桥式起重机设计计算讲义(DOC)
(完整版)桥式起重机大车运行机构的计算(DOC)

第三章桥式起重机大车运行机构的计算3.1原始数据大车运行传动方式为分别传动;桥架主梁型式,桁架式。
工作类型为中级。
3.2确定机构的传动方案本次设计采用分别驱动,即两边车轮分别由两套独立的无机械联系的驱动装置驱动,省去了中间传动轴及其附件,自重轻。
机构工作性能好,受机架变形影响小,安装和维修方便。
可以省去长的走台,有利于减轻主梁自重图大车运行机构图1 —电动机2—制动器3—咼速浮动轴4—联轴器5—减速器6—联轴器7低速浮动轴8—联轴器9 —车轮3.3车轮与轨道的选择3.3.1车轮的结构特点车轮按其轮缘可分为单轮缘形、双轮缘形和无轮缘形三种。
通常起重机大车行走车轮主要采用双轮缘车轮。
对一些在繁重条件下使用的起重机,除采用双轮缘车轮外,在车轮旁往往还加水平轮,这样可避免起重机歪斜运行时轮缘与轨道侧面的接触。
这是,歪斜力由水平轮来承受,使车轮轮缘的磨损减轻。
车轮踏面形状主要有圆柱形、圆锥形以及鼓形三种。
从动轮采用圆柱形,驱动轮可以采用圆柱形, 也可以采用圆锥形,单轮缘车轮常为圆锥形。
采用圆锥形踏面车轮时须配用头部带曲率的钢轨。
在工字梁翼缘伤运行的电动葫芦其车轮主要采用鼓形踏面。
图起重机钢轨332车轮与轨道的初选选用四车轮,对面布置 桥架自重:G 0.45Q 起 0.82L 20.73t 207.3kN式中Q 起 ――起升载荷重量,为16000 kgL ――起重机的跨度,为16.5 m满载最大轮压:P max =^ 式中q ——小车自重,为4t代入数据计算得:P max 132.7kN 空载最大轮压:唸=丁 2 -代入数据得P ax =60kN 空载最小轮压:也专号 代入数据得P min =43.64 kNQ 160载荷率:0.772G 207.3Q 起「G 0.772,工作类型为中级时,选取车轮直径为178kN ,故可用。
车轮材料为 ZG310-570,320HB3.3.2车轮踏面疲劳强度的校验2 PmaxH min车轮踏面的疲劳计算载荷:c 3 代入数据计算得:F C 103kNR 2车轮踏面的疲劳强度:P c k 2 -3 C 1C 2m大车行走车轮l ――小车运行极限位置距轨道中心线距离,为1.5 m查《机械设计手册 第五版起重运输件 ?五金件》表8-1-120,当运行速度在 60 ~ 90 m min , 600mm 时,型号为 展的轨道的许用轮压为式中k2 ――与材料有关的许用点接触应力常数,查《起重机械》表7-1取为0.1R ――曲率半径,取车轮和轨道曲率半径中之大值,取为600 mmm ――由轨道顶与车轮曲率半径之比所确定的系数,查表7-4取为0.468C1――转速系数,查表7-2取为0.96C2――工作级别系数,查表7-3取为1.00代入数据计算得:故满足要求。
桥式起重机大车运行机构的计算精品资料

第三章桥式起重机大车运行机构的计算3.1原始数据起重机小车大车载重量(T)跨度(m)起升高度(m)起升速度()m inm重量(T)运行速度()minm小车重量(T)运行速度()m inm16 16.5 10 7.9 16.8 44.6 4 84.7大车运行传动方式为分别传动;桥架主梁型式,桁架式。
工作类型为中级。
3.2确定机构的传动方案本次设计采用分别驱动,即两边车轮分别由两套独立的无机械联系的驱动装置驱动,省去了中间传动轴及其附件,自重轻。
机构工作性能好,受机架变形影响小,安装和维修方便。
可以省去长的走台,有利于减轻主梁自重。
图大车运行机构图1—电动机2—制动器3—高速浮动轴4—联轴器5—减速器6—联轴器7低速浮动轴8—联轴器9—车轮3.3车轮与轨道的选择3.3.1车轮的结构特点车轮按其轮缘可分为单轮缘形、双轮缘形和无轮缘形三种。
通常起重机大车行走车轮主要采用双轮缘车轮。
对一些在繁重条件下使用的起重机,除采用双轮缘车轮外,在车轮旁往往还加水平轮,这样可避免起重机歪斜运行时轮缘与轨道侧面的接触。
这是,歪斜力由水平轮来承受,使车轮轮缘的磨损减轻。
车轮踏面形状主要有圆柱形、圆锥形以及鼓形三种。
从动轮采用圆柱形,驱动轮可以采用圆柱形,也可以采用圆锥形,单轮缘车轮常为圆锥形。
采用圆锥形踏面车轮时须配用头部带曲率的钢轨。
在工字梁翼缘伤运行的电动葫芦其车轮主要采用鼓形踏面。
