新《博弈与决策》期末复习指导
博弈论期末复习重点

1、博弈:一些个人、队组或其他组织;面对一定的环境条件;在一定的规则下;同时或先后;一次或多次;从各自允许选择的行为或策略中进行选择并加以实施;各自去得相应结果的过程..2、博弈论:就是系统研究各种博弈问题;寻求在各博弈方具有充分或者有限理性、能力的条件下;合理的策略选择和合理选择策略时博弈的结果;并分析这些结果的经济意义、效率意义的理论和方法..3、囚徒的困境:两决策者从各自最大的利益出发选择行为;结果是既没有实现两人总体的最大利益;也没有真正实现自身的个体的最大利益..4、静态博弈:所有博弈方同时或可看作同时选择策略的博弈..5、动态博弈:各博弈方的选择和行动不仅有先后次序;而且后选择、后行动的博弈方在自己选择、行动之前可以看到其他博弈方的选择行动;甚至还包括自己的选择和行动;6、完全信息:是指经济行为主体掌握了某种经济环境状态的全部信息..7、不完全信息不对称信息:是指经济行为主体掌握了某种经济环境状态的部分信息..8、完美信息:动态博弈中在轮到行为时对博弈的进程完全了解..9、不完美信息:动态博弈中在轮到行为的博弈方不完全了解此前全部博弈进程..10、上策均衡:如果一个博弈的某个策略组合中的所有策略都是各个博弈方各自的上策;那么这个策略组合肯定是所有博弈方都愿意选择的;必然是该博弈比较稳定的结果..11、纳什均衡:每个博弈方的策略都是针对其他博弈方策略或策略组合的最佳策略..在两人博弈的情况下;“给定你的策略;我的策略就是我最好的策略;给定我的策略;你的策略也是你的最好的策略”..12、混合策略:博弈方以一定的概率分布在可选择策论中随机选择达到一种稳定/均衡的决策方式..13、混合策略纳什均衡:如果一个严格意义上的混合策略组合满足各博弈方的策略相互是对其他博弈方策略的最佳对策时构成的纳什均衡..这时候意味着任何博弈方单独改变自己的策略或者随机选择各个纯策略的概率分布都不能给自己添加任何利益..14、完全信息静态模型:各博弈方同时决策且所有博弈方对各方得益都了解的博弈..15、完全且完美信息动态博弈:动态博弈中既是完全信息又是完美信息的部分16、子博弈完美纳什均衡:如果在一个完美信息的动态博弈中;各博弈方的策略均衡构成的一个策略组合满足;在整个动态博弈及它的所有子博弈中都构成纳什均衡;那么这个策略组合称为该动态博弈的一个~17、逆推归纳法:从动态博弈的最后一个阶段博弈方的行为开始分析;逐步倒推回前一个阶段相应博弈方的行为选择;一直到第一阶段的分析方法..18、颤抖手均衡:在博弈时也要考虑到合作者可能会发生轻微的失误而影响整个结果;即使在这种小概率事件发生时;所选策略依然是最优的.. 19、道德风险:从事经济活动的人在最大限度地增进自身效用时作出不利于他人的行动;损害委托人或是其他代理人的利益..交易后的信息不对称性;掌握较多信息的一方在交易后的利己倾向;如隐瞒欺骗、不负责任、不努力工作..20、逆向选择:指交易双方在交易前的信息不对称;导致市场上交易的劣质商品的比例越来越高;甚至导致优质品完全被驱出市场的一种现象..简答210%一、设定一个博弈模型必须确定的方面:1、博弈方:即博弈中进行决策并承担结果的参与者;2、各博弈方各自可选择的全部策略或行为的集合策略空间:即博弈方选择的内容;可以是方向、取舍选择、量值;3、进行博弈的次序:即博弈方行为、选择的优先次序或重复次数等..次序不同一般就是不同的博弈;即使博弈的其他方面都相同;4、博弈方的得益:即博弈方行为、策略选择的相应后果、结果必须是数量或者能够折算成数量;对应于各博弈方的每一组可能的决策选择都应有一个结果表示该策略组合下各博弈方的所得或所失..得益应该是客观存在;但不意味着各博弈方都了解各方的得益情况..5、信息结构;即博弈方相互对其他博弈方行为或最终利益的了解程度;6、行为逻辑和理性程度;即博弈方是依据个体理性还是集体理性行为以及理性的程度等..二、举出烟草、餐饮、股市、房地产、广告、电视等行业的竞争中策略相互依存的例子..1、烟草厂商新产品的开发、价格定位的效果;常常取决于其他厂商、竞争对手的相关竞争策略..例如某卷烟厂推出一种高价烟;该计划能否成功常取决于其他厂商是否采取同样的策略、如果其他厂商也推出高价烟而且档次宣传力度比前者还要高、大;那么前者的计划成功的难度就很大;但如果没有其他厂商推出同类产品;那前述某厂的计划成功的可能性就大;2、房地产开发企业在选址、开发规模、目标客户定位等方面也常常存在相互制约的问题..