复数及其运算(完整版本)
复数公式及运算法则

复数公式及运算法则
复数公式:复数是由实部和虚部组成的数。
复数通常写成a + bi 的形式,其中a和b都是实数,而i是一个虚数单位,满足i² = -1。
复数的运算法则:
1.复数的加法和减法:将实部与实部、虚部与虚部分别相加或相减。
(a + bi) + (c + di) = (a + c) + (b + d)i
(a + bi) - (c + di) = (a - c) + (b - d)i
2.复数的乘法:使用分配律将两个复数相乘。
(a + bi) * (c + di) = ac + adi + bci + bdi²
因为i²=-1,所以可以将上式简化为:
(a + bi) * (c + di) = (ac - bd) + (ad + bc)i
3.复数的除法:用分子分母都乘以分母的共轭复数(实部保持不变,虚部取负数),然后将分母变为实数。
(a + bi) / (c + di) = (a + bi) * (c - di) / (c² + d²)
因为乘法和除法都需要分别计算实部和虚部,所以计算复数的乘
法和除法时需要注意分配律和运用恒等式。
拓展:复数在物理学、工程学、数学等多个领域都有广泛应用,
如在电路分析、信号处理、量子力学等方面。
由于虚部可以表示位移、相位差等概念,复数可以用来表示波形、振动、旋转等物理量。
同时,复数的数学理论也非常丰富,包括复数拓扑学、复变函数论等多个分支。
第一节 复数及其代数运算

若 z = x + iy ,
则 z = x − iy .
例2 计算共轭复数 = x + yi 与 z = x − yi 的积 z . 解
( x − yi )( x + yi ) = x − ( yi ) = x + y .
2 2 2 2
结论:两个共轭复数 z, z 的积是实数.
即 zz = x + y . :
3) Im(i + z ) = 4 .
解:1) 表示与 −i 的距离等于 2 的所有复数 z 的集合 的集合. 为圆心, 为半径的圆. 此曲线是以 −i 为圆心,2 为半径的圆
y
o
2
⋅ −i
x
24
2) | z − 2i | = | z + 2 | ;
20
(3)三角表示法 )
x = r cosθ , 利用直角坐标与极坐标的关系 y = r sinθ ,
复数可以表示成 z = r (cosθ + i sinθ ) (4)指数表示法 ) 利用欧拉公式 e iθ = cosθ + i sinθ , 复数可以表示成
z = re iθ
的指数表示式. 称为复数 z 的指数表示式
解
(5 − 5i )( −3 − 4i ) z1 5 − 5i = = z2 − 3 + 4i ( −3 + 4i )( −3 − 4i ) ( −15 − 20) + (15 − 20)i 7 1 = = − − i. 25 5 5
z1 7 1 = − + i. 5 5 z2
4
2 例1 实数 m 取何值时 , 复数 ( m − 3m − 4) +
复数的四则运算公式

复数的四则运算公式复数是数学中的一个概念,它可以表示为实部与虚部的和。
在复数的四则运算中,包括加法、减法、乘法和除法。
下面将分别介绍这四种运算。
一、复数的加法复数的加法是指将两个复数相加的操作。
假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。
则两个复数的加法可以表示为:(a+bi) + (c+di) = (a+c) + (b+d)i即实部相加,虚部相加。
二、复数的减法复数的减法是指将两个复数相减的操作。
假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。
则两个复数的减法可以表示为:(a+bi) - (c+di) = (a-c) + (b-d)i即实部相减,虚部相减。