图 起重机钢轨 图 大车行走车轮3.3.2车轮与轨道的初选选用四车轮,对面布置桥架自重:kN t L Q G 3.20773.2082.045.0==+=起 式中 起Q ——起升载荷重量,为16000kg L ——起重机的跨度,为16.5m 满载最大轮压:m ax P =LlL q Q q G -⋅++-24起 式中 q ——小车自重,为4tl ——小车运行极限位置距轨道中心线距离,为1.5m 代入数据计算得:kN P 7.132max =空载最大轮压:∙max P =LlL q q G -⋅+-24 代入数据得∙max P =60kN空载最小轮压:Llq q G P ⋅+-=24min 代入数据得m in P =43.64kN载荷率:772.03.207160==G Q 查《机械设计手册 第五版起重运输件∙五金件》表8-1-120,当运行速度在m in 90~60m ,772.0=G Q ,工作类型为中级时,选取车轮直径为600mm 时,型号为38P 的轨道的许用轮压为178kN ,故可用。
桥式起重机计算书

6、平均起动加速度α平的计算: 算式:()2
/60t m t V 起
车平=
α
式中:V 车(m/min )及t 起(t )——同前
α平的三和值为:α平(空最大)>α平(满最大)>α平(满正常)
技术科
设计计算说明书
第9页
α
7、电动机功率按发热条件的校核:
由于电动机的实际工况难以具体确定因此发热校核用求出电动机在JC=25%时,所需的当量额定功率N25值来校核。
即确定的电动机在
JC=25%时之名牌功率P额>N25时为通过。
算式:N25=K类型r当.N静(满)(kw)
式中:K类型——工作类型系数,按表2查得(参书(1)241页)K类型=0.75 表2
工作类型轻型中型重型
K类型0.5 0.75 1.0
N静(满)(kw)——同前
r当——起动情况对当量功率影响的系数。
按起动时间与运转工序的平均时间之比值t平均比值及机构类型由(1)书图119)查得
图3是将(图119)简化后所得。
在t平均比值=0.2(查表93[1]
得)时,在此查得γ当
=1.125。
桥式起重机主梁计算

桥式起重机主梁计算一、起重机主梁的工作条件和荷载情况1.工作条件:主梁处于静止状态、启动和停止状态下的荷载、移动状态下的荷载等。
2.荷载情况:起重机的荷载主要包括起重物的重量、启动和停止状态下的荷载、风荷载等。
其中,起重物的重量是计算主梁的重要参数。
二、主梁的尺寸计算1.主梁的长度:主梁的长度应根据实际使用情况来确定,一般为起重机的工作范围加上一定的安全边距。
根据主梁长度确定梁的截面尺寸。
2.主梁的截面尺寸:主梁的截面尺寸应根据起重机的工作条件和荷载情况来确定。
通常采用钢材作为主梁的材料,选择合适的型钢截面。
截面的选择要满足主梁在工作条件下的强度要求。
3.主梁的高度:主梁的高度与梁的截面尺寸有关。
一般来说,主梁的高度越大,强度越高,但也会增加自重和制造成本。
因此,需要综合考虑强度要求、自重和制造成本等因素来确定主梁的高度。
三、主梁的材料选择1.主梁通常采用优质钢材,如Q345B、Q345D等。
这些钢材具有较高的强度、韧性和抗腐蚀性能,适合用于承受起重机荷载的主梁。
2.在选择主梁材料时,还需要考虑材料的成本、可焊性、可加工性等因素。
四、主梁的结构设计和分析1.结构设计:根据主梁在工作条件下的受力情况,进行结构设计。
设计包括主梁截面的形状和尺寸、连接方式和布置等。
设计要求主梁在荷载作用下保持稳定,不发生破坏和变形。
2.结构分析:对主梁进行结构分析,计算主梁受力、变形等参数。
分析结果可以用于确定主梁的强度是否满足要求,并对主梁进行优化设计。
五、主梁的制造和安装1.主梁的制造:根据结构设计的要求,进行主梁的材料选择、截面加工、焊接和表面处理等工艺。
2.主梁的安装:将制造好的主梁安装到起重机上,并进行调整和固定。
安装过程中需要保证主梁与其它部件的连接紧固和稳固。
综上所述,桥式起重机主梁计算是一个复杂的过程,需要根据起重机的工作条件和荷载情况,对主梁的尺寸、材料、结构进行综合考虑和设计。
计算过程中需要注意荷载的合理估计、结构的强度和稳定性要求、材料的选择等问题。
桥式起重机设计手册

桥式起重机设计手册第一章:引言桥式起重机是一种常用的重型起重设备,广泛应用于工程建设、港口、船厂和制造业等领域。
本设计手册将介绍桥式起重机的基本原理、设计要点和运行注意事项,旨在帮助工程师和技术人员更好地理解和应用桥式起重机。
第二章:桥式起重机的基本原理1. 结构组成:介绍桥式起重机的主要结构组成,包括主梁、支撑梁、起升机构、运行机构等,以及它们的功能和相互作用。
2. 工作原理:详细阐述桥式起重机的工作原理,包括起重机构的工作过程、传动原理和控制系统等。
第三章:桥式起重机的设计要点1. 荷载计算:介绍桥式起重机的荷载计算方法,包括静载荷、动载荷、风载荷等,以及相关的安全系数和设计标准。
2. 结构设计:详细说明桥式起重机各个部件的结构设计要点,包括轮压计算、主梁设计、支撑梁设计等。
3. 电气设计:介绍桥式起重机的电气设计要点,包括起重机的供电方式、控制系统设计、安全保护装置等。