例如一个城市当时的住房需求约10000平方米;如果其他厂商已经开发了8000平方米;那么你再开发5000平方米就会导致供过于求;销售就会发生困难;但如果其他厂商只开发不到5000平方米;那么你的5000平方米就是合理的..3、麦当劳的新产品所带来的收益、价格产量、产品开发三、“囚徒困境”内在根源是举出现实生活中的具体例子..根源在于个体之间存在行为和利益相互制约的博弈结构中;以个体理性和个体选择为基础的分散决策方式无法有效地协调各方面的利益;并实现整体、个体利益共同的最优..简单第说;都是个体理性与集体理性的矛盾引起的..四、分析保险市场、资本市场道德风险的逆向选择..1、汽车保险:假设张三有财产¥100000;其冯诺依曼-摩根斯坦效用指数为对数函数;即UW=lnW;并有价值为¥ 20000的汽车一辆..如果该汽车没有向保险公司投保;将有25%的可能性被偷窃..因此;期望效用为:0.75U100000+0. 25U80000=0.751nl00000+0.25ln80000=11.457l;如果保险公司只索取成本而管理成本为0;那么;公平的保险费用为¥ 20000× 0.25=¥ 5000..如果张三将汽车完全保险;无论汽车是否被盗;其财富都是¥95000;预期效用U95000=ln95000=11. 4616因此;当张三购买公平保险后;其效用高于不购买保险..现在讨论张三是否安装防盗装置的问题;假设安装一个防盗装置的成本为¥1950;如果安装该装置、汽车被盗概率从0.25减小到0.15..如果没有投保;安装防盗装置的预期收益¥20000×0.10=¥ 2000超过成本;因而安装防盗装置有效率;其期望效用为:0.85ln100000-1950+0.15ln100000-2000-1950=11.4590超过不安装的期望效用11.457l;因此;如果张三没有投保;那么;购买防盗装置是理性的..但是;当张三投保后;情况发生了变化..假设张三购买汽车保险的价格是¥ 5200其中¥ 5000为预期损失;¥200为管理费..如果保险公司并不检查投保人是否安装防盗装置;那么;投保的预期效用为1n94800=11.4595;该预期效用超过安装防盗装置的预期效用..张三将会选择投保..但投保后将没有动力安装防盗保险装置;并且可能产生麻痹心而提高被盗的可能性..结果、发生火灾的概率从0.005上升到0.008;保险公司的实际预期损失为¥800..结果;每出售一张保险单平均都会损失S300..这种保险单对于保险公司来说不可行..由于代理人隐蔽行动难以观察;火灾保险市场经常出现投保人经营亏损后;有意纵火索取高额保险金的案例..2、火灾保险的道德风险:假设某厂商产品仓库价值为¥100000;厂商采取防火措施的成本为¥50..采取防火措施后小心谨慎;发生火灾概率为0.005;没有防火措施且疏于防范;发生火灾概率为0.008..又假设保险公司以预期火灾损失¥500;以此作为保险费用出售保险单..在这种环境下;如果厂商向保险公司投保后;就可能不会有动力继续执行防火措施;且可能疏于防范..3、健康保险市场:投保人一旦获得健康保险;相当于降低投保人的医疗护理费用..因此;理性的个人将增加他在这方面的消费量;相应地增加了医疗保险支付的数量;即增加社会成本的数额;因为个人保险费的增加意味着社会医疗支出费用的增加..在这种状态下;社会的风险服务和医疗服务都将低效率..4、资本市场:每个借贷者要求同样数目的贷款条件下;银行不能将借款者按照回报率的大小给予不同的利息率..银行能否收回贷款并获得利润;既取决于借款者的经济效益;也取决于银行所处环境状态的各种不确定性..当银行以借款者的经济收益为利息率标准时;借款者就会利用银行难以观察或不可能观察到的隐蔽行动采取相应行动;如虚报利润额、非法转移资金;人为地扩大成本等道德风险行为;由此使银行承担的风险比签定委托-代理合同前有所增加..5、证券市场的“逆向选择”:在信息不对称的情况下;投资者无法确定哪些上市公司是高质量的、有投资价值的公司;哪些是低质量的上市公司..因此;投资者在作出投资决策时;往往只能根据整个市场所有发行企业的平均质量来决定其愿意投资的价格..这种投资者的“折中”行为就会抑制那些高于平均质量水平的发行企业提高经济效率和管理水平的积极性;而鼓励投资者向低质量企业流动..因为高于平均质量水平的上市公司并不能在证券市场体现其应有的价值;因此就会造成高质量企业不情愿进入证券市场..造成低质量的上市公司横行于证券市场..信息不对称的结果造成股票价格与上市公司经营业绩的背离则使证券市场失去了评价上市公司业绩、约束上市公司经营行为的市场机制;这种市场选择的结果只会导致整个市场的上市公司质量的降低;并成为市场过度投机的主要根源;最终会导致市场的低效率甚至是市场的崩溃..