f (x )=(a +1)x 是R 上的减函数可得,0<a +1<1,∴-1<a <0.答案 C2.函数y =a x -(b +1)(a >0且a ≠1)的图象在第一、三、四象限,则必有(). A .0<a <1, b >0 B .0<a <1,b <0C . a >1,b <1D .a >1,b >0解析 画出草图如下图:结合图形,可得a >1且b +1>1,∴a >1,b >0.答案 D3.函数y =⎝⎛⎭⎫121-x 的单调递增区间为( ).A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)解析 y =⎝⎛⎭⎫121-x =12×2x ,∴在(-∞,+∞)上为增函数.答案 A4.a =0.80.7, b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是________.解析 y =0. 8x 为减函数,∴0.80.7>0.80.9,且0.80.7<1,而1.20.8>1,∴1.20.8>0.80.7>0.80.9.答案 c >a >b5.设23-2x <0.53x -4,则x 的取值范围是________.解析 ∵0.53x -4=⎝⎛⎭⎫123x -4=24-3x ,∴由23-2x <24-3x ,得3-2x <4-3x ,∴x <1.答案 (-∞,1)6.(1)已知3x ≥30.5,求实数x 的取值范围;(2)已知0.2x <25,求实数x 的取值范围.解 (1)因为3>1,所以指数函数f (x )=3x 在R 上是增函数.由3x ≥30.5,可得x ≥0.5,即x 的取值范围为[0.5,+∞).(2)因为0<0.2<1,所以指数函数f (x )=0.2x 在R 上是减函数.因为25=⎝⎛⎭⎫15-2=0.2-2,所以0.2x <0.2-2. 由此可得x >-2,即x 的取值范围为(-2,+∞).综合提高 (限时25分钟)7.已知a =30.2, b =0.2-3,c =(-3)0.2,则a ,b ,c 的大小关系为 ( ).A .a >b >cB .b >a >cC .c >a >bD .b >c >a解析 c <0,b =53>3,1<a <3,∴b >a >c .答案 B8.若⎝⎛⎭⎫122a +1<⎝⎛⎭⎫123-2a ,则实数a 的取值范围是( ).A .(1,+∞)B.⎝⎛⎭⎫12,+∞ C .(-∞,1)D.⎝⎛⎭⎫-∞,12 解析 函数y =⎝⎛⎭⎫12x 在R 上为减函数,∴2a +1>3-2a ,∴a >12. 答案 B9.函数y =a x 在[0,1]上的最大值与最小值之和为3,则a =________.解析 由已知得a 0+a 1=3,∴1+a =3,∴a =2.答案 210.若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围是________. 解析 ∵f (x )的定义域为R ,所以2x 2+2ax -a -1≥0恒成立,即x 2+2ax -a ≥0恒成立,∴Δ=4a 2+4a ≤0,-1≤a ≤0.答案 [-1,0]11.解不等式a x +5<a 4x -1(a >0,且a ≠1). 解 当a >1时,原不等式可变为x +5<4x -1. 解得x >2;当0<a <1时,原不等式可变为x +5>4x -1. 解得x <2.故当a >1时,原不等式的解集为(2,+∞); 当0<a <1时,原不等式的解集为(-∞,2).12.(创新拓展)设函数f (x )=e x a +a e x ,(e 为无理数,且e ≈2.71828…)是R 上的偶函数且a >0. (1)求a 的值;(2)判断f (x )在(0,+∞)上的单调性.解 (1)∵f (x )是R 上的偶函数,∴f (-1)=f (1), ∴e -1a +a e -1=e a +a e ,即1a e -a e =e a-a e. ∴1e ⎝⎛⎭⎫1a -a =e ⎝⎛⎭⎫1a -a , ∴1a-a =0,∴a 2=1,又a >0,∴a =1. (2)f (x )=e x +e -x .设x 1,x 2>0,且x 1<x 2, f (x 2)-f (x 1)=e x 2+e -x 2-e x 1-e -x 1=e x 2-e x 1+1e x 2-1e x 1=e x 2-e x 1+e x 1-e x 2e x 1e x 2=(e x 2-e x 1)⎝⎛⎭⎫1-1e x 1e x 2.∵x 1,x 2>0,x 1<x 2,∴e x 2>e x 1且e x 1e x 2>1,∴(e x 2-e x 1)⎝⎛⎭⎫1-1e x 1e x 2>0,即f (x 2)>f (x 1),∴f (x )在(0,+∞)上为增函数.。

4.2 指数函数(精练)(解析版) -人教版高中数学精讲精练(必修一)

4.2 指数函数(精练)(解析版) -人教版高中数学精讲精练(必修一)

x
2
1 ,故值域为 y
|
0
y
1
.
8.(2021·黑龙江·绥化市第一中学高一期中)已知函数 f x 4x a 2x 3 , a R .
(1)当 a 4 ,且 x 0, 2 时,求函数 f x 的值域;
(2)若函数 f x 在0, 2 的最小值为1,求实数 a 的值;
【答案】(1)1,3 (2) a 2 2

y
2
x
是指数函数;
④ y xx 的底数是 x 不是常数,不是指数函数;

y
3
1 x
的指数不是自变量
x
,不是指数函数;
1
⑥ y x3 是幂函数.
故答案为:③
9.(2021·全国·高一专题练习)函数 y a2 5a 5 ax 是指数函数,则 a 的值为________.
【答案】 4
f
x
ax2 2x ,
a
1 x
x 1
3a,
x
1 的最小值为
2,则实数
a 的取值范围是______.
【答案】1,
【解析】由题意,函数
f
x
ax2 2x ,
a 1 x
x 1
3a, x
1 的最小值为
2