第四章:桥式起重机的安装与调试1. 安装要点:指导桥式起重机的安装顺序、安装方法和注意事项,确保安装质量和安全性。
2. 调试方法:介绍桥式起重机的调试流程,包括机械调试、电气调试和整机调试等,确保起重机运行正常。
第五章:桥式起重机的运行与维护1. 运行注意事项:详细介绍桥式起重机的操作规程、运行注意事项和安全操作规范,确保起重机操作安全。
2. 维护保养:指导桥式起重机的日常维护保养工作,包括润滑保养、检查维修和故障排除等。
第六章:桥式起重机的应用和发展趋势1. 应用领域:介绍桥式起重机的应用领域和典型工程案例,包括桥梁施工、船舶制造、汽车装配等。
2. 发展趋势:展望桥式起重机的发展趋势,介绍新技术、新材料和智能化发展方向。
结语桥式起重机作为一种重要的起重设备,在工程建设和制造业领域发挥着重要作用。
希望通过本设计手册的介绍,能够让读者更好地掌握桥式起重机的设计、安装和运行技术,为相关工程的顺利进行提供参考和指导。
t-桥式起重机设计计算书

75/20T 桥式起重机设计计算书1.主要技术参数. 主起升机构起重量75t (750kN)起升速度4.79m/min 起升高度16m工作级别M5. 副起升机构起重量20t (200kN)起升速度7.16m/min起升高度18m工作级别M5. 小车行走机构行走速度32.97m/min工作级别M5轮距 3.3m轨距 3.4m. 大车行走机构行走速度75.19m/min 工作级别M5轮距 5.1m轨距16.5m2.机构计算. 主起升机构主起升机构为单吊点闭式传动,卷筒按螺旋绳槽、双联卷筒、单层缠绕设计。
2.1.1. 钢丝绳A.钢丝绳最大拉力S max :错误!错误!= 78868 N式中,Q ――额定起升载荷,Q = 750000 N ;进入卷筒的钢丝绳分支数,对于双联卷筒,a = 2 ; 滑轮组倍率,q 二5 ;n h ------- 滑轮组效率,n h =。
B.钢丝绳最小直径d min :d min = C Sax = x - 78868 = 28.08 mm式中,C ――钢丝绳选择系数,C =;钢丝绳型号为:6X 19W+FQ8-170-I - 光-右交 GB1102-74 2.1.2.卷筒尺寸与转速A. 卷筒直径卷筒最小直径 D min >( e-1)d=17 x 28=476mm式中,e ——筒绳直径比,e = 20 ;取D 0=800m (卷筒名义直径),一 、 800实际直径倍数e s = ~28 = > 18,满足。
B. 卷筒长度绳槽节距p = 32mm,绳槽半径r=15+0.2mm 绳槽顶峰高h= 10.5mm 。
单边固定圈数:n gd = 3圈;单边安全圈数:n aq =圈;单边工作圈数: 按 6X 19W+FQ8-170-I (钢丝绳公称抗拉强度), 钢丝绳实际安全系数:-光-右交型钢丝绳,d = 28mm b = 1700MPa 钢丝破断拉力总和S 0= 492500N , c.钢丝绳选择n 二 S 0S max,通过。
《起重机设计》word版
一、起升机构1.1、桥式起重机起升机构设计参数1.2、起升机构布置和吊钩组设计1.3、部件选择与安装1.3.1、钢丝绳设计参数桥架形式双梁箱型额定起重量(吨)25起升高度(米) 10跨距28工作级别A4运行结构大车JC 40%大车速度 1.6小车速度0.63起升速度0.043按照构造宜紧凑的原则,决定采用下图的传动方案:主起升机构简图该方案采用平行轴式布置方案,即卷筒轴线、电动机的轴线以及高速浮动轴、减速器的输入、输出轴之间都是平行的。
桥式起重机上的双联滑轮组采用双联滑轮组,钢丝绳的最大静拉力[9]:3197.4517498.0196.03225500012S21max=⨯⨯⨯=⋅=⋅⋅⋅⋅⋅⋅ηηηzmQ(N)maxS=4517.3197N的传动方案3.5 选择车轮与轨道,并验算其强度图3-1 大车运行机构1—电动机;2—制动器;3—高速浮动轴;4—联轴器;5—减速器;6—联轴器;7低速浮动轴;8—联轴器;9—车轮3.5 选择车轮与轨道,并验算其强度根据重量分布计算大车的最大轮压和最小轮压图3-2 轮压计算图满载时的最大轮压:maxP=LeLQ-•++2Gxc4Gxc-G=1821828.9255.2548.925-26.1375-•++=19.603 t 空载时最大轮压:maxP'=LeL-•+2Gxc4Gxc-G=1821828.92548.925-26.137-•+=8.2698 t空载时最小轮压:m inP'=Le•+2Gxc4Gxc-G=18228.92548.925-26.137•+=4.7990t 式中的e为主钩中心线离端梁的中心线的最小距离。