判断一、博弈的分类方法:1、行为逻辑;是否允许存在有约束力协议:合作博弈、非合作博弈2、理性层次:完全理性博弈、有限理性博弈进化博弈;3、博弈过程:静态博弈、动态博弈、重复博弈4、信息结构:完全信息静态博弈、不完全信息静态博弈、完全且完美信息动态博弈、完全但不完美信息动态博弈、不完全信息动态博弈;5、得益特征:零和博弈、常和博弈、变和博弈6、博弈方数量:单人博弈、两人博弈、多人博弈;7、策略数量:有限博弈、无限博弈二、上策均衡、纳什均衡、严格下策反复消去法的关系区别:1、上策均衡是各博弈方绝对最优策略的组合;而纳什均衡则是各博弈方相对最优策略的组合..上策均衡一定是纳什均衡;但纳什均衡不一定就是上策均衡..对同一个博弈来说;上策均衡的集合就是纳什均衡集合的子集;但不一定是真子集;2、严格下策反复消去法与上策均衡分布对应两种有一定相对性的决策分析思路:严格~对应排除法即排除绝对最差策略的分析方法..上策~对应选择法;即选择绝对最优策略的均衡概念..二者并不矛盾;甚至可以相互补充..严格~不会消去任何上策均衡;可以简化博弈;3、严格~和纳什均衡也是相容和补充的;严格~不会消去任何上策均衡;可以简化博弈;使纳什均衡分析更加容易..。
博弈与决策题库

题库一、名词解释1.动态博弈动态博弈是指在博弈中,参与人的行动有先后顺序且后行动者能够观察到先行动者所选择的行动。
2.逆向归纳法对于动态博弈,特别是在完全信息条件下,最简单的方法就是逆向归纳法。
就是从最后一个阶段或者最后一个子博弈开始逆推向上,逐步向前倒推以求解动态博弈均衡。
3.重复博弈重复博弈是指同一个博弈在相同的环境、规则下反复多次执行的博弈问题。
4. 第二价格密封拍卖是由1996年诺贝尔经济学奖获得者威廉•维克瑞设计的,因而又被称为是“维克瑞拍卖”,具体规则如下:每个竞标者分别向拍卖方提交自己的报价,而且他们不知道别人的出价,出价最高的竞标者获得该物品,并按所有的出价中仅次于最高出价的第二高价格支付给卖家。
5.完全信息是指所有参与者各自选择行动的不同组合所决定的收益对所有参与者来说是共同知识。
共同知识就是你知道,我知道,你知道我知道的信息。
6.子博弈直观的含义是原博弈的一个部分,它本身也可以作为一个博弈进行分析,博弈树的一个子树所代表的博弈就是子博弈,子博弈的起始点是某个选择的终点,包括这个终点及所有后续结及枝及终点结之后的收益,构成了一个子博弈树,这个博弈树所代表的博弈称为子博弈。
7.公共信息如果有些信息是博弈参与者都知道的,或者是所有有关的参与者都知道的,这些信息就叫“公共信息”或者“共同知识”。
8.贝叶斯纳什均衡不完全信息静态博弈的均衡称为贝叶斯纳什均衡。
是指在不完全信息静态博弈中在给定自己类型以及其他参与者的类型与策略选择之间关系的条件下,使得自己的期望效用最大。
9.博弈论博弈论是指研究多个个体或团队在特定条件制约下的对局中,利用相关方的策略而实施对应策略的科学。
10.纳什均衡对于每一个参与者来说是这样一种组合,即给定其他参与者的策略,每一个参与者的这个策略能使其效用最大化。
其含义为:当博弈的所有参与者在某一选定的策略组合下都没有动机(单方面)偏离自己选定的策略时,该组合策略就是纳什均衡。
《经济博弈论》期末考试复习资料

《经济博弈论》期末考试复习资料第一章导论1.博弈的概念:博弈即一些个人、队组或其他组织,面对一定的环境条件,在一定的规则下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,并从中各自取得相应结果的过程。
它包括四个要素:参与者,策略,次序和得益。
2.一个博弈的构成要素:博弈模型有下列要素:(1)博弈方。
即博弈中决策并承但结果的参与者.包括个人或组织等:(2)策略。
即博弈方决策、选择的内容,包括行为取舍、经济活动水平或多种行为的特定组合等。
各博弈方的策略选择范围称策略空间。
每个博弈方各选一个策略构成一个策略组合。
(3)进行博弈的次序:次序不同一般就是不同的博弈,即使博弈的其他方面都相同。
(4)得益。
各策略组合对应的各博弈方获得的数值结果,可以是经济利益,也可以是非经济利益折算的效用等。
3.合作博弈和非合作博弈的区别:合作博弈:允许存在有约束力协议的博弈;非合作博弈:不允许存在有约束力协议的博弈。
主要区别:人们的行为互相作用时,当事人能否达成一个具有约束力的协议。
假设博弈方是两个寡头企业,如果他们之间达成一个协议,联合最大化垄断利润,并且各自按这个协议生产,就是合作博弈。
如果达不成协议,或不遵守协议,每个企业都只选择自己的最优产品(价格),则是非合作博弈。
