概率统计实验复习过程
概率统计C复习大纲

重要结论: 若 X 1 , X 2 , X n 是取自总体 X , EX , DX 的简单随机样本,则 (1) EX , DX
' f h y h y , y D2 40 代入公式得: fY y X 0, y D2
(P73 A-3,5)
5. 理解二维随机变量的联合分布函数的定义,边缘分布函数的定义,以及会用联合分布函数表示二维随机变量落 在某个范围内的概率. ( P75 (2.6.1) ) (例如 P(X>a,Y>b)=1-P(X≤a)-P(Y≤b)+P(X≤a,Y≤b)=1-F(a,+∞)-F(+∞,b)+F(a,b) ) 6. 会求二维离散型 r.v. 的联合分布律,边际分布律。联合分布函数,条件分布律,会判断独立性。(P104 例 6 ) 7. 会求二维连续型 r.v. 的联合密度,联合分布,边际密度,边际分布, P
f ( z y, y )dy
f ( x, z x)dx ,P95 例 4,解法二)(P97 A-5)
xi pi E ( X ) i 1 xf ( x)dx
当X为离散型 当X为连续型
g ( xi ) pi E[ g ( X )] i 1 g ( x) f ( x)dx
定义 1: 分布: 若 X i N (0,1) 且独立,则
2 2
X
i 1
n
2 i
概率统计公式大全复习重点

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。
)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用ω来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件ω)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,为不可能事件。
不可能事件()的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。
第一轮复习统计与概率教案及反思

教案中考第一轮复习《统计与概率》第二节概率姓名:陈桂玲单位:河南省郑州市中牟县实验学校第一轮复习统计与概率第二节概率教学目标:知识目标:1、正确区分确定事件(包括不可能事件和必然事件)和不确定事件(随机随机)2、在确定的情境中了解概率的含义,运用列表法或画树状图法计算简单事件发生的概率。
3、通过实验,获得事件发生概率的估计值。
4、能用概率知识解决一些实际问题。
5、能用实验或模拟试验的方法估计一些复杂的随机事件发生的概率。
过程与方法:通过中考真题再现,在解决问题的过程中,让学生初步体会成功的喜悦,增强学习的自信心。
情感态度与价值观:通过解决实际问题,培养学生用数学思维方式解决问题,增强学生的学习数学的兴趣。
教学重点:运用列表法或画树状图法计算简单事件发生的概率。
教学难点:能用概率知识解决一些实际问题。
教学方法:启发式教学、讲练结合教具准备:多媒体课件教学过程:一、知识梳理考点再现考点一:确定事件与随机事件1、_______和________称为确定事件。
2、在一定条件下,__________的事件,叫做随机事件。
考点二:概率1、概率的定义。
一般地,在大量重复试验中,如果事件A发生的频率mn会稳定在某个常数P附近,•那么这个常数P就叫做事件A的概率,记为P(A)=P.2、确定事件和随机事件的概率。
3、概率的计算。
列表法或画树状图法计算简单事件发生的概率考点三:频率与概率的关系是大量试验后频率趋于稳定的值,对于一个随机事件做大量试验时发现,随机事件发生的次数与试验次数的比总是在一个固定值附近摆动,这个固定的值叫做随机事件的概率,概率的大小反映随机事件的可能性的大小。
二、典例精析例1 (2010台州市).下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件;B .某次抽奖活动中奖的概率为1001,说明每买100张奖券,一定有一次中奖; C .数据1,1,2,2,3的众数是3;D .想了解台州市城镇居民人均年收入水平,宜采用抽样调查. 例2(2010陕西省).某班毕业联欢会设计的即兴表演节目的摸球游戏,游戏采用一个不透明的盒子,里面装有五个分别标有数字1、2、3、4、5的乒乓球,这些球除数字外,其他完全相同,游戏规则是参加联欢会的50名同学,每人将盒子乒乓球摇匀后闭上眼睛从中随即一次..摸出两个球(......每位同学必须且只能摸一次)。
概率统计公式大全(复习重点)

概率统计公式大全(复习重点)第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。
)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用ω来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件ω)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BB⊃,则称事件A与A⊂,A事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A Y B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。
概率论与数理统计复习