载荷率:Q/G=25.5/26.137=0.976。
桥式起重机设计计算讲义
一、通用桥式起重机箱形主梁强度计算(双梁小车型)1、受力分析作为室内用通用桥式起重机钢结构将承受常规载荷G P 、Q P 和H P 三种基本载荷和偶然载荷S P ,因此为载荷组合Ⅱ。
其主梁上将作用有G P 、Q P 、H P 载荷。
主梁跨中截面承受弯曲应力最大,为受弯危险截面;主梁跨端承受剪力最大,为剪切危险截面。
当主梁为偏轨箱形梁时,主梁跨中截面除了要计算整体垂直与水平弯曲强度计算、局部弯曲强度计算外,还要计算扭转剪切强度,弯曲强度与剪切强度需进行折算。
2、主梁断面几何特性计算上下翼缘板不等厚,采用平行轴原理计算组合截面的几何特性。
图2-4注:此箱形截面垂直形心轴为y-y 形心线,为对称形心线。
因上下翼缘板厚不等,应以x ’— x ’为参考形心线,利用平行轴原理求水平形心线x —x 位置c y 。
① 断面形状如图2-4所示,尺寸如图所示的H 、1h 、2h 、B 、b 、0b 等。
② 3212F F F F ++=∑ [11Bh F =,02bh F =,23Bh F =] ③ Fr q ∑= (m kg /)④ 321232021122.)21(2)2(F F F h F h h F h H F Fy F y ii c +++++-=∑⋅∑=(cm ) ⑤ 223322323212113112212)(212y F Bh y F h h H b y F Bh J x ⋅++⋅+--+⋅+= (4cm )⑥ 202032231)22(21221212bb F h b B h B h J y ++++= (4cm ) ⑦c X X y J W /=和c X y H J -/(3cm ) ⑧ 2BJ W yy =(3cm ) 3、许用应力为 ][σ和 ][τ。
4、受力简图1P 与2P 为起重小车作用在一根主梁上的两个车轮轮压,由Q P 和小车自重分配到各车轮的作用力为轮压。
如P P P 21==时,可认为P 等于Q P 和小车自重之和的四分之一。
桥式起重机设计计算书
目录目录 01.前言 (1)2.技术参数 (1)3.起重小车的计算 (3)3.1主起升的计算 (3)3.2副起升机构的计算 (10)3.3小车运行机构的计算 (12)4.主梁的计算 (19)4.1主梁断面的几何特性 (19)4.2主梁载荷的计算 (20)4.3主梁跨中法向应力 (25)4.4跨中主梁腹板的剪应力 (25)4.5刚度计算 (26)5.端梁的计算 (27)5.1端梁的支承反力和弯矩的计算: (27)5.2端梁断面尺寸及几何特征 (32)5.3端梁的强度计算 (33)6.大车运行机构的计算 (33)6.1主要参数: (33)6.2轮压计算 (34)6.3电动机的选择 (35)7.参考文献 (37)1.前言本机是通用桥式起重机,工作级别为A7,用于繁忙使用的车间等工作场合。
其整体结构借鉴了相同额定起重量、相同跨度但不同工作级别的吊钩桥式起重机。
依照19833811/-T GB 和199314405/-T GB 的有关规定,进行钢结构的设计和部件的选用。
2.技术参数起重量 :主钩起重量:50t副钩起重量:10t跨度:22.5m起升高度:主起升主H =12m副起升副H =16m工作级别:主起升;M7副起升:M6小车运行:M6大车运行:M7工作速度:主起升主V =12.3m/min副起升副V =13.4m/min小车运行小V =48.1m/min大车运行大V =98m/min小车轨距:2.5m大车走轮4支,1/2驱动主梁的许用应力第一类载荷组合:2/1567cm kg I =σ第三类载荷组合:2/1760cm kg III =σ主梁的许用下挠度对于工作级别为A7的桥式起重机,主梁在满载时,跨中的许用 下挠值为:cm L f 25.2100022501000==≤ 钢丝绳安全系数绳N ---对重级工作类型取7电动机起动时间s t s 21≤≤起电动机制动时间s t 2≤制3.起重小车的计算(机构的布置见小车布置图)1.小车架2.副起升3.主起升4.小车运行图13.1主起升的计算起重量Q=50t 50t吊钩组重G=1420kg3.1.1 钢丝绳的选择根据起重机的起重量,选择双联起升机构,滑轮倍率m=5.1)钢丝绳的最大静拉力:组ηm G Q S 2max += 式中:m ax S --钢丝绳受的最大静拉力;组η--滑轮组效率,取0.95;Q 、N ,m 意义同上。
桥式起重机计算说明书(完成)
摘要此设计是对室内桥式起重机—开式传动提升型结构选型与计算的设计。
桥式起重机用来提升和平移物体。
桥式起重机主要由起升机构、小车运行机构、小车架和一些安全防护措施组成,桥架横跨车间两侧的轨道上,小车在桥架横梁上的轨道上沿着横梁运动,吊钩可到达车间的每一个角落,实现物体的提升和平移。