合作博弈:团体理性(效率高,公正,公平)非合作博弈:个人理性,个人最优决策(可能有效率,可能无效率)4.完全理性和有限理性:完全理性:有完美的分析判断能力和不会犯选择行为的错误。
有限理性:博弈方的判断选择能力有缺陷。
区分两者的重要性在于如果决策者是有限理性的,那么他们的策略行为和博弈结果通常与在博弈方有完全理想假设的基础上的预测有很大差距,以完全理性为基础的博弈分析可能会失效。
所以不能简单地假设各博弈方都完全理性。
5.个体理性和集体理性:个体理性:以个体利益最大为目标;集体理性:追求集体利益最大化。
第一章课后题:2、4、52.设定一个博弈模型必须确定哪几个方面?设定一个博弈必须确定的方面包括:(1)博弈方,即博弈中进行决策并承担结果的参与者;(2)策略(空间),即博弈方选择的内容,可以是方向、取舍选择,也可以是连续的数量水平等;(3)得益或得益函数,即博弈方行为、策略选择的相应后果、结果,必须是数量或者能够折算成数量;(4)博弈次序,即博弈方行为、选择的先后次序或者重复次数等;(5)信息结构,即博弈方相互对其他博弈方行为或最终利益的了解程度;(6)行为逻辑和理性程度,即博弈方是依据个体理性还是集体理性行为,以及理性的程度等。
博弈论重点

博弈论期末复习要点纳什均衡(P52):指的是参与人的这样一种策略组合,在该策略组合中,每个人的策略都是最优的,任何参与人单独改变策略都不会得到好处。
换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略。
完全信息(P34):各个博弈方都完全了解所有博弈方在各种情况下的得益状况。
上策均衡(P41):在某个博弈中,如果不管其他博弈方选择什么策略,一博弈方的某一个策略给他带来的收益始终高于其他策略,至少不低于其他策略。
帕累托上策均衡(P92):多个纳什均衡的某一个均衡策略给所有博弈方带来的得益都大于其他所有纳什均衡带来的得益,则各个博弈方都会倾向于此纳什均衡的策略,博弈能够实现帕累托效率。
聚点均衡(P97):在多重纳什均衡博弈中,双方同时会选择一个聚点构成的纳什均衡。
合并均衡(P268):具有完美信息的博弈方在博弈中,不管自己情况如何,都采取相同的市场均衡。
(在合并均衡中,完美信息博弈方的情况不同,并不会导致他们的行为不同,因此他们的行为不会给不完美信息的博弈方透露任何有用的消息)分开均衡(P268):在不同情况下,完美信息博弈方所采取完全不同的市场策略。
(在分开均衡中,由于博弈方的情况不同,采取的不同的市场策略,因此完美信息博弈方的策略可以完全反映他的情况,因此能够给不完美信息博弈方的“判断”提供充分的信息和依据)海萨尼转换(P292):将得益不了解转化为类型不了解的基础上,进一步将不完全信息静态博弈转化为完全但不完美信息动态博弈进行分析的思路。
完美信息(P34):动态博弈中在轮到行为时对博弈的进程完全了解的博弈。
不完美信息(P34):动态博弈中在轮到行为时对博弈的进程完全不了解的博弈。
混合策略(P72):博弈方以一定的概率分布在可选策略中随机选择的决策方式。
一致性预测(P53):如果所有博弈方都预测一个特定的博弈结果会出现,那么所有的博弈方都不会利用该预测或者这种预测能力,选择与预测结果不一致的策略。
博弈与决策期末复习资料

《博弈与决策》期末复习资料一、期末考试形式和时间半开卷时间:分钟二、考试题型、名词解释(每小题分,共分);、简答题 (每小题分,共分);、论述题(每小题分,共分);、案例分析题(共分)参考复习资料如下:三、名词解释.信号传递:在信息经济学里,具有优势的一方(拥有私人信息的一方)采取某种行动向信息劣势一方(不了解对方私人信息的一方)发送相关信号,来告诉对方自己的真实类型。
.非合作博弈:是指参与人之间没有一个对各方具有约束力的协议,参与人不在协议范围内进行的博弈。
.重复博弈:是指同一个博弈在相同的环境、规则下反复多次执行的博弈问题。
.第一价格密封拍卖:在这种拍卖模式下,投标者利用秘密方式(比如将报价写好装入一个信封)同时投标,所有的投标人都不知道其他投标人的出价,且一旦呈交了投标就没有机会更新。
拍卖人当众打开这些信封,出价最高者就是赢者,可以以其所报出的最高价格购买被拍卖物品。
.静态博弈:是指在博弈中,参与人同时选择或虽非同时选择单后行动者并不知道先行动者采取了什么具体行动。
. 逆向归纳法:就是从最后一个阶段或最后一个子博弈开始逆推上去,逐步向前倒推以求解动态博弈均衡。