因为函数 f x 在[1, ) 上为增函数,可得 x 1时,函数 f x 有最小值为 2 ,
则当 x (,1) 时,函数 f x 2 , min

A. c a b
B. c b a
【答案】A
1
2
【解析】
b
1 4
3
1 2
3

C. b c a

高中数学人教版必修一《指数函数》习题

高中数学人教版必修一《指数函数》习题

2.1 指数函数一、选择题1、若指数函数在上是减函数,那么()A、B、C、D、2、已知,则这样的()A、存在且只有一个B、存在且不只一个C、存在且D、根本不存在3、函数在区间上的单调性是()A、增函数B、减函数C、常数D、有时是增函数有时是减函数4、下列函数图象中,函数,与函数的图象只能是()5、函数,使成立的的值的集合是()A、B、C、D、6、函数使成立的的值的集合()A、是B、有且只有一个元素C、有两个元素D、有无数个元素7、若函数(1)x y a b =+-(0a >且1a ≠)的图象不经过第二象限,则有 ( )A 、1a >且1b <B 、01a <<且1b ≤C 、01a <<且0b >D 、1a >且0b ≤8、F(x)=(1+)0)(()122≠⋅-x x f x 是偶函数,且f(x)不恒等于零,则f(x)( ) A 、是奇函数 B 、可能是奇函数,也可能是偶函数C 、是偶函数D 、不是奇函数,也不是偶函数二、填空题9、 函数的定义域是_________。

10、 指数函数的图象经过点,则底数的值是_________。

11、 将函数的图象向_________平移________个单位,就可以得到函数的图象。

12、 函数,使是增函数的的区间是_________三、解答题13、已知函数是任意实数且, 证明:14、已知函数 222xx y -+= 求函数的定义域、值域15、已知函数(1)求的定义域和值域; (2)讨论的奇偶性; (3)讨论的单调性。

参考答案一、选择题B;2、A;3、B;4、C;5、C;6、C;7、D;8、A 二、填空题9、10、11、右、212、三、解答题13、证明:即14、 解:由222xx y -+=得 012222=+⋅-x x y ∵x ∈R, ∴△≥0, 即 0442≥-y , ∴12≥y , 又∵0>y ,∴1≥y 15、 解:(1)的定义域是R ,令,解得的值域为(2)是奇函数。