桥式起重机,具有适应范围广,提升重量范围大,操作简单,安装拆卸方便等优点,广泛用于工厂生产和港口物流搬运中。
随着机械行业和现代物流业的发展,人们对起重机的要求也越来越高,这就对起重机的设计提出了更高的要求,起重机能否顺利有效的运行,取决于它的各个主要部分的好坏及其性能稳定性的高低,所以说桥式起重机的优化设计意义深远。
该桥式起重机的起重量为10吨,跨度为13米,起升高度为12米,起升速度为8米/分,小车运行速度为30米/分,桥架横梁运行速度为80米/分。
机械部分主要由小车架、卷筒、吊钩、桥架横梁和操纵室等构成。
桥式起重机可实现升降、平移两种工作模式,本设计中根据起重量、起升速度和运行速度计算出电机功率、减速器、卷筒及各联轴器型号,并以此依据来选型,综合考虑多方面的因素,根据桥式起重机工作环境设计了起重机的安全保护措施,例如:在起重机的起动和运行过程中首先考虑到对制动的保护;以及对运动位置的限位保护等;同时各个系统有相应的安全保护措施来保证起重机安全可靠运行。
关键词:起重机;桥式起重机;小车;卷筒AbstractThis is designed for indoor bridge crane - open-drive upgrade structure selection and calculation of the design. Bridge crane used to upgrade and translation objects.From the main bridge crane lifting bodies, car running, trailers and some small measure of security, across the bridge on both sides of the Workshop on track, the car in the bridge beams on the track of movement along the beams, Hook can reach every corner of the workshop, to achieve the objects and enhance pan. Bridge crane, to a wide range of upgrading the weight of the large, simple, easy to install demolition of the advantages of widely used in factory production and handling in the port logistics. With the machinery industry and the development of modern logistics industry, one of the cranes rising demand, which the design of the crane has put forward higher requirements, the crane can smooth and effective operation, it depends on the major part of the Good or bad performance and the level of stability, so that optimal design of the bridge crane far-reaching significance.The bridge crane from the weight of 10 tons, have a span of 13meters, up from the height of 12 meters, lifting speed of 8 m / min, the car running at 30 m / min, the bridge beams running at 80 m / min. Some of the major machinery from small trailers, reel, hook, bridge beams and manipulation, such as a room.Bridge crane movements can be realized, the translation work of the two models, in accordance with the design from weight lifting and running