.精炼叶贝斯纳什均衡:在不完全信息动态博弈下,如果给定参与者自己的特征和其他参与者特征概率分布的情况下,每个参与者选择的策略能使自己的期望支付达到最大化,也就是没有人积极选择其他策略,这就形成了“精炼贝叶斯纳什均衡”。
.第二价格密封拍卖:每个竞标者分别向拍卖方提交自己的报价,而且他们不知道别人的出价,出价最高的竞标者将获得物品,并按所有的出价中仅次于最高出价的第二高价格支付给卖家。
.不完全信息:是指在博弈过程中,每一位参与人对其他参与人的特征、策略空间及收益函数信息了解的不够或者不是对所有参与人的特征策略空间及收益函数都有准确的信息。
.子博弈:是指它本身可以作为一个独立的博弈进行分析,它是原博弈的一部分。
任何博弈本身可被称为自身的一个子博弈。
博弈与决策期末复习提要

《博弈与决策》期末复习资料一、期末考试形式和时间半开卷时间:90分钟二、考试题型1、名词解释(每小题5分,共20分);2、简答题 (每小题10分,共30分);3、论述题(每小题15分,共30分);4、案例分析题(共20分)参考复习资料如下:三、名词解释1.动态博弈2.逆向归纳法3.重复博弈4. 第二价格密封拍卖5.完全信息6.子博弈7.公共信息8.贝叶斯纳什均衡9.博弈论10.纳什均衡11.混合策略12.信息甄别13.参与人14.支付15.行动16.静态博弈17.柠檬市场18.劣策略19.纯策略20.得益四、简答题1.什么是重复博弈中的“针锋相对”策略?2.简述混合策略的含义及如何正确选择混合策略。
3.什么是逆向选择?逆向选择在银行贷款上是如何体现的?4.简述不确定性的含义及不确定性条件下如何进行策略选择。
5.按照行动顺序和信息结构划分博弈论的分类有哪些?各是什么含义?6. 非合作博弈四种类型及对应的均衡是什么?并对所对应的均衡加以说明。
7.简述公地悲剧及如何调节。
8.简述博弈论发展的过程。
9.垄断者阻止市场进入的策略有哪些?10.博弈的构成要素有哪些?并对这些要素进行说明。
11.请说明劳动力市场的逆向选择。
12.试述重复博弈的概念及特征。
13.试阐述纳什均衡的意义。
14.说明纳什均衡与占优均衡之间的联系和区别。
15.请解释英式拍卖、荷兰式拍卖、美式拍卖、第一价格密封拍卖和第二价格密封拍卖的含义。
五、论试题1.试阐述说明经济管理中的保证最低价格条款策略。
2.试述道德风险的含义、道德风险与逆向选择的区别及如何规避道德风险。
(请举例说明,至少一个详细的案例,并加以具体的说明。
)3.以斗鸡博弈为例谈谈企业在竞争中如何实现共赢。
4.以囚徒的困境为例说明如何用下划线法寻找最优策略。
5. 试阐述博弈论发展的几个阶段及各阶段代表人物和主要贡献。
6. 举例说明博弈论在经济管理领域的应用或现象。
(至少一个详细的案例,并加以具体的说明。
博弈论期末复习题及答案

博弈论期末复习题乩设古诺模型中有丹ST厂商。
6为厂商j的产■念=如+…+幺为市场总产为市场出清价格,且己知P = P[Q) = Q_ 0(当时.否ffl'J P= OJo假设厂商f生产缶产■的总成本他"也就是说没有定成本且各厂商的边际成本都相同,为常数c(c <a人假设各厂商同时选择产■,该模型的纳什均衡是什么?当n趙向于无穷大时博弈分析是否仍然有效?(】)报据问题的假设可知各厂底的利润函数为;略=阿,f 5 * (农—比—工一〔G其中1=1,…,叽将利润函数对$求导并令其为0得:帶=& _ _ F _如=0%==(“—另野一门/2根据可个厂商之闾的对称性,可知g;=嘖=…=q:必然成立o 代入上述反应函数可解得:打十i因趾该博弈的纳什均術是所有用个厂商都生产产重—H+1(2)当川趙于无穷時,所分折的市场不再是一个寡头市场而是完全竞争市场』匕肘上述博弈分桁方法其实杲不适用的.史两if获古诺模型屮(a)= “一o等与上题相同,但两个厂商的边际成本不同■分别为G和6心如果。
<心<血2,问纳什均衡产■各为笫少?如果豺<衍<6怛2心>。
+眄•则纳忡均衡产■又为赛少?泰考答案丁(1)两个厂海的利润函数为:九=Z —5一(饶—0 —①)q f—厂忌将利润函数对产皐求导并令开为0得:—=a —7, ~ C, —2q, —0解得两个厂商的反应函数为:。
@ —如—(\ )/2或貝体芻成】Qi ==(吃—G —)/2仗=仏一q、G)/2(2)0 <G <:a/2时*我们粮据上述两个厂商的反应函数、直接求出两个厂商的纳什均衡产量分别为£灯—2门十C:曲-------- 3—a +<1 —2。