新教材高中数学第四章指数函数与对数函数 指数函数的概念课时作业新人教A版必修第一册

新教材高中数学第四章指数函数与对数函数 指数函数的概念课时作业新人教A版必修第一册

4.2.1 指数函数的概念必备知识基础练1.(多选)下列函数是指数函数的有( ) A .y =x 4B .y =(12)xC .y =22xD .y =-3x2.已知某种细胞分裂时,由1个分裂成2个,2个分裂成4个……依此类推,那么1个这样的细胞分裂3次后,得到的细胞个数为( )A .4个B .8个C .16个D .32个3.如果指数函数f (x )=a x(a >0,且a ≠1)的图象经过点(2,4),那么a 的值是( ) A . 2 B .2 C .3 D .44.若函数f (x )是指数函数,且f (2)=2,则f (x )=( ) A .(2)x B .2xC .(12)xD .(22)x5.已知f (x )=3x -b(b 为常数)的图象经过点(2,1),则f (4)的值为( )A .3B .6C .9D .86.已知函数f (x )=⎩⎪⎨⎪⎧2x,x <0,3x ,x >0,则f (f (-1))=( )A .2B . 3C .0D .127.已知函数y =a ·2x和y =2x +b都是指数函数,则a +b =________.8.已知函数f (x )是指数函数,且f (-32)=525,则f (3)=________.关键能力综合练1.若函数y =(m 2-m -1)·m x是指数函数,则m 等于( ) A .-1或2 B .-1 C .2 D .122.函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +3,x ≤0,则f (f (-2))的值为( )A .14B .12C .2D .43.若函数f (x )=(12a -1)·a x是指数函数,则f (12)的值为( )A .-2B .2C .-2 2D .2 24.若函数y =(2a -1)x(x 是自变量)是指数函数,则a 的取值范围是( ) A .a >0且a ≠1 B .a ≥0且a ≠1 C .a >12且a ≠1 D .a ≥125.某产品计划每年成本降低p %,若三年后成本为a 元,则现在成本为( ) A .a (1+p %)元 B .a (1-p %)元 C .a (1-p %)3元 D .a1+p %元 6.(多选)设指数函数f (x )=a x(a >0,且a ≠1),则下列等式中正确的是( ) A .f (x +y )=f (x )f (y ) B .f (x -y )=f (x )f (y )C .f (xy)=f (x )-f (y ) D .f (nx )=[f (x )]n(n ∈Q )7.某厂2018年的产值为a 万元,预计产值每年以7%的速度增加,则该厂到2022年的产值为________万元.8.若函数y =(k +2)a x+2-b (a >0,且a ≠1)是指数函数,则k =________,b =________. 9.已知指数函数f (x )=a x(a >0,且a ≠1), (1)求f (0)的值;(2)如果f (2)=9,求实数a 的值.10.已知函数f (x )=(a 2+a -5)a x是指数函数. (1)求f (x )的表达式;(2)判断F (x )=f (x )-f (-x )的奇偶性,并加以证明.核心素养升级练1.某乡镇现在人均一年占有粮食360千克,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x 年后若人均一年占有y 千克粮食,则y 关于x 的解析式为( )A .y =360(1.041.012)x -1B .y =360×1.04xC .y =360×1.04x1.012D .y =360(1.041.012)x2.已知函数f (x )=⎩⎪⎨⎪⎧3x(x >0)2x -3(x ≤0),若f (a )-f (2)=0,则实数a 的值等于________.3.截止到2018年底,我国某市人口约为130万.若今后能将人口年平均递增率控制在3‰,经过x 年后,此市人口数为y (万).(1)求y 与x 的函数关系y =f (x ),并写出定义域;(2)若按此增长率,2029年年底的人口数是多少?(3)哪一年年底的人口数将达到135万?4.2.1 指数函数的概念必备知识基础练1.答案:BC解析:对于A,函数y =x 4不是指数函数, 对于B,函数y =(12)x是指数函数;对于C,函数y =22x=4x是指数函数; 对于D,函数y =-3x不是指数函数. 2.答案:B解析:由题意知1个细胞分裂3次的个数为23=8. 3.答案:B解析:由题意可知f (2)=a 2=4,解得a =2或a =-2(舍). 4.答案:A解析:由题意,设f (x )=a x(a >0且a ≠1), 因为f (2)=2,所以a 2=2,解得a = 2. 所以f (x )=(2)x. 5.答案:C 解析:f (2)=32-b=1=30,即b =2,f (4)=34-2=9.6.答案:B解析:f (-1)=2-1=12,f (f (-1))=f (12)=312= 3.7.答案:1解析:因为函数y =a ·2x是指数函数,所以a =1, 由y =2x +b是指数函数,所以b =0,所以a +b =1. 8.答案:125解析:设f (x )=a x(a >0且a ≠1),则f (-32)=a -32=525=5-32,得a =5,故f (x )=5x,因此,f (3)=53=125.关键能力综合练1.答案:C解析:由题意可得⎩⎪⎨⎪⎧m 2-m -1=1m >0m ≠1,解得m =2.2.答案:C解析:由题意f (-2)=-2+3=1,∴f (f (-2))=f (1)=2. 3.答案:B解析:因为函数f (x )=(12a -1)·a x 是指数函数,所以12a -1=1,即a =4,所以f (x )=4x,那么f (12)=412=2.4.答案:C解析:由于函数y =(2a -1)x(x 是自变量)是指数函数,则2a -1>0且2a -1≠1,解得a >12且a ≠1.5.答案:C解析:设现在成本为x 元,因为某产品计划每年成本降低p %,且三年后成本为a 元, 所以(1-p %)3x =a , 所以x =a(1-p %)3.6.答案:ABD解析:因指数函数f (x )=a x(a >0,且a ≠1),则有: 对于A,f (x +y )=ax +y=a x ·a y=f (x )f (y ),A 中的等式正确;对于B,f (x -y )=a x -y=a x·a -y=a x a y =f (x )f (y ),B 中的等式正确;对于C,f (x y )=a x y ,f (x )-f (y )=a x -a y ,显然,a xy≠a x -a y,C 中的等式错误;对于D,n ∈Q ,f (nx )=a nx =(a x )n =[f (x )]n,D 中的等式正确. 7.答案:a (1+7%)4解析:2018年产值为a ,增长率为7%. 2019年产值为a +a ×7%=a (1+7%)(万元).2020年产值为a (1+7%)+a (1+7%)×7%=a (1+7%)2(万元). ……2022年的产值为a (1+7%)4万元. 8.答案:-1 2解析:根据指数函数的定义,得⎩⎪⎨⎪⎧k +2=1,2-b =0,解得⎩⎪⎨⎪⎧k =-1,b =2.9.解析:(1)f (0)=a 0=1. (2)f (2)=a 2=9,∴a =3.10.解析:(1)由a 2+a -5=1,可得a =2或a =-3(舍去), ∴f (x )=2x.(2)F (x )=2x -2-x,定义域为R , ∴F (-x )=2-x-2x=-F (x ), ∴F (x )是奇函数.核心素养升级练1.答案:D解析:不妨设现在乡镇人口总数为a ,则现在乡镇粮食总量为360a ,故经过x 年后,乡镇人口总数为a (1+0.012)x ,乡镇粮食总量为360a (1+0.04)x, 故经过x 年后,人均占有粮食y =360a (1+0.04)xa (1+0.012)x =360(1.041.012)x. 2.答案:2解析:由已知,得f (2)=9; 又当x >0时,f (x )=3x, 所以当a >0时,f (a )=3a, 所以3a-9=0,所以a =2. 当x <0时,f (x )=2x -3, 所以当a <0时,f (a )=2a -3, 所以2a -3-9=0,所以a =6, 又因为a <0,所以a ≠6. 综上可知a =2.3.解析:(1)2018年年底的人口数为130万;经过1年,2019年年底的人口数为130+130×3‰=130(1+3‰)(万);经过2年,2020年年底的人口数为130(1+3‰)+130(1+3‰)×3‰=130(1+3‰)2(万);经过3年,2021年年底的人口数为130(1+3‰)2+130(1+3‰)2×3‰=130(1+3‰)3(万).……所以经过的年数与(1+3‰)的指数相同,所以经过x年后的人口数为130(1+3‰)x(万).即y=f(x)=130(1+3‰)x(x∈N*).(2)2029年年底,经过了11年,过2029年底的人口数为130(1+3‰)11≈134(万).(3)由(2)可知,2029年年底的人口数为130(1+3‰)11≈134<135.2030年年底的人口数为130(1+3‰)12≈134.8(万),2031年年底的人口数为130(1+3‰)13≈135.2(万).所以2031年年底的人口数将达到135万.。