speed to the velocity of the electrical power, reducer, reel and coupling models, and as a basis for selection, Considered various factors, the working environment under the bridge crane designed crane safety protection measures, such as: cranes in the process of starting and running to first consider the protection of the brake, and the location of the movement limit protection At the same time the system has the appropriate security measures to ensure safe and reliable operation of a crane.KeyWords:Crane, bridge, crane ,car roll目录摘要 (I)Abstract (II)1 绪论 (1)2 小车起升机构计算 (3)2.1确定起升机构传动方案,选择滑轮组和吊钩组 (3)2.2 选择钢丝绳 (3)2.3 确定滑轮主要尺寸 (4)2.4 确定卷筒尺寸并验算强度 (4)2.5 选择电动机 (6)2.6验算电动机发热条件 (6)2.7选择减速器 (6)2.8 验算起升速度和实际所需功率 (7)2.9校核减速器输出轴强度 (7)2.10选择制动器 (8)2.11选择联轴器 (8)2.12验算起动时间 (9)2.13 验算制动时间 (9)2.14高速浮动轴计算 (10)3 小车运行机构计算 (12)3.1确定机构传动方案 (12)3.2 选择车轮与轨道并验算其强度 (12)3.3 运行阻力计算 (13)3.4 选电动机 (14)3.5 验算电动机发热条件 (14)3.6 选择减速器 (15)3.7 验算运行速度和实际所需功率 (15)3.8 验算起动时间 (15)3.9 按起动工况校核减速器功率 (16)3.10 验算起动不打滑条件 (17)3.11 选择制动器 (17)3.12 选择高速轴联轴器及制动轮 (18)3.13 选择低速轴联轴器 (19)3.14 验算低速浮动轴强度 (19)4 大车运行机构计算 (21)4.1确定传动机构方案 (21)4.2选择车轮与轨道,并验算其强度 (21)4.3 运行阻力计算 (22)4.4 选择电动机 (23)4.5 验算电动机发热条件 (24)4.6 选择减速器 (24)4.7 验算运行速度和实际所需功率 (24)4.8 验算起动时间 (25)4.9 起动工况下校核减速器功率 (25)4.10 验算起动不打滑条件 (26)4.11 选择制动器 (27)4.12 选择联轴器 (28)4.13 算低速浮动轴强度 (29)5 卷筒部件计算 (31)5.1卷筒心轴计算 (31)5.2 选择轴承 (32)5.3 绳端固定装置计算 (34)6 吊钩装置的计算 (36)6.1确定吊钩装置构造方案 (36)6.2 选择并验算吊钩 (36)6.3 确定吊钩螺母尺寸 (38)6.4 止推轴承的选择 (38)6.5 吊钩横轴的计算 (39)6.6 滑轮轴的计算 (40)6.7 拉板的强度验算 (40)6.8 滑轮轴承的选择 (42)结论 (43)参考文献 (44)致谢 (45)1 绪论桥式起重机是桥架在高架轨道上运行的一种桥架型起重机,又称天车。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、通用桥式起重机箱形主梁强度计算(双梁小车型)1、受力分析作为室内用通用桥式起重机钢结构将承受常规载荷G P 、Q P 和H P 三种基本载荷和偶然载荷S P ,因此为载荷组合Ⅱ。
其主梁上将作用有G P 、Q P 、H P 载荷。
主梁跨中截面承受弯曲应力最大,为受弯危险截面;主梁跨端承受剪力最大,为剪切危险截面。
当主梁为偏轨箱形梁时,主梁跨中截面除了要计算整体垂直与水平弯曲强度计算、局部弯曲强度计算外,还要计算扭转剪切强度,弯曲强度与剪切强度需进行折算。
2、主梁断面几何特性计算上下翼缘板不等厚,采用平行轴原理计算组合截面的几何特性。
图2-4注:此箱形截面垂直形心轴为y-y 形心线,为对称形心线。
因上下翼缘板厚不等,应以x ’— x ’为参考形心线,利用平行轴原理求水平形心线x —x 位置c y 。
① 断面形状如图2-4所示,尺寸如图所示的H 、1h 、2h 、B 、b 、0b 等。