毎-一§—■(3)当G V-但2c,>a+c}时,粮据反应函数求出来的厂商2产毘小<0.这倉味晋厂裔2不矣生产”这时厂商1虑了垄断厂裔*厂商1的戢优产量选择是利润最大化的垄断产量,_ ◎—G因此这种情况下前纳什均衡为[3 —门)/2. 0]&=(10°_ % 一仇_ g』)® _ 2® =廻号——5勳=(100 _ Qi ~ Qi — qj)g7—2q2 = —_萇 --- 业血分别对务和他求偏导数并令为0得:说98 —£八矿一^一的"联立两个方稈可解得$ = g =98/3e再代入厂商3的反应函数得缶—(98 —g〔一如)/2 = 98/6o把三个厂商的产量代入各口的利润函数,可得三个厂商的利润分别为4 802/9、4 802/9 和2 401/9°乩三專头垄断帝场有倒转的需求函数为P(Q)=a-e.其中Q =弘+% +如皿是厂商i的产■态一个厂商生产的边际成本为常数耳没有固定成本。
电大(本)博弈与决策作业1-4复习过程

博弈与决策 平时作业参考答案(1)一、名词解释1.博弈论:是指研究多个个体或团队之间在特定条件制约下的对局中,利用相关方的策略而实施对应策略的学科。
2.完全信息:是指所有参与者各自选择的行动的不同组合所决定的收益对所有参与者来说是共同知识。
3.静态博弈:是指博弈中参与者同时采取行动,或者尽管参与者行动的采取有先后顺序,但后行动的人并不知道先采取行动的人采取的是什么行动。
4.动态博弈:指的是参与人的行动有先有后,而且后选择行动的一方可以看到先采取行动的人所选择的行动。
5.非合作博弈:如果参与者之间不可能或者根本没办法达成具有约束力的协议,不能在一个统一的框架下采取行动的话,这种博弈类型就是非合作博弈。
6.纳什均衡:是对于每一个博弈参与者来说是这样的一个战略组合,即给定其他参与者的战略,每一个参与者的这个战略能使其期望效用最大化。
7.纯策略:如果在每个给定信息下,只能选择一种特定策略,而且参与者选择了这个策略之后就不会单方面改变自己的策略,这个策略就是纯策略。
8.纯策略纳什均衡:是指在一个纯策略组合中,如果给定其他的策略不变,在该策略组合下参与者不会单方面改变自己的策略,否则会使策略组合令人后悔或者不满意。
二、请用剔除劣势策略的方法寻找以下博弈的最优策略。
要求: (1)写出剔除的步骤或顺序;(2)画出相应的剔除线;(3)给出最优的博弈结果。
乙甲答:(1)对甲而言,抵赖是劣势策略,用横线划去“抵赖”所对应的行;(2)对乙而言,抵赖是劣势策略,用竖线划去“抵赖”所对应的列; (3)余下的策略组合是(坦白,坦白),这就是该博弈的最优结果。
[注:步骤(1)(2)颠倒亦可]百事可乐答:(1)对可口可乐而言,高价是劣势策略,用横线划去“高价”所对应的行;(2)对百事可乐而言,高价是劣势策略,用竖线划去“高价”所对应的列;(3)余下的策略组合是(低价,低价),这就是该博弈的最优结果。
[注:步骤(1)(2)颠倒亦可]员工乙员工甲答:(1)对员工乙而言,策略R 是明显劣势策略,用竖线划去“R ”所对应的列;(2)对员工甲而言,在员工乙剔除R 策略之后,C 策略是劣势策略,用横线划去“C ”所对应的行; (3)对员工乙而言,此时劣势的策略是L ,用竖线划去“L ”所对应的列; (4)对员工甲而言,此时劣势的策略是D ,用竖线划去“D ”所对应的行; (5)余下的策略组合是(U ,M ),这就是该博弈的最优结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章博弈论的基本理论(一)博弈论的基本概念博弈:现实生活中,不同的决策人为了争夺资源、争夺机会使得决策人处于相互依存的复杂关系中,这就不得不思考他人有针对性行为对自身所产生的影响。
博弈就是一种游戏,在这种状态下,参与者必须作出选择,并对对方的选择作出判断,这种判断和选择决定了博弈的结果。
每个对弈者在决定采取何种行动时不但要根据自身的利益和目的行事,也要考虑自身的决策行为对其他人的可能影响,以及其他人的行为对自身的可能影响,通过选择最佳行动计划,来寻求收益或效用的最大化。
博弈论:就是以参与人之间有针对性的行为产生的互动过程为研究对象的理论,探讨在互动过程中参与人的一般行为规律。
博弈论的核心问题在于如何在“策略互动”的局势中找到局中人的最佳行为方式,使得采用最佳行为方式的局中人能获得最大的收益。
所以博弈论可以简单理解尾研究策略互动局势中的局中人的理性行为的理论。
(二)博弈论的构成要素1、博弈一般由以下几个要素组成,包括:参与人、行动、信息、策略、得益、结果、均衡等。
2、参与人指的是博弈中选择行动以最大化自己效用的决策主体(可以是个人,也可以是团体);3、行动是指参与人在博弈进程中轮到自己选择时所作的某个具体决策;4、策略是指参与人选择行动的规则,即在博弈进程中,什么情况下选择什么行动的预先安排;5、得益是参与人在博弈结束后从博弈中获得的效用,一般是所有参与人的策略或行动的函数,这是每个参与人最关心的东西;6、均衡是所有参与人的最优策略或行动的组合;均衡结果是指博弈结束后博弈分析者感兴趣的一些要素的集合,如在各参与人的均衡策略作用下,各参与人最终的行动或效用集合。