最新人教版高中数学必修第一册第4章指数函数与对数函数4.3.2对数的运算

最新人教版高中数学必修第一册第4章指数函数与对数函数4.3.2对数的运算

4.3.2 对数的运算 课后训练巩固提升A.log a x 2=2log a xB.log a x 2=2log a |x|C.log a (xy )=log a x+log a y xy )=log a |x|+log a |y|xy>0,所以x>0,y>0或x<0,y<0.若x<0,则A 不成立;若x<0,y<0,则C 也不成立,故选AC . a=log 32,则log 38-2log 36=( ) A.a-2 B.5a-2+a )2 D.3a-a 2-138-2log 36=3log 32-2(log 32+log 33)=3a-2(a+1)=a-2. 3.若log 513×log 36×log 6x=2,则x 等于( ) A.9B.19C.25D.125由对数换底公式得-lg3lg5×lg6lg3×lgxlg6=2,即lg x=-2lg 5,解得x=5-2=125.4.若lg a ,lg b 是方程2x 2-4x+1=0的两根,则(lg a b )2=()A.14 B.12 D.2lg a+lg b=2,lg a ·lg b=12.所以(lg a b )2=(lg a-lg b )2=(lg a+lg b )2-4lg a ·lg b=22-4×12=2.5.若2.5x =1 000,0.25y =1 000,则1x −1y =( ) A.13B.3C.-13D.-3x=log 2.51 000,y=log 0.251 000,所以1x =log 1 0002.5,1y =log 1 0000.25,所以1x −1y =log 1 0002.5-log 10000.25=log 1 00010=lg10lg1 000=13.lg √20= .√5+lg √20=lg √100=lg 10=1. 7.计算log 2125×log 318×log 519的值为 .=lg 125lg2×lg 18lg3×lg 19lg5 =)×(-3lg2)×(-2lg3)lg2×lg3×lg5=-12.128.已知4a =5b =10,则1a +2b = .4a =5b =10,∴a=log 410,1a =lg 4,b=log 510,1b =lg 5,∴1a +2b =lg 4+2lg 5=lg 4+lg 25=lg 100=2.:(1)(log 3312)2+log 0.2514+9log 5√5-lo g√31;(2)2lg2+lg31+12lg0.36+13lg8.(log 3312)2+log 0.2514+9log 5√5-lo g√31=(12)2+1+9×12-0=14+1+92=234. (2)2lg2+lg31+12lg0.36+13lg8=2lg2+lg31+12lg0.62+13lg 23=2lg2+lg31+lg0.6+lg2=2lg2+lg31+lg6-lg10+lg2=2lg2+lg3lg6+lg2=2lg2+lg3lg2+lg3+lg2=2lg2+lg32lg2+lg3=1.log 23=a ,log 37=b ,用a ,b 表示log 4256.log 23=a ,所以1a =log 32.又因为log 37=b , 所以log 4256=log 356log 42=log 37+3log 32log 7+log 2+1=b+3a b+1a +1=ab+3ab+a+1.1.计算(log 32+log 23)2-3log 23−2log 32的值是( )B.log 36C.2D.1=(log 32)2+2log 32·log 23+(log 23)2-(log 32)2-(log 23)2=2. 2.若lg x-lg y=t ,则lg (x 2)3-lg (y 2)3=( ) A.3tB.32tC.tD.t 2(x 2)3-lg (y 2)3=3lg x 2-3lg y 2=3lg xy =3(lg x-lg y )=3t.a ,b ,c 满足16a =505b =2 020c =2 018,则下列式子正确的是( ) A.1a +2b =2c B.2a +2b =1cC.1a +1b =2cD.2a+1b=2c,得42a =505b =2 020c =2 018,所以2a=log 42 018,b=log 5052 018,c=log 2 0202 018,所以12a =log 20184,b =log 2 018505,1c=log 2 0182 020,而4×505=2 020,所以12a +1b =1c ,即1a +2b =2c ,故选A .4.方程log 2x+1log(x+1)2=1的解是x= .log 2x+log 2(x+1)=1,即log 2[x (x+1)]=1,即x (x+1)=2,解得x=1或x=-2.又{,x +1>0,即x >0,≠1,所以x=1.x ,y ,z 都是大于1的正数,m>0,且log x m=24,log y m=40,log (xyz )m=12,则log z m 的值24,log y m=40,∴log m x=124,log m y=140.又log m (xyz )=log m x+log m y+log m z=112,∴log m z=12-log m x-log m y=112−124−140=160. 60.log 23×log 34×log 45×…×log (k+1)(k+2)(k ∈N *)为整数的k 称为“企盼数”,则在区间[1,1 000]上“企盼数”共有 个.log 23×log 34×log 45×…×log (k+1)(k+2)=lg3lg2×lg4lg3×…×lg (k+2)lg (k+1)=log 2(k+2)为整数,可知k+2=2n (n ∈∈[1,1 000],所以k+2=22,23,…,29,故k ∈{2,6,14,30,62,126,254,510},所以在区间[1,1 000]上共有”.7.已知4a =8,2m =9n =36,且1m+12n=b ,试比较1.5a 与0.8b 的大小.4a =8,∴22a =23,∴2a=3,即a=32.=9n =36,∴m=log 236,n=log 936. 又1m +12n =b ,∴b=1log 236+12log 936=log 362+12log 369=log 362+log 363=log 366=12.∵y=1.5x 在R 上单调递增,y=0.8x 在R 上单调递减,∴1.5a =1.532>1.50=1,0.8b =0.812<0.80=1, ∴1.5a >0.8b .8.甲、乙两人解关于x 的方程log 2x+b+c log x 2=0,甲写错了常数b ,得到根14,18;乙写错了常数c ,得到根12,64.求原方程的根. (log 2x )2+b log 2x+c=0.∵甲写错了常数b ,得到的根为14和18, ∴c=log 214×log 218=6.∵乙写错了常数c ,得到的根为12和64, ∴b=-(log 212+log 264)=-(-1+6)=-5. ∴原方程为(log 2x )2-5log 2x+6=0,即(log 2x-2)(log 2x-3)=0.∴log 2x=2或log 2x=3,即x=4或x=8.。