三、复数的乘法复数的乘法是指将两个复数相乘的操作。
假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。
则两个复数的乘法可以表示为:(a+bi) × (c+di) = (ac-bd) + (ad+bc)i即实部相乘减虚部相乘,并将结果相加。
四、复数的除法复数的除法是指将两个复数相除的操作。
假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。
则两个复数的除法可以表示为:(a+bi) ÷ (c+di) = [(ac+bd)÷(c^2+d^2)] + [(bc-ad)÷(c^2+d^2)]i即将实部和虚部分别除以除数的实部和虚部的平方和。
通过以上介绍,我们了解了复数的四则运算公式。
在实际应用中,复数的四则运算常常用于电路分析、信号处理等领域。
对于复数的运算要求掌握加减法的运算规则,以及乘法和除法的计算方法。
复数的四则运算在解决实际问题中起到了重要的作用,对于深入理解复数的概念和应用具有重要意义。
因此,掌握复数的四则运算公式对于数学学习和实际应用都是非常重要的。
希望通过本文的介绍,读者能够对复数的四则运算有更深入的了解,并能够熟练运用于实际问题的解决中。
复数及其运算

=aejθ (指数型)
=a∠部;
A=a1+ja2,B=b1+jb2
• 两个复数相等时, 其实部和虚部分别 相等,或模和辐角 分别相等。
• a、θ:复数A的模和辐角。
复数及其运算——复数加减
A=a1+ja2 (代数型) =aejθ (指数型) 两个复数:
• 复数单位: j 1
;
• a1、a2:复数A的实部、虚部;
• a、θ:复数A的模和辐角。
A=a1+ja2,B=b1+jb2
• 两个复数相加 ( 减 ) 等 于把它们的实部和虚 部分别相加(减)。 • 复数的加减运算应采
=a∠θ (极型)
• 复数单位: j 1 ; • a1、a2:复数A的实部、虚部;
• a、θ:复数A的模和辐角。
用代数型。
复数及其运算——复数乘除
A=a1+ja2 (代数型) 两个复数: A=a1+ja2,B=b1+jb2
=aejθ
(指数型)
=a∠θ (极型)
• 两个复数相乘 ( 除 ) 等
于将它们的模相乘 (除)、辐角相加(减)。
• 复数单位: j 1 ; • a1、a2:复数A的实部、虚部;
• 复数的乘除运算应采 用指数型或极型。
• a、θ:复数A的模和辐角。
复数及其运算——复数几何运算
两个复数: A=a1+ja2 (代数型) =aejθ (指数型) =a∠θ (极型) A=a1+ja2,B=b1+jb2 • 在复平面上进行代数运算 具有一定的几何意义。
复数及其运算
A=a1+ja2 (代数型) =aejθ (指数型)
=a∠θ (极型)
复数的有关运算

⑤. z = z
⑥. z = z ⇔ z ∈ R
数或0 数或
( z 2 ≠ 0) ⑦. z + z = 0 ⇔ Z为纯虚 为纯虚
④ . z = ( z)
n
n
四.共轭复数与模的性质及其运算 共轭复数与模的性质及其运算
① . | z1 ⋅ z2 |=| z1 | ⋅ | z2 |
| z−z1 | +| z −z2 | =2a (|z1 -z2 |=2a) (5).双曲线: z − z1 | −| z − z2 | = ±2a 双曲线: 双曲线 | (|z1 - z2 |> 2a)
(6).射线:z−z1 | −| z −z2 | =±2a 射线: 射线 |
(7).圆环 圆环: r <| z − z0 |< R 圆环 复数方程与直角坐标方程的转化
1 3 1 3 二. ω = - + i(或ω=- - i) 的性质 2 2 2 2 2 ①. 1+ ω + ω = 0
② . ω = 1 (周 T = 3) 期
3
③. ω =