上述要素中,参与人、行动、结果统称为博弈规则,博弈分析的目的就是使用博弈规则来决定均衡。
二、博弈论的发展简史1、萌芽阶段:博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论专著。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。
2、产生阶段:1944年科学家冯·诺伊曼和经济学家奥斯卡·摩根斯坦合著《博弈论与经济行为》将二人博弈推广到n 人博弈结构并将博弈论系统的应用于经济领域,标志着博弈论作为一门独立的的学科诞生。
3、发展阶段:1950年,约翰·纳什(John Nash)引入均衡(解)的概念,即纳什均衡,将博弈论从零和博弈推进到非零和博弈(即参与人会出现双赢或双输的情况),纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
纳什获得1994年诺贝尔经济学奖。
4、高潮阶段:20世纪40年代末到50年代中期是博弈论研究的第一个高潮时期,一方面是合作博弈发展到了鼎盛时期,包括纳什和夏普里的“讨价还价”模型,“核”的概念。
另一方面非合作博弈开始创立,纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)以及Tucker于1950年定义的“囚徒困境”。
这一时期海提出了“微分博弈”,奥曼提出了“强均衡”概念,“重复博弈”也开始研究。
1965年和1975年兰哈德·泽尔藤(Reinhard Selten)把纳什均衡推广到动态博弈,并提出子博弈完美纳什均衡;1967-1968年间,约翰·海萨尼(John Harsanyi)把纳什思想推广到不完全信息模型,提出贝叶斯均衡;他们与纳什一起分享1994年诺贝尔经济学奖。
1996年诺贝尔经济学奖获得者詹姆斯·莫里斯教授和威廉姆·维克瑞教授在20世纪60、70年代提示不对称信息对交易带来的影响,并提出相应对策。
70年代的重要事件海包括“进化博弈论”,“进化稳定策略”,此外“共同知识”也引起了广泛关注。
5、成熟阶段:80、90年代是博弈论于驻留经济学融合时期,也是博弈论走向成熟时期。
这个时期最重要的进展包括Elon KohlbergZAI 1981年引入“前向归纳法”,克里普斯和威尔逊在982年提出“序列均衡”,斯密1982年出版《进化和博弈论》,海萨尼和泽尔藤在988年提出有关非合作博弈中均衡选择的一般理论和标准。
1991年佛德伯格和泰勒提出了“精练贝叶斯均衡”。
三、博弈论的分类1、参与人行动的先后顺序:静态和动态静态博弈是指参与者同时采取行动,或者尽管参与者行动的采取有先后顺序,但后行动的人不知道先采取行动的人采取的是什么行动。
动态博弈:参与者的行动有先后顺序,并且后采取行动的人可以知道先采取行动的人所采取的行动。
2、参与人对其他参与人的了解程度:完全信息和不完全信息完全信息博弈:参与者对所有参与者的特征、策略空间及策略组合下的支付有充分了解称为完全信息;不完全信息博弈:参与者对所有参与者的特征、策略空间及策略组合下的支付的信息了解得不够准确或者不是对所有参与者的特征、策略空间及策略组合下的支付的信息都有准确的了解。
3、参与人之间是否进行合作:合作和非合作合作性博弈:参与者从自己的利益出发与其他参与者谈判达成协议或形成联盟,其结果对联盟方均有利;参与人在协议范围内进行博弈。
非合作性博弈:参与者在行动选择时无法达成约束性的协议4、非合作博弈四种类型及对应的均衡:(1)完全信息静态——纳什均衡、占优均衡纳什均衡是指这样一种均衡:在这一均衡中,每个博弈参与人都确信,在给定其他参与人战略决定的情况下,他选择了最优战略以回应对手的战略。
也就是说,所有人的战略都是最优的。
占优均衡指不论其他参与者做何种策略选择,每个参与者的最佳策略都是唯一的,其结果为占优均衡。
当所有博弈者都有一个占优战略时,其结果将是占优均衡。
占优均衡一定是纳什均衡。
(2)完全信息动态——子博弈精炼纳什均衡子博弈精炼纳什均衡是泽尔腾(Selten)于1965年首先提出的,其目的是将那些不可置信威胁策略的纳什均衡从均衡中剔除,从而给出动态博弈一个合理的均衡解。
在动态博弈中,参与人的行动有先后顺序,后行动的参与人在自己行动之前就可以观察到先行动者(参与人)的行为,并在此基础上选择相应的策略。