高一数学(必修一)《第四章-指数函数与对数函数》练习题及答案解析-人教版

高一数学(必修一)《第四章-指数函数与对数函数》练习题及答案解析-人教版

高一数学(必修一)《第四章 指数函数与对数函数》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.某超市宣传在“双十一”期间对顾客购物实行一定的优惠,超市规定:①如一次性购物不超过200元不予以折扣;②如一次性购物超过200元但不超过500元的,按标价给予九折优惠;③如一次性购物超过500元的,其中500元给予9折优惠,超过500元的部分给予八五折优惠.某人两次去该超市购物分别付款176元和441元,如果他只去一次购买同样的商品,则应付款( )A .608元B .591.1元C .582.6元D .456.8元2.德国天文学家,数学家开普勒(J. Kepier ,1571—1630)发现了八大行星的运动规律:它们公转时间的平方与离太阳平均距离的立方成正比.已知天王星离太阳平均距离是土星离太阳平均距离的2倍,土星的公转时间约为10753d .则天王星的公转时间约为( )A .4329dB .30323dC .60150dD .90670d3.函数()f x = )A .()1,0-B .(),1-∞-和()0,1C .()0,1D .(),1-∞-和()0,∞+4.将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( )A .90100a <<B .90110a <<C .100110a <<D .80100a <<5.某市工业生产总值2018年和2019年连续两年持续增加,其中2018年的年增长率为p ,2019年的年增长率为q ,则该市这两年工业生产总值的年平均增长率为( )A .2p q +;B .()()1112p q ++-;C ;D 1.6.某污水处理厂为使处理后的污水达到排放标准,需要加入某种药剂,加入该药剂后,药剂的浓度C (单位:3mg/m )随时间t (单位:h )的变化关系可近似的用函数()()()210010419t C t t t t +=>++刻画.由此可以判断,若使被处理的污水中该药剂的浓度达到最大值,需经过( )A .3hB .4hC .5hD .6h7.某同学参加研究性学习活动,得到如下实验数据:以下函数中最符合变量y 与x 的对应关系的是( )A .129y x =+B .245y x x =-+C .112410x y =⨯- D .3log 1y x =+ 8.某种植物生命力旺盛,生长蔓延的速度越来越快,经研究,该一定量的植物在一定环境中经过1个月,其覆盖面积为6平方米,经过3个月,其覆盖面积为13.5平方米,该植物覆盖面积y (单位:平方米)与经过时间x (x ∈N )(单位:月)的关系有三种函数模型x y pa =(0p >,1a >)、log a y m x =(0m >,1a >)和y nx α=(0n >,01α<<)可供选择,则下列说法正确的是( )A .应选x y pa =(0p >,1a >)B .应选log a y m x =(0m >,1a >)C .应选y nx α=(0n >,01α<<)D .三种函数模型都可以9.已知函数()21,1,8, 1.x x f x x x ⎧-≤=⎨>⎩若()8f x =,则x =( ) A .3-或1 B .3- C .1 D .310.函数e 1()sin 2e 1x x f x x +=⋅-的部分图象大致为( ) A . B .C .D .二、填空题11.2021年8月30日第九届未来信息通信技术国际研讨会在北京开幕.研讨会聚焦于5G 的持续创新和演进、信息通信的未来技术前瞻与发展、信息通信技术与其他前沿科技的融合创新.香农公式2log 1S C W N ⎛⎫=+ ⎪⎝⎭是被广泛公认的通信理论基础和研究依据,它表示在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N 叫作信噪比.若不改变信道带宽W ,而将信噪比S N从11提升至499,则最大信息传递速率C 大约会提升到原来的______倍(结果保留1位小数).(参考数据:2log 3 1.58≈和2log 5 2.32≈)12.已测得(,)x y 的两组值为(1,2)和(2,5),现有两个拟合模型,甲21y x =+,乙31y x =-.若又测得(,)x y 的一组对应值为(3,10.2),则选用________作为拟合模型较好.13.半径为1的半圆中,作如图所示的等腰梯形ABCD ,设梯形的上底2BC x =,则梯形ABCD 的最长周长为_________.三、解答题14.如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?15.以贯彻“节能减排,绿色生态”为目的,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (百元)与月处理量x (吨)之间的函数关系可近似地表示为212800200y x x =-+. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(提示:平均处理成本为y x) (2)该单位每月处理成本y 的最小值和最大值分别是多少百元? 16.如图,以棱长为1的正方体的三条棱所在直线为坐标轴,建立空间直角坐标系O xyz -,点P 在线段AB 上,点Q 在线段DC 上.(1)当2PB AP =,且点P 关于y 轴的对称点为M 时,求PM ;(2)当点P 是面对角线AB 的中点,点Q 在面对角线DC 上运动时,探究PQ 的最小值.17.经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位: t ,100150)X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量[100X ∈,110),则取105X =,且105X =的概率等于需求量落入[100,110)的频率),求T 的分布列.18.为发展空间互联网,抢占6G 技术制高点,某企业计划加大对空间卫星网络研发的投入.据了解,该企业研发部原有100人,年人均投入()0a a >万元,现把研发部人员分成两类:技术人员和研发人员,其中技术人员有x 名(*x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加4x %,技术人员的年人均投入调整为275x a m ⎛⎫- ⎪⎝⎭万元. (1)要使调整后研发人员的年总投入不低于调整前的100人的年总投入,则调整后的技术人员最多有多少人?(2)是否存在实数m 同时满足两个条件:①技术人员的年人均投入始终不减少;②调整后研发人员的年总投入始终不低于调整后技术人员的年总投入?若存在,求出m 的值;若不存在,请说明理由.19.某公司今年年初用81万元收购了一个项目,若该公司从第1年到第x (N x +∈且1x >)年花在该项目的其他费用(不包括收购费用)为()20x x +万元,该项目每年运行的总收入为50万元.(1)试问该项目运行到第几年开始盈利?(2)该项目运行若干年后,公司提出了两种方案:①当盈利总额最大时,以56万元的价格卖出;②当年平均盈利最大时,以92万元的价格卖出.假如要在这两种方案中选择一种,你会选择哪一种?请说明理由.20.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为0ekt P P -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,求正整数n 的最小值.21.某科技企业生产一种电子设备的年固定成本为600万元,除此之外每台机器的额外生产成本与产量满足一定的关系式.设年产量为x (0200x <,N x ∈)台,若年产量不足70台,则每台设备的额外成本为11402y x =+万元;若年产量大于等于70台不超过200台,则每台设备的额外成本为2264002080101y x x =+-万元.每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)写出年利润W (万元)关于年产量x (台)的关系式;(2)当年产量为多少台时,年利润最大,最大值为多少?22.为进一步奏响“绿水青山就是金山银山”的主旋律,某旅游风景区以“绿水青山”为主题,特别制作了旅游纪念章,决定近期投放市场,根据市场调研情况,预计每枚该纪念章的市场价y (单位:元)与上市时间x (单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个恰当的函数描述每枚该纪念章的市场价y 与上市时间x 的变化关系并说明理由:①(0)y ax b a =+≠,②()20y ax bx c a =++≠,③()log 0,0,1b y a x a b b =≠>≠,④(0)a y b a x=+≠; (2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低市场价;(3)利用你选取的函数,若存在()10,x ∈+∞,使得不等式()010f x k x -≤-成立,求实数k 的取值范围.四、多选题23.函数()()22x x af x a R =+∈的图象可能为( )A .B .C .D .五、双空题24.某种病毒经30分钟可繁殖为原来的2倍,且已知病毒的繁殖规律为y=e kt (其中k 为常数;t 表示时间,单位:小时;y 表示病毒个数),则k=____,经过5小时,1个病毒能繁殖为____个.25.已知长为4,宽为3的矩形,若长增加x ,宽减少2x ,则面积最大,此时x =__________,面积S =__________.参考答案与解析1.【答案】B【分析】根据题意求出付款441元时的实际标价,再求出一次性购买实际标价金额商品应付款即可.