1
ω
=ω
2
④ . ω n + ω n +1 + ω n + 2 = 0
一、复数的四则运算问题
1、已知复数z = 1 + i (1)设ω = z 2 + 3 z − 4,求ω; z 2 + az + b = 1 − i,求实数a,b的值 (2)如果 2 z − z +1
a + b = 1 a = −1 ⇒ ∴ a + 2 = 1 b = 2
4 2、设z + ∈ R,z − 2 |= 2,求z | z 解:设z = x + yi( x、y ∈ R,且z ≠ 0)
(完整版)复数的代数形式及其运算

复数的代数形式及其运算第85课时课题:复数的代数形式及其运算一.教学目标:掌握复数的基本题型,主要是讨论复数的概念,复数相等,复数的几何表示,计算复数模,共轭复数,解复数方程等。
二.教学重点:复数的几何表示,计算复数模,共轭复数,解复数方程等。
三.教学过程:(一)主要知识:1.共轭复数规律,;2.复数的代数运算规律(1)i=1,i=i,i=1,i=i;(3)i・i・i・i=1,i+i+i+i=0;;3.辐角的运算规律(1)Arg(z・z)=Argz+Argz(3)Arg=nAr gz(n∈N).。
.,n1.或z∈R。
要条件是|z|=|a|.(6)z・z≠0,则4.根的规律:复系数一元n次方程有且只有n个根,实系数一元n次方程的虚根成对共轭出现。
5.求最值时,除了代数、三角的常规方法外,还需注意几何法及不等式||z||z||≤|z±z|≤|z|+|z|的运用.即|z±z|≤|z|+|z|等号成立的条件是:z,z所对应的向量共线且同向。
|z±z|≥|z||z|等号成立的条件是:z,z所对立的向量共线且异向。
(二)范例分析Ⅰ.2004年高考数学题选1.(2004高考数学试题(浙江卷,6))已知复数z1=3+4i, z2=t+i,且是实数,则实数t=()A.B.C.?D.?2。
(2004年北京春季卷,2)当时,复数在复平面上对应的点位于()A.第一象限B.第二象限 C.第三象限D.第四象限3.(2004年北京卷,2)满足条件的复数在复平面上对应点的轨迹是( C ) A.一条直线B.两条直线C.圆D.椭圆Ⅱ.主要的思想方法和典型例题分析:1.化归思想复数的代数、几何、向量及三角表示,把复数与实数、三角、平面几何和解析几何有机地联系在一起,这就保证了可将复数问题化归为实数、三角、几何问题。
反之亦然。
这种化归的思想方法应贯穿复数的始终。
【分析】这是解答题,由于出现了复数和,宜统一形式,正面求解。
1.2复数的运算及其几何意义

x1 ) y1 )
参数 t (, ),
上式可以借助复数合并为一个式子,即:
z x(t ) iy(t ) x1 t( x2 x1 ) + i [y1 t( y2 y1 )]. 过z1 , z2的直线方程是: z z(t ) z1 ), 0 t 1.
则将向量OZ1按逆时针方向
•z
y
旋转一个角 2 ,
r • z1
再伸长(缩短)到原来的 r2 倍,
所得向量OZ就表示乘积z1 z2.
1
o
r1
2
•
r2
z2
x
z1z2 r1r2[cos(1 2 ) i sin(1 2 )]
10
可将结论推广到 n 个复数相乘的情况:
设 zk rk (cosk i sink ) rkeik , (k 1,2,, n)
28
cos
π 4
2kπ 4
i sin
π 4
2kπ 4
w3
(k 0,1,2,3).
即 0
1
28
cos
π 16
i
sin
π 16
,
1
1
28
cos
9π 16
i
sin
9π 16
,
2
1
28
cos
17π 16
i
sin
17π 16
,
3
1
28
cos
25π 16
i sin
25π 16
.
15
;
(2) z z;
(3) z z z 2 ;
(4) z z 2 Re(z), z z 2i Im(z).