而且,由于先行动者拥有后行动者可能选择策略的完全信息,因而先行动者在选择自己的策略时,就可以预先考虑自己的选择对后行动者选择的影响,并采取相应的对策。
(3)不完全信息静态博弈——贝叶斯纳什均衡贝叶斯纳什均衡:在不完全信息静态博弈中,参与人同时行动,没有机会观察到别人的选择。
给定其他参与人的战略选择,每个参与人的最优战略依赖于自己的类型。
由于每个参与人仅知道其他参与人有关类型的分布概率,而不知道其真实类型,因而,他不可能知道其他参与人实际上会选择什么战略。
但是,他能够正确地预测到其他参与人的选择与其各自的有关类型之间的关系。
因此,该参与人的决策目标就是:在给定自己的类型,以及给定其他参与人的类型与战略选择之间关系的条件下,使得自己的期望效用最大化。
贝叶斯纳什均衡是一种类型依赖型战略组合。
(4)不完全信息动态博弈——精炼贝叶斯纳什均衡精炼贝叶斯纳什均衡:在不完全信息动态博弈中博弈开始时,某一参与人既不知道其他参与人的真实类型,也不知道其他参与人所属类型的分布概率。
他只是对这一概率分布有自己的主观判断,即有自己的信念。
博弈开始后,该参与人将根据他所观察到的其他参与人的行为,来修正自己的信念。
并根据这种不断变化的信念,作出自己的战略选择。
第二章简单博弈与博弈均衡(一)占优战略与占优战略均衡占优战略是博弈论(game theory)中的专业术语,所谓的占优战略就是指无论竞争对手如何反应都属于本企业最佳选择的竞争策略。
占优战略均衡必定是纳什均衡,因为局中人的占优战略是对所有其他局中人的任何战略组合情况下的最优战略选择,自然它也一定是对于所有其他局中人的某个特定战略(其他局中人的最优战略)情况下的最优战略选择。
但反过来不成立,纳什均衡不一定是占优战略均衡。
(二)纳什战略均衡1、纳什均衡的意义:纳什均衡理论奠定了现代主流博弈理论和经济理论的根本基础,其重要影响可以概括为以下六个方面:(1)改变了经济学的体系和结构。
非合作博弈论的概念、内容、模型和分析工具等,均已渗透到微观经济学、宏观经济学、劳动经济学、国际经济学、环境经济学等经济学科的绝大部分学科领域,改变了这些学科领域的内容和结构,成为这些学科领域的基本研究范式和理论分析工具,从而改变了原有经济学理论体系中各分支学科的内涵。
(2)扩展了经济学研究经济问题的范围。
原有经济学缺乏将不确定性因素、变动环境因素以及经济个体之间的交互作用模式化的有效办法,因而不能进行微观层次经济问题的解剖分析。
纳什均衡及相关模型分析方法,包括扩展型博弈法、逆推归纳法、子博弈完美纳什均衡等概念方法,为经济学家们提供了深入的分析工具。
(3)加强了经济学研究的深度。
纳什均衡理论不回避经济个体之间直接的交互作用,不满足于对经济个体之间复杂经济关系的简单化处理,分析问题时不只停留在宏观层面上而是深入分析表象背后深层次的原因和规律,强调从微观个体行为规律的角度发现问题的根源,因而可以更深刻准确地理解和解释经济问题。
(4)形成了基于经典博弈的研究范式体系。
即可以将各种问题或经济关系,按照经典博弈的类型或特征进行分类,并根据相应的经典博弈的分析方法和模型进行研究,将一个领域所取得的经验方便地移植到另一个领域。
(5)扩大和加强了经济学与其他社会科学、自然科学的联系。
纳什均衡理论既适用于人类的行为规律,也适合于人类以外的其他生物的生存、运动和发展的规律。
纳什均衡和博弈论的桥梁作用,使经济学与其他社会科学、自然科学的联系更加紧密,形成了经济学与其他学科相互促进的良性循环。
(6)改变了经济学的语言和表达方法。
在进化博弈论方面相当有造诣的坎多利(Kandori,1997)对保罗·萨缪尔森(Paul Samuelson)的名言“你甚至可以使一只鹦鹉变成一个训练有素的经济学家,因为它必须学习的只有两个词,那就是‘供给’和‘需求’”,曾做过一个幽默的引申,他说,“现在这只鹦鹉需要再学两个词,那就是‘纳什均衡’”。
2、占优战略均衡和纳什均衡的联系与区别:纳什均衡,又称为非合作博弈均衡,是博弈论的一个重要术语。
在这一均衡中,每个博弈参与人都确信,在给定其他参与人战略决定的情况下,他选择了最优战略以回应对手的战略。
也就是说,所有人的战略都是最优的。
占优战略是博弈论(game theory)中的专业术语,所谓的占优战略就是指无论竞争对手如何反应都属于本企业最佳选择的竞争策略。
占优战略均衡必定是纳什均衡,因为局中人的占优战略是对所有其他局中人的任何战略组合情况下的最优战略选择,自然它也一定是对于所有其他局中人的某个特定战略(其他局中人的最优战略)情况下的最优战略选择。