【详解】由题意得购物付款441元,实际标价为10441=4909元 如果一次购买标价176+490=666元的商品应付款5000.9+1660.85=591.1元.故选:B.2.【答案】B【分析】设天王星和土星的公转时间为分别为T 和T ',距离太阳的平均距离为r 和r ',根据2323T r T r =''2r r '= 结合已知条件即可求解.【详解】设天王星的公转时间为T ,距离太阳的平均距离为r土星的公转时间为T ',距离太阳的平均距离为r '由题意知2r r '= 10753T d '= 所以323238T r r T r r ⎛⎫=== ⎪'''⎝⎭所以1075310753 2.82830409.484T d '==≈⨯=故选:B.3.【答案】B【分析】分别讨论0x ≥和0x <,利用二次函数的性质即可求单调递减区间.【详解】当0x ≥时()f x 210x -+≥解得11x -≤≤,又21y x =-+为开口向下的抛物线,对称轴为0x =,此时在区间()0,1单调递减当0x <时()f x == ()21y x =+为开口向上的抛物线,对称轴为1x =-,此时在(),1-∞-单调递减综上所述:函数()f x =(),1-∞-和()0,1.故选:B.4.【答案】A【分析】首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据0y >,求x 的取值范围,即可得到a 的取值范围.【详解】设每个涨价x 元,涨价后的利润与原利润之差为y 元则290,(10)(40020)1040020200a x y x x x x =+=+⋅--⨯=-+.要使商家利润有所增加,则必须使0y >,即2100x x -<,得010,9090100x x <<∴<+<,所以a 的取值为90100a <<.故选:A5.【答案】D【分析】设出平均增长率,并根据题意列出方程,进行求解【详解】设该市2018、2019这两年工业生产总值的年平均增长率为x ,则由题意得:()()()2111x p q +=++解得11x =,21x =因为20x <不合题意,舍去 故选D .6.【答案】A【分析】利用基本不等式求最值可得.【详解】依题意,0t >,所以11t +>所以()()()()()()221001100110010010164191012116121t t C t t t t t t t ++===≤==++++++++++ 当且仅当1611t t +=+,即t =3时等号成立,故由此可判断,若使被处理的污水中该药剂的浓度达到最大值,需经过3h .故选:A .7.【答案】D 【分析】结合表格所给数据以及函数的增长快慢确定正确选项.【详解】根据表格所给数据可知,函数的增长速度越来越慢A 选项,函数129y x =+增长速度不变,不符合题意. BC 选项,当3x ≥时,函数245y x x =-+、112410x y =⨯-增长越来越快,不符合题意. D 选项,当3x ≥时,函数3log 1y x =+的增长速度越来越慢,符合题意.故选:D8.【答案】A【解析】根据指数函数和幂函数的增长速度结合题意即可得结果.【详解】该植物生长蔓延的速度越来越快,而x y pa =(0p >,1a >)的增长速度越来越快 log a y m x =(0m >,1a >)和y nx α=(0n >,01α<<)的增长速度越来越慢故应选择x y pa =(0p >,1a >).故选:A.9.【答案】B【分析】根据分段函数的解析式,分段求解即可.【详解】根据题意得x ≤1x2−1=8或188x x >⎧⎨=⎩ 解得3,x =-故选:B10.【答案】B【分析】结合图象,先判断奇偶性,然后根据x 趋近0时判断排除得选项.【详解】解:()e 1sin 2e 1x x f x x +=⋅-的定义域为()(),00,∞-+∞()()()e 1e 1sin 2sin 2e 1e 1x x x xf x x x f x --++-=⋅-=⋅=⎡⎤⎣⎦-- ()f x ∴是偶函数,排除A ,C . 又0x >且无限接近0时,101x x e e +>-且sin 20x >,∴此时()0f x >,排除D故选:B .11.【答案】2.5【分析】设提升前最大信息传递速率为1C ,提升后最大信息传递速率为2C ,根据题意求出21C C ,再利用指数、对数的运算性质化简计算即可【详解】设提升前最大信息传递速率为1C ,提升后最大信息传递速率为2C ,则由题意可知()122log 111log 12C W W =+= ()222log 1499log 500C W W =+= 所以()()232322222222122222log 25log 500log 2log 523log 523 2.328.96 2.5log 12log 2log 32log 32 1.58 3.58log 23C W C W ⨯+++⨯====≈=≈+++⨯所以最大信息传递速率C 会提升到原来的2.5倍.故答案为:2.512.【答案】甲【分析】将3x =分别代入甲乙两个拟合模型计算,即可判断.【详解】对于甲:3x =时23110y =+=,对于乙:3x =时8y =因此用甲作为拟合模型较好.故答案为:甲13.【答案】5【分析】计算得出AB CD ==ABCD 的周长为y,可得出22y x =++()0,1t,可得出224y t =-++,利用二次函数的相关知识可求得y 的最大值.【详解】过点B 、C 分别作BE AD ⊥、CF AD ⊥垂足分别为E 、F则//BE CF ,//BC EF 且90BEF ∠=,所以,四边形BCFE 为矩形所以2EF BC x ==AB CD =,BAE CDF ∠=∠和90AEB DFC ∠=∠= 所以,Rt ABE Rt DCF ≅所以12AD EF AE DF x -===-,则OF OD DF x =-= CF =AB CD ∴===设梯形ABCD 的周长为y ,则2222y x x =++=++其中01x <<令()0,1t =,则21x t =-所以()2222212425y t t t ⎛=+-+=-++=-+ ⎝⎭所以,当t =y 取最大值,即max 5y =. 故答案为:5.【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.14.【答案】(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.【分析】(1)设篱笆的一面AB 的长为 x 米,则(502)m BC x =-,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得(502)S x x =-,根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则(502)m BC x =-由题意得(502)300x x -=解得1215,10x x ==50225x -≤12.5x ∴≥15x ∴=所以,AB 的长为15米时,矩形花园的面积为300平方米;(2)由题意得()()22502250212.5312.5,12.525S x x x x x x =-=-+=--+≤<12.5x ∴=时, S 取得最大值,此时312.5S =所以,当 x 为12.5米时, S 有最大值,最大值是312.5平方米.15.【答案】(1)400吨 (2)最小值800百元,最大值1400百元【分析】(1)求出平均处理成本的函数解析式,利用基本不等式求出最值;(2)利用二次函数单调性求解最值.(1)由题意可知,二氧化碳的每吨平均处理成本为18002200y x x x =+-,显然[]400,600x ∈由基本不等式得:1800222200y x x x =+-≥= 当且仅当1800200x x =,即400x =时,等号成立 故每月处理量为400吨时,才能使每吨的平均处理成本最低;(2)212800200y x x =-+ 对称轴220012200x -=-=⨯ 函数212800200y x x =-+在[400,600]单调递增 当400x =时,则2min 14002400800800200y =⨯-⨯+= 当600x =时,则2max 160026008001400200y =⨯-⨯+= 答:该单位每月处理成本y 的最小值800百元,最大值1400百元.16.【答案】【分析】(1)根据空间直角坐标系写出各顶点的坐标,再由2PB AP =求得121,,33OP ⎛⎫= ⎪⎝⎭,得到P 与M 的坐标,再利用两点距离公式求解即可;(2)由中点坐标公式求得111,,22P ⎛⎫ ⎪⎝⎭,再根据题意设点(,1,)Q a a ,最后利用两点间的距离公式与一元二次函数配方法求PQ 的最小值.(1)所以()22211222131133333PM ⎛⎫⎛⎫=++-++= ⎪ ⎪⎝⎭⎝⎭. (2)因为点P 是面对角线AB 的中点,所以111,,22P ⎛⎫ ⎪⎝⎭,而点Q 在面对角线DC 上运动,故设点(,1,)Q a a[0,1]a ∈则(PQ a ===[0,1]a ∈所以当34a =时,PQ 取得最小值33,1,44Q ⎛⎫ ⎪⎝⎭. 17.【答案】(1)80039000,[100,130)65000,[130,150]X X T X -∈⎧=⎨∈⎩(2)0.7(3)59400 【分析】(1)由题意先分段写出,当[100x ∈,130)和[130x ∈,150)时的利润值,利用分段函数写出即可;(2)由(1)知,利润T 不少于57000元,当且仅当120150x ,再由直方图知需求量[120X ∈,150]的频率为0.7,由此估计得出结论;(3)先求出利润与X 的关系,再利用直方图中的频率计算利润分布列,最后利用公式求其数学期望.(1)解:由题意得,当[100X ∈,130)时500300(130)80039000T X X X =--=-当[130X ∈,150]时50013065000T =⨯=80039000,[100,130)65000,[130,150]X X T X -∈⎧∴=⎨∈⎩(2)解:由(1)知,利润T 不少于57000元,当且仅当120150X .