复数和、差、共轭的几何意义
复数运算公式大全(二)

复数运算公式大全(二)引言概述:本文旨在介绍复数运算的一系列公式。
复数是由实部和虚部构成的数,可以用于解决许多实际问题,包括电学、物理学和工程学中的许多应用。
通过掌握这些公式,读者将能够更好地理解和应用复数。
正文:I. 复数的加法和减法1. 复数的加法公式:利用实部和虚部的加法规则,将两个复数相加得到一个新的复数。
- 实部相加、虚部相加2. 复数的减法公式:通过复数的加法公式,将减法转换为加法问题。
- 实部相减、虚部相减II. 复数的乘法和除法1. 复数的乘法公式:使用分配律和复数的乘法规则,将两个复数相乘得到一个新的复数。
- 实部乘积减去虚部乘积2. 复数的除法公式:通过将复数相乘的结果除以除数的模长平方,得到一个新的复数作为商。
- 模长平方的乘法逆元III. 复数的模长和共轭1. 复数的模长公式:计算一个复数的模长,即复数到原点的距离。
- 利用勾股定理计算2. 复数的共轭公式:将复数的虚部取相反数,得到一个新的复数。
- 修改虚部的符号IV. 复数的幂和根1. 复数的幂公式:根据欧拉公式和指数的性质,计算复数的任意幂。
- 欧拉公式的应用2. 复数的根公式:求解复数的根,即找到满足幂次方等于给定复数的特定复数。
- 公式和数值计算的结合V. 特殊复数运算1. 复数的逆运算:求解复数的倒数,满足乘积为1的复数。
- 模长平方的倒数2. 复数的幅角运算:计算复数的幅角,即与实轴的夹角。
- 反三角函数和辅助角的应用3. 复数的极坐标形式与直角坐标形式的转换:将复数在直角坐标系和极坐标系之间进行转换。
- 利用三角函数的关系式总结:本文详细介绍了复数运算的一系列公式,包括加法、减法、乘法、除法、模长、共轭、幂、根、逆运算、幅角和坐标系转换。
这些公式是理解和应用复数的基础。
通过掌握这些公式,读者将能够更好地处理涉及复数的问题,并在电学、物理学和工程学等领域中应用复数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z1 z2
z1 z2
;
(5)zz;
(6 )zz R e (z )2 I m (z )2 |z|2 ;
恒为正整数或0,它的非负平方根称为z的模或绝对值
11
例 1 设 z13i , 求 R z )e I,m ( z )与 z( z. i 1i
解 z1 3i i 3i(1i) 3 1 i, i 1i ii (1i)1 (i) 2 2
18
19
20世纪
•16世纪,解代数方程时引入复数(笛卡尔,韦塞尔,阿尔冈) •17世纪,实变初等函数推广到复变数情形 •18世纪,逐步阐明复数的几何、物理意义。(达朗贝尔,欧拉)
流 体 力 学u (x ,y )+ iv (x ,y )
3
•19世纪,奠定理论基础。A.L.Cauchy、维尔斯特 拉斯分别用积分和级数研究复变函数,黎曼研究复 变函数的映射性质
§1-1 复数及其运算 §1-2 复平面上的点集 §1-3 复变函数及其极限和连续 §1-4 复球面与无穷远点
6
§1-1 复数及其运算
主要介绍关于复数的基本概念,包括复数的定 义、表示方法、运算法则、基本不等式的应用
7
一 复数的概念及表示法
i2 1
定 义 : 形 如 z x y i 或 z x i y 的 数 称 为 复 数 .
则z 1 z 2 x 1 x 2 且 y 1 y 2
8
共轭复数 实部相同而虚部绝对值相等符号相反的两
个复数称为共轭复数, z的共轭复数记z. 为
即 z : x i,y 则 若 z x i.y
x Rez zz , y Imz zz
2
2i
9
复数系关于加法,乘法,除法是自封闭的
两 个 复 数 z1 x1 i y1 , z 2 x 2 i y2的 四 则 运 算
1
“复变函数论”是研究自变量为复数的函数的基 本理论及应用的数学分支.
世界著名数学家 M.Kline指出:19世纪最独 特的创造是复变函数理论。象微积分的直接扩 展统治了18世纪那样,该数学分支几乎统治了 19世纪。它曾被称为这个世纪的数学享受,也 曾作为抽象科学中最和谐的理论。
2
历史背景
16 17
z1 z2 z2 z2
全体复数并引进上述运算后就称为复数域,
常用C表示。 推导运算(3)
10
复数运算的性质
( 1 )z 1 z 2 z 2 z 1 ;z1z2z2z1 ; (2)(z1z2)z3z1(z2z3)
z1(z2z3)(z1z2)z3
( 3 ) z 1 ( z 2 z 3 ) z 1 z 2 z 1 z 3 (4 )z1 z2 z1 z2; z1z2z1z2;
注意:复数与向量的一一对 应使复数的加减运算与向量 的加减运算保持一致
y
z z1 z2
o
x z2 x2 iy2
z1 x1iy1
17
共轭复数的几何性质
y
一对共轭复数z 和 z 在
复平面内的位置是关于 o
实轴对称的.