② 3212F F F F ++=∑ [11Bh F =,02bh F =,23Bh F =] ③ Fr q ∑= (m kg /)④ 321232021122.)21(2)2(F F F h F h h F h H F Fy F y ii c +++++-=∑⋅∑=(cm ) ⑤ 223322323212113112212)(212y F Bh y F h h H b y F Bh J x ⋅++⋅+--+⋅+= (4cm )⑥ 202032231)22(21221212bb F h b B h B h J y ++++= (4cm ) ⑦c X X y J W /=和c X y H J -/(3cm ) ⑧ 2BJ W yy =(3cm ) 3、许用应力为 ][σ和 ][τ。
4、受力简图1P 与2P 为起重小车作用在一根主梁上的两个车轮轮压,由Q P 和小车自重分配到各车轮的作用力为轮压。
如P P P 21==时,可认为P 等于Q P 和小车自重之和的四分之一。
5. 主梁跨中集中载荷(轮压1P 和2P )产生最大垂直弯矩M p4)(212SP P Mp +=φ (N ·m) 1P ≠2P 时简算22bS P Mp -=φ (N ·m) P P P 21==时22bS P Mp -=φ (N ·m) 1P ≠2P 时,可近似取221P P P +=注:建议当1P ≠2P 时,采用221P P P +=计算为佳。
6. 跨中均布载荷(自重G P )产生最大垂直弯矩M q88211qS SP Mq G φφ==(N ·m)7. 主梁跨中垂直最大弯矩M 垂Mq Mp M +=垂8. 主梁跨中水平惯性载荷产生弯矩水M)23(24)21(42rSS q r S S P M -+-=惯惯水 (N ·m)式中: y y J J Bl c S r 21233·28++= y J 1——主梁端截面的)(4cm J yy J 2——端梁截面的)(4cm J yZZ P P 151=惯)(21Q P P +=小车自重1Z ——起重机大车驱动轮数Z——总轮数ZZ q q 151=惯9. 主梁跨中截面弯曲强度计算34.1][4sII YX W M W M σσφσ==+=水垂10. 主梁跨端剪切强度计算跨端最大剪力max Q2)1(21max qSS b P P Q +-+=跨端最大剪应力τ3][][ 2·10max II II x J S Q στδτ=≤=0S ——主梁跨端截面的静面矩(中性轴以上面积对中性轴的静面矩,各面积乘以形心至中性轴距离;3cm )δ——腹板厚(cm )x J 1——截面的水平惯性矩(4cm )1. 垂直静刚度垂f][48)(321f EJ S P P f x≤+=垂——简算][12)75.0( )(2221f EJ l S l P P f x≤-+=垂——精算l 为小车轮压至主梁支承处距离,见下图所示。
当P P P 21==时][6)75.0( P 22f EJ l S l f x≤-=垂注:① 1P 、2P 不乘以系数φ。
② 均布载荷(自重G P )产生的垂直静刚度不予以计算,因无法检测。
2. 水平静刚度水f 参看图2-6。
2000][)45(384)31(4843Sf r S EJ S q r S EJ S P f y y =≤-+-=水惯惯水水f 不检测,只作为设计计算用。
整体稳定性一般不作计算,因为是简支梁,不可能发生失稳造成前倾与侧翻,通常情况下只要计算出主梁水平刚度2000][Sf f =≤水水时即可免算。
以箱形受弯构件局部稳定性为例,作为简支梁箱形截面主梁,弯曲时只有腹板受压区和受压翼缘板处才有局部失稳的可能。
保证不失稳的办法是设置加劲肋。
1. 腹板的局部稳定性计算分两种情况处理:一种是正轨(包括半偏轨)箱形梁,局部压应力0=m σ;另一种是偏轨箱形梁,局部压应力0≠m σ(轮压作用在腹板上)。
(1) 横向加劲肋间距a 的确定 ① 当shh σδ23580≤时,0h ——腹板高,h δ——腹板厚,s σ——材料屈服极限。
0=m σ时,可不设置加劲肋。
0≠m σ时,按结构适当增设加劲肋。
② 当sh sh σδσ235100235800≤<时,应设置横向加劲肋,此时取h a 5.2≤。
③ 当shsh σδσ235170235100≤<时,应设置横向加劲肋。
当0=m σ时: a) 当12000≤ητδhh 时,取02h a ≤b) 当150012000≤<ητδhh 时,取100050000-≤ητδhh h ac) 当15000>ητδhh 时,取500100000-≤ητδhh h a上式中η可查下表2-4。
表2-4表2-4中1σ为腹板与受压翼缘板接触处的弯曲应力如图2-10所示。