由直方图知需求量[120X ∈,150]的频率为0.7所以下一个销售季度的利润T 不少于57000元的概率的估计值为0.7;(3)解:由题意及(1)可得:所以T 的分布列为:18.【答案】(1)最多有75人 (2)存在 7m =【分析】(1)根据题目要求列出方程求解即可得到结果(2)根据题目要求①先求解出m 关于x 的取值范围,再根据x 的取值范围求得m 的取值范围,之后根据题目要求②列出不等式利用基本不等式求解出m 的取值范围,综上取交集即可 (1)依题意可得调整后研发人员有()100x -人,年人均投入为()14%x a +万元则()()10014%100x x a a -+≥,解得075x ≤≤.又4575x ≤≤,*x ∈N 所以调整后的奇数人员最多有75人.(2)假设存在实数m 满足条件.由条件①,得225x a m a ⎛⎫-≥ ⎪⎝⎭,得2125x m ≥+. 又4575x ≤≤,*x ∈N 所以当75x =时,2125x +取得最大值7,所以7m ≥. 由条件②,得()()210014%25x x x a a m x ⎛⎫-+≥- ⎪⎝⎭,不等式两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥- ⎪⎪⎝⎭⎝⎭,整理得100325x m x ≤++因为10033725x x ++≥=,当且仅当10025x x =,即50x =时等号成立,所以7m ≤. 综上,得7m =.故存在实数m 为7满足条件.19.【答案】(1)第4年 (2)选择方案②,理由见解析【分析】(1)设项目运行到第x 年的盈利为y 万元,可求得y 关于x 的函数关系式,解不等式0y >可得x 的取值范围,即可得出结论;(2)计算出两种方案获利,结合两种方案的用时可得出结论.(1)解:设项目运行到第x 年的盈利为y 万元则()25020813081=-+-=-+-y x x x x x由0y >,得230810x x -+<,解得327x <<所以该项目运行到第4年开始盈利.(2)解:方案①()22308115144=-+-=--+y x x x当15x =时,y 有最大值144.即项目运行到第15年,盈利最大,且此时公司的总盈利为14456200+=万元方案②818130303012y x x x x x ⎛⎫=-+-=-+≤- ⎪⎝⎭ 当且仅当81x x=,即9x =时,等号成立. 即项目运行到第9年,年平均盈利最大,且此时公司的总盈利为12992200⨯+=万元.综上,两种方案获利相等,但方案②时间更短,所以选择方案②.20.【答案】10【分析】由题可得()400180%e k P P --=,求得ln 54k =,再由000.5%e kt P P -≥可求解. 【详解】由题意,前4个小时消除了80%的污染物因为0e kt P P -=⋅,所以()400180%ek P P --= 所以40.2e k -=,即4ln0.2ln5k -==-,所以ln 54k =则由000.5%e kt P P -≥,得ln 5ln 0.0054t ≥- 所以4ln 20013.2ln 5t ≥≈ 故正整数n 的最小值为14410-=.21.【答案】(1)2**160600,070,N 264001480,70200,N x x x x W x x x x ⎧-+-<<∈⎪⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩;(2)当年产量为80台时,年利润最大,最大值为1320万元.【分析】(1)根据题意,分段表示出函数模型,即可求解;(2)根据题意,结合一元二次函数以及均值不等式,即可求解.(1)当070x <<,*N x ∈时 211100406006060022W x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭; 当70200x ≤≤,*N x ∈时26400208064001001016001480W x x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭. ∴.2**160600,070,N 264001480,70200,N x x x x W x x x x ⎧-+-<<∈⎪⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩; (2)①当070x <<,*N x ∈时 221160600(60)120022W x x x =-+-=--+ ∴当60x =时,y 取得最大值,最大值为1200万元.②当70200x ≤≤,*N x ∈时6400148014801320W x x ⎛⎫=-+≤- ⎪⎝⎭ 当且仅当6400x x =,即80x =时,y 取得最大值1320∵13201200>∴当年产量为80台时,年利润最大,最大值为1320万元.22.【答案】(1)选择()20y ax bx c a =++≠,理由见解析(2)当该纪念章上市10天时,市场价最低,最低市场价为每枚70元(3)k ≥【分析】(1)由表格数据分析变量x 与变量y 的关系,由此选择对应的函数关系;(2)由已知数据求出函数解析式,再结合函数性质求其最值;(3)不等式可化为()17010210x k x -+≤-,由条件可得()min 17010210x k x ⎡⎤-+≤⎢⎥-⎣⎦,利用函数的单调性求()17010210y x x =-+-的最小值,由此可得k 的取值范围. (1)由题表知,随着时间x 的增大,y 的值随x 的增大,先减小后增大,而所给的函数(0)y ax b a =+≠ ()log 0,0,1b y a x a b b =≠>≠和(0)a y b a x =+≠在(0,)+∞上显然都是单调函数,不满足题意,故选择()20y ax bx c a =++≠.(2)得42102,36678,40020120,a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩∴当10x =时,y 有最小值,且min 70y =.故当该纪念章上市10天时,市场价最低,最低市场价为每枚70元.(3)令()()()1701010210f x g x x x x ==-+--(10,)x ∞∈+因为存在()10,x ∈+∞,使得不等式()0g x k -≤成立则()min k g x ≥.又()()17010210g x x x =-+-在(10,10+上单调递减,在()10++∞上单调递增 ∴当10x =+()g x取得最小值,且最小值为(10g +=∴k ≥23.【答案】ABD【解析】根据函数解析式的形式,以及图象的特征,合理给a 赋值,判断选项.【详解】当0a =时()2x f x =,图象A 满足; 满足;图象C 过点()0,1,此时0a =,故C 不成立.故选:ABD【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.24.【答案】2ln2 1024【详解】当t=0.5时,y=2,∴2=12e k ,∴k=2ln 2,∴y=e 2t ln 2 当t=5时,y=e 10ln 2=210=1 024.25.【答案】1 1212【详解】S =(4+x) 32x ⎛⎫- ⎪⎝⎭=-22x +x +12=-12 (x 2-2x)+12=-12 (x -1)2+252. 当x =1时,S max =252,故填1和252.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 指数函数
一、选择题
1.函数f (x )=(a 2-1)x 在R 上是减函数,则a 的取值范围是( )
A 、1>a
B 、2<a
C 、a<2
D 、1<2<a
2.下列函数式中,满足f(x+1)=2
1f(x)的是( ) A 、 21(x+1) B 、x+4
1 C 、2x D 、2-x
3.下列f(x)=(1+a x )2x a -⋅是( )
A 、奇函数
B 、偶函数
C 、非奇非偶函数
D 、既奇且偶函数
4.函数y=1
212+-x x 是( ) A 、奇函数 B 、偶函数
C 、既奇又偶函数
D 、非奇非偶函数
5.函数y=1
21-x 的值域是( ) A 、(-1,∞) B 、(-,∞0)⋃(0,+∞)
C 、(-1,+∞)
D 、(-∞,-1)⋃(0,+∞)
6.下列函数中,值域为R +的是( )
A 、y=5x -21
B 、y=(3
1)1-x C 、y=1)21
(-x
D 、y=x 21-
7.已知0<a<1,b<-1,则函数y=a x +b 的图像必定不经过( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
二、填空题
8.函数y=11
51--x x 的定义域是 9.函数y=(3
1)1822+--x x (-31≤≤x )的值域是 10.直线x=a(a>0)与函数y=(
31)x ,y=(21)x ,y=2x ,y=10x 的图像依次交于A 、B 、C 、D 四点,则这四点从上到下的排列次序是
11.函数y=3
232x -的单调递减区间是
12.若f(52x-1)=x-2,则f(125)=
三、解答题
13、已知关于x 的方程2a
22-x -7a 1-x +3=0有一个根是2, 求a 的值和方程其余的根
14、设a 是实数,)(122)(R x a x f x ∈+-
=试证明对于任意a,)(x f 为增函数
15、已知函数f(x)=
9
|1|2--a a (a x -a x -)(a>0且a ≠1)在(-∞, +∞)上是增函数, 求实数a 的取值范围
参考答案
一、选择题
1、D ;
2、D ;
3、B ;
4、A ;
5、D ;
6、B ;
7、A
二、填空题
8.(-∞,0)⋃(0,1) ⋃(1,+ ∞)
9.[(3
1)9,39] 10.D 、C 、B 、A 。