自考04183概率论与数理统计(经管类)笔记-自考概率论与数理统§1.1 随机事件1.随机现象:确定现象:太阳从东方升起,重感冒会发烧等;不确定现象:随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等;其他不确定现象:在某人群中找到的一个人是否漂亮等。
结论:随机现象是不确定现象之一。
2.随机试验和样本空间随机试验举例:E1:抛一枚硬币,观察正面H、反面T出现的情况。
E2:掷一枚骰子,观察出现的点数。
E3:记录110报警台一天接到的报警次数。
E4:在一批灯泡中任意抽取一个,测试它的寿命。
E5:记录某物理量(长度、直径等)的测量误差。
E6:在区间[0,1]上任取一点,记录它的坐标。
随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。
样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。
所有样本点的集合称为样本空间,记作。
举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。
3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。
只包含一个样本点的单点子集{}称为基本事件。
必然事件:一定发生的事件,记作不可能事件:永远不能发生的事件,记作4.随机事件的关系和运算由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。
(1)事件的包含和相等包含:设A,B为二事件,若A发生必然导致B发生,则称事件B包含事件A,或事A包含于事件B,记作,或。
性质:例:掷骰子,A:“出现3点”,B:“出现奇数点”,则。
注:与集合包含的区别。
相等:若且,则称事件A与事件B相等,记作A=B。
(2)和事件概念:称事件“A与B至少有一个发生”为事件A与事件B的和事件,或称为事件A与事件B的并,记作或A+B。
高考数学概率统计总复习教案

高考数学概率统计总复习教案【小编寄语】查字典数学网小编给大家整理了高考数学概率统计总复习教案,希望能给大家带来帮助!一、山东高考体验(10山东))在某项体育比赛中,七位裁判为一选手打出的分数如下:90 89 90 95 93 94 93 去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A)92 , 2 (B) 92 , 2.8 (C) 93 , 2 (D) 93 , 2.8(09山东)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆): 轿车A 轿车B 轿车C舒适型100 150 z标准型300 450 600按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1) 求z的值.(2) 用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3) 用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.(10山东)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率.二、抢分演练1.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为,,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在的人数是.2. (2009年广东卷文)某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是。
概率与统计复习教案

概率与统计复习教案一、教学目标1. 回顾和巩固概率与统计的基本概念、原理和方法。
2. 提高学生运用概率与统计解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队协作能力。
二、教学内容1. 概率的基本概念:必然事件、不可能事件、随机事件。
2. 概率的计算:古典概率、条件概率、独立事件的概率。
3. 统计的基本概念:平均数、中位数、众数、方差、标准差。
4. 数据的收集与处理:调查方法、数据整理、数据可视化。
5. 概率与统计在实际应用中的例子。
三、教学方法1. 讲授法:讲解概率与统计的基本概念、原理和方法。
2. 案例分析法:分析实际应用中的例子,引导学生运用概率与统计解决实际问题。
3. 小组讨论法:分组讨论问题,培养学生的团队协作能力。
4. 练习法:布置课后作业,巩固所学知识。
四、教学准备1. 教学PPT:制作包含概率与统计基本概念、原理和方法的PPT。
2. 案例材料:收集实际应用中的概率与统计例子。
3. 作业题目:准备课后作业,涵盖本节课的主要内容。
五、教学过程1. 导入:回顾上节课的内容,引导学生进入本节课的学习。
2. 讲解概率的基本概念:必然事件、不可能事件、随机事件。
3. 讲解概率的计算:古典概率、条件概率、独立事件的概率。
4. 案例分析:分析实际应用中的例子,让学生体会概率与统计在生活中的应用。
5. 讲解统计的基本概念:平均数、中位数、众数、方差、标准差。
6. 讲解数据的收集与处理:调查方法、数据整理、数据可视化。
7. 小组讨论:分组讨论问题,培养学生的团队协作能力。
8. 课堂练习:布置课后作业,巩固所学知识。
9. 总结:对本节课的主要内容进行总结,提醒学生注意重点知识点。
10. 课后作业:布置作业,让学生进一步巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对概率与统计概念的理解程度。
2. 小组讨论:观察学生在讨论中的表现,评估他们的团队协作能力和问题解决能力。
3. 课后作业:检查学生作业完成情况,评估他们对课堂所学知识的掌握程度。
概率论与数理统计总复习-