上式中00max h Q δτ=(max Q ——最大剪力,对简支梁A R Q 21max =,A R 为支反力)当0≠m σ时:41003K h h K a h-≤σδ注:3K 和4K 查表2-5表2-5上表中m σ——局部压应力。
][ σδσ≤=cP mP ——轮压δ——翼缘板厚y h a c 2+=mm a 50≈y h 为轨道高度。
④ 当shsh σδσ235240235170≤<时,此时除应设置横向加劲肋,同时应增设一条纵向加劲肋。
当0=m σ时,01)41~51(h h =102h h h -=当1002≤hh δ时,25.2h a ≤当12002≤τδhh 时,22h a ≤150012002≤<τδhh 时,100050022-≤τδhh h a15002>τδhh 时,500100022-≤τδhh h a当0≠m σ时,01)41~51(h h =,2221K h h K a h-≤τδ上述当计算出的a 值大于h 2。
或出现负值时取22h a ≤即可。
上式中的1K 和2K 如表2-6所示。
表2-6⑤ 当shsh σδσ2353202352400≤<时,此时应加横向加劲肋,同时增设二道纵向加劲肋。
01)2.0~15.0(h h = 02)2.0~175.0(h h =a 按④部分0=m σ和0≠m σ时a 公式计算确定。
⑥shh σδ235320>时应加横向加劲肋和同时增设多道纵向加劲肋,这种情况为高腹板、大起重量、超大跨起重机时才这样处理,详细计算请见起重机设计手册564页相应部分,一般不会出现这种情况。
⑦ 腹板加劲肋的结构要求和截面设计 a) 加劲肋间距的构造要求只有横向加劲肋时,0)2~5.0(h a =,且不大于2m 。
同时设置横向和纵向加劲肋时,202~5.0h h a =,且不大于2m ,需要加横向短加劲肋1a 时,1175.0h a ≥,1h 和2h 均为021)41~51(h h h ==,一般情况是加一个横向加劲肋再加一个短横向加劲肋。
b) 加劲肋的截面形式横向加劲肋采用钢板,纵向加劲肋采用扁钢,角钢等。
c) 加劲肋截面尺寸与惯性矩仅设横向加劲肋时,如图2-13所示。
横向加劲肋宽度4030+≥h b (工字形主梁) )4030(2.10+≥h b (箱形主梁) 横向加劲肋厚度15b ≥δ 同时设有横向、纵向加劲肋时横向加劲肋除应满足间距a 要求时,还应满足应具有一定惯性矩1Z I 。
要求3013h Z h I δ≥1Z I ——横向加劲肋截面对腹板厚中心线的惯性矩。
纵向加劲肋惯性矩2Z I 当85.00≤h a时,3025.1h Z h I δ≥ 85.00>h a 时,320202)45.05.2(h Z h a h a I δ-≥22·x F I Z = F ——角钢截面积x ——角钢垂直形心线至腹板中心线距离2. 受压翼缘板局部稳定性计算(1)sb σδ23515≤——工字梁——不加纵向加劲肋(2)sbσδ23540≤——箱形梁——不加纵向加劲肋(3) 当sb σδ23515>和sb σδ23540>时,应加纵向加劲肋。
纵向加劲肋应保证有一定的惯性矩要求。
mb a b a I Z 31213)09.064.0(δ+≥3Z I ——纵向加劲肋惯性矩,为纵向加劲肋面积乘以水平形心线至翼缘板水平中心线距离的平方。
m ——纵向加劲肋个数 1b ——翼缘板总宽a ——横向加劲肋间距 δ——翼缘板厚度(4) 纵向加劲肋材料多采用扁钢、角钢和T 字钢等。
四、通用桥式起重机端梁的设计计算通用桥式起重机端梁都是采用钢板组焊成箱形端梁,并在水平面内与主梁刚性连接。
端梁承受有二种主要载荷:一是承受主梁的最大支承压力max V ;二是承受桥架偏斜侧向载荷s P 。
)(2121max Q G G P P P V ++=小,此时为起重小车行至主梁跨端,式中G P 为一根主梁自重,小G P 为起重小车自重,Q P 为起重量。
上述载荷将使端梁产生垂直弯矩和剪力,并认为两主梁的压力相同。
小车水平制动载荷和端梁的自重影响很小,可忽略不计,端梁的受力图如图2-16所示。
图2-16中B 为轮距(基距),0B 为两主梁中心距,C 为车轮中心至主梁中心的距离。
端梁计算将按图2-16中的危险截面Ⅰ-Ⅰ,Ⅱ-Ⅱ,Ⅲ-Ⅲ分别计算,Ⅰ-Ⅰ截面为端梁最大弯矩截面,Ⅱ-Ⅱ为支承截面,Ⅲ-Ⅲ为薄弱截面。
1. Ⅰ-Ⅰ截面弯曲应力与剪应力:C V M V ⋅=max C P M s H ⋅=剪力 max V Q V =Ⅰ-Ⅰ截面应力[] σσ≤+=yHx V W M W M 剪应力一般不大,可忽略不计。
2. Ⅱ-Ⅱ截面弯曲应力与剪应力:Ⅱ-Ⅱ截面水平弯矩和垂直弯矩近似为零。