11.(0,+∞)
12.0
三、解答题
13、解: 2a 2
-7a+3=0, ⇒a=2
1或a=3. a=21时, 方程为: 8·(21)x 2-14·(2
1)x +3=0⇒x=2或x=1-log 23 a=2时, 方程为: 21·2x 2-27·2x +3=0⇒x=2或x=-1-log 32
14、证明:设21,x x ∈R,且21x x < 则)12)(12()22(222122)
122()122()()(2121122121++-=-+=+--+-
=-x x x x x x x x a a x f x f
由于指数函数 y=x 2在R 上是增函数,且21x x <,
所以2122x x <即2122x x -<0,
又由x 2>0得12x +1>0, 22x +1>0
所以)()(21x f x f -<0即)()(21x f x f <
因为此结论与a 取值无关,所以对于a 取任意实数,)(x f 为增函数
15、解: 由于f(x)递增, 若设x 1<x 2,
则f(x 1)-f(x 2)=
9|1|2--a a [(a 1x -a 1x -)-(a 2x -a 2x -)]=9|1|2--a a (a 1x -a 2x )(1+a 1x -·a 2x -)<0, 故(a 2-9)( (a 1x -a 2x )<0.
(1)⎩⎨⎧>->091
2a a , 解得a>3; (2) ⎩⎨⎧<-<<091
02a a , 解得0<a<1.
综合(1)、(2)得a ∈(0, 1)⋃(3, +∞)。

相关文档
最新文档