一. 二维离散型r.v.
概率统计-总复习-13
1. 联合分布律(2个性质)
P(Xxi,Yyj)pij,
2.联合分布函数(5个性质)
F ( x , y ) P X x , Y y
3.联合分布律与联合分布函数关系
F(x,y)pij, xixyjy
4. 边缘分布律与边缘分布函数
n
Xi
n
E( Xi )
i1 i1
D
n
Xi
n
D( Xi )
i1 i1
X1,,Xn 相互独立
常见离散r.v.的期望与方差
概率统计-总复习-27
分布 概率分布
期望 方差
参数p的 0-1分布
P (X 1 )p ,P (X 0) q
2. 联合分布函数(5个性质)
xy
F(x,y) p(u,v)dvdu
3.联合密度与联合分布函数关系 2F( x,y) p( x,y)
xy
4.边缘密度与边缘分布函数
p (x) p( x,y)dy p ( y) p( x,y)dx
X
Y
FX( x) F(x, ) FY ( y ) F(, y)
5.全概率公式:分解 P(B) P(Ai)P(B|Ai),B
i1
6.贝叶斯公式
P(Aj |B)
P(Aj )P(B| Aj )
,j
P(Ai )P(B|Ai )
i1
四. 概率模型
概率统计-总复习-6
1.古典概型: 摸球、放球、随机取数、配对
2. n重伯努利概型:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§13.6概率统计实验[学习目标]1. 会用Mathematica 求概率、均值与方差;2. 能进行常用分布的计算;3. 会用Mathematica 进行期望和方差的区间估计;4. 会用Mathematica 进行回归分析。
概率统计是最需要使用计算机的领域,过去依靠计算器进行统计计算,由于计算机的普及得以升级换代。
本节介绍Mathematica 自带的统计程序包,其中有实现常用统计计算的各种外部函数。
一、 样本的数字特征1. 一元的情况Mathematica 的内部没有数理统计方面的功能,但是带有功能强大的数理统计外部程序,由多个程序文件组成。
它们在标准扩展程序包集的Statistic 程序包子集中,位于目录D :\Mathematica\4.0\AddOns\StandardPackages\Statistics下。
通过查看Help ,可以找到包含所需外部函数的程序文件名。
在程序文件DescriptiveStatistics.m 中,含有实现一元数理统计基本计算的函数,常用的有:SampleRange[data] 求表data 中数据的极差(最大数减最小数)。
Median[data] 求中值。
Mean[data] 求平均值∑=ni i x n 11。
Variance[data] 求方差(无偏估计)∑=--ni i x x n 12)(11。
StandardDeviation[data] 求标准差(无偏估计)∑=--n i i x x n 12)(11。
VarianceMLE[data] 求方差∑=-ni i x x n 12)(1。
StandardDeviationMLE[data] 求标准差∑=-ni i x x n 12)(1。
实际上程序文件中的函数很多,这里只列出了最常用的函数,其它计算函数可以通过Help 浏览。
例1 给出一组样本值:6.5,3.8,6.6,5.7,6.0,6.4,5.3,计算样本个数、最大值、最小值、均值、方差、标准差等。
解:In[1]:= << Statistics `DescriptiveStatistics`In[2]:= data = {6.5,3.8,6.6,5.7,6.0,6.4,5.3};In[3]:=Length[data]Out[3]=7In[4]:=Min[data]Out[4]= 3.8In[5]:=Max[data]Out[5]= 6.6In[6]:=SampleRange[data]Out[6]= 2.8In[7]:=Median[data]Out[7]= 6.In[8]:=Mean[data]Out[8]= 5.75714In[9]:=Variance[data]Out[9]= 0.962857In[10]:=StandardDeviation[data]Out[10]= 0.981253In[11]:=VarianceMLE[data]Out[11]= 0.825306In[12]:= StandardDeviationMLE[data]Out[12]= 0.908464说明:在上例中,In[1]首先调入程序文件,求数据个数、最大值和最小值使用内部函数。
2.多元的情况在程序文件MultiDescriptiveStatistics.m中,含有实现多元数理统计基本计算的函数,常用的有:SampleRange[data] 求表data中数据的极差。
Median[data] 求中值。
Mean[data] 求平均值。
Variance[data] 求方差(无偏估计)。
StandardDeviation[data] 求标准差(无偏估计)。
VarianceMLE[data] 求方差。
StandardDeviationMLE[data] 求标准差。
Covariance[xlist,ylist] 求x,y的协方差(无偏估计)∑=---ni i i y y x x n 1))((11。
CovarianceMLE[xlist ,ylist] 求x ,y 的协方差∑=--n i i i y y x x n 1))((1。
Correlation[xlist ,ylist] 求x ,y 的相关系数∑∑∑===----n i n i n i i i i i y y x x y y x x11122)()(/))((。
实际上程序文件中的函数很多,这里只列出了最常用的函数,其它计算函数可以通过Help 浏览。
例2 给出4个样本值:{1.1,2.0,3.2},{1.3,2.2,3.1},{1.15,2.05,3.35},{1.22,2.31,3.33},计算样本个数、均值、方差、标准差等。
解:In[1]:= << Statistics `MultiDescriptiveStatistics `In[2]:= data = {{1.1,2.0,3.2},{1.3,2.2,3.1},{1.15,2.05,3.35},{1.22,2.31,3.33}};Length[data]Out[3]=4In[4]:=SampleRange[data]Out[4]= {0.2,0.31,0.25}In[5]:=Median[data]Out[5]= {1.185,2.125,3.265}In[6]:=Mean[data]Out[6]= {1.1925,2.14,3.245}In[7]:=Variance[data]Out[7]= {0.00755833,0.0200667,0.0137667}In[8]:=VarianceMLE[data]Out[8]= {0.00566875,0.01505,0.010325}In[9]:=CentralMoment[data ,2]Out[9]= {0.00566875,0.01505,0.010325}In[10]:=x=data[[All ,1]];y=data[[All ,2]];z=data[[All ,3]];In[11]:=Covariance[x ,y]Out[11]=0.0093In[12]:=Covariance[z ,z]Out[12]=0.0137667In[13]:=CovarianceMLE[y,y]Out[13]=0.01505In[14]:=Correlation[y,z]Out[14]=0.0521435In[15]:=Correlation[x,x]Out[15]=1.二、常用分布的计算在计算机出现以前,统计计算总是依赖一堆函数表。
使用本节介绍的函数可以取代查表,为实现各种统计计算的自动化做好了底层准备工作。
1.离散分布程序文件DiscreteDistributions.m中,含有用于离散分布计算的函数。
其中常用的离散分布有:BernoulliDistribution[p] 贝努利分布。
BinomialDistribution[n,p] 二项分布。
GeometricDistribution[p] 几何分布。
HypergeometricDistribution[n,M,N] 超几何分布。
PoissonDistribution[λ] 泊松分布。
DiscreteUniformDistribution[n] 离散的均匀分布。
NegativeBinomialDistribution[n,p] 负二项分布。
以上函数中的参数,既可以是数值的,也可以是符号的。
使用这些函数只能按用户给出的参数建立一个表达式,并不能返回任何其它结果。
真正进行计算的是下面的求值函数,它们使用以上的分布表达式作为一个参数。
常用的求值函数有:Domain[dist] 求dist的定义域。
PDF[dist,x] 求点x处的分布dist的密度值。
CDF[dist,x] 求点x处的分布函数值。
Quantile[dist,q] 求x,使CDF[dist,x]达到q。
Mean[dist] 求分布dist的期望。
Variance[dist] 求方差。
StandardDeviation[dist] 求标准差。
ExpectedValue[f,dist,x] 求E f(x)。
CharacteristicFunction[dist,t] 求特征函数φ(t)。
Random[dist] 求具有分布dist的伪随机数。
RandomArray[dist,dims] 求维数为dims的伪随机数的数组。
例3观察下面二项分布的各种基本计算。
In[1]:= << Statistics `DiscreteDistributions`In[2]:= b=BinomialDistribution[n,p]Out[2]=BinomialDistribution[n,p]In[3]:=Mean[b]Out[3]=npIn[4]:=Variance[b]Out[4]= n(1-p)pIn[5]:=CharacteristicFunction[b,t]Out[5]= (1-p+e it p)nIn[6]:=b=BinomialDistribution[10,0.3]Out[6]= BinomialDistribution[10,0.3]In[7]:=Domain[b]Out[7]= {0,1,2,3,4,5,6,7,8,9,10}In[8]:=PDF[b,4]Out[8]= 0.200121In[9]:=CDF[b,3.9]Out[9]= 0.649611In[10]:=CDF[b,4]Out[10]= 0.849732In[11]:=Variance[b]Out[11]= 2.1说明:在上例中,首先调入程序文件。
In[2]用b表示具有符号参数的二项分布,这一步只是为了后面输入时方便,并非必需的,也可以使用嵌套省略这一