zxiy
x
zxiy
y
z2
z2
o
z1 z2 z1
z1
x
18
和与差的模的性质
因z1 为 z2表z 示 1和 z2之 点间 ,故 的距
y
z x iy
y
(x, y)
o
x
x
复z数 xiy可以用平 (x,y)面 表(如 上 示.图 的 这种用来表面 示叫 复复 数 . 通 平 的常 面 平把
轴叫实x轴 轴 , 纵 或轴叫虚 y轴 .轴或
15
(3)复数的向量表示法 复数 zxiy也可用复平面O 上P表 的示 向量
向量具有两个性 重: 要长 的度 属、 . 方向
给定复数z=x+iy,则确定了实部x和虚 部y;反过来,给定实部x和虚部y,则完全确定 了复数z,这样,复数z与一对有序实数(x,y) 构成了一一对应关系。
因此 xi, y 与x,( y)不加 . 区别
14
(2)复数的平面表示法 我们知(x道 , y), 可以用平面直中 角平 坐面 标
上的点(表 如示 图)
(1)两个复数的和与差
z 1 z 2 ( x 1 x 2 ) i ( y 1 y 2 )
(2)两个复数的积
z 1 z 2 ( x 1 x 2 y 1 y 2 ) i ( x 2 y 1 x 1 y 2 )
特 别zzx2y2
(3)两个复数的商
z z1 2x1 x x 22 2 y y1 22 y2ixx 2y 22 1 x y1 22 y2
Байду номын сангаас该向量的长 z的 度模 称或 为绝 , 对值
记z为 rx2y2.
y
显然成立:
y
r
z Rez z, z Imz z,
z x y.
o y
Pz x iy
x
x
z z1 z2
注意:复数与向量的一一对 应使复数的加减运算与向量
o
x z2 x2 iy2
z1 x1iy1
的加减运算保持一致
16
(3)复数的向量表示法 复数 zxiy也可用复平面O 上P表 的示 向量
Rze)(3, Im z)(1,
2
2
zz Rz)e 2 ( Im z)2(32 12 5 .
2 2 2
12
解: n=0, 原式=2 n=1,原式=2 n=2,原式=2i-2i=0 n=3,原式=-4 ……….
复数的幂的计算--三角形式\指数形式
13
二、 复数的表示方法
(1)定义表示形式 用 x iy 表示 z,即 复 zx i数 .y
y
z1-z2 z1 z2 .(1)
z1z2 z1 z2 ;
z2
z2
z1 z2 z1
z1
o
x
19
复数辐角的定义 当z0时,则把正实 OP 的 轴夹 与角 向称 量为
z的辐 (a角 rugme),记 nt 作Azrg.
注意 1 任 何 一 个 复 数 z 0有 无 穷 多 个 辐 角,
其中 x,y为实数,z分 的别 实称 部,为 和虚
记 x 作 R z )e ,y (Im z ). ( 当 x0, y0时 ,ziy 称为;纯虚数
当y0时 , zx0i,我们把它x看 . 作 复数相等
两个复数相等当且仅当它们的实部和虚部
分别相等(求解复方程的基础)
z1 x1 y1i,z2x2y2i
单值函数 复变函数论 多值函数
几何理论
•20世纪,发展为数学分支,在解析性质、映射性质、 多值性质、随机性质、函数空间及多复变函数等方 面有重要成果。
4
空气动 力学
流体 力学
复变函数论
电学
热学
•复变函数论在空气动力学、流体力学、电学、热学、 理论物理等领域有重要应用(“*”内容)。
5
第一章 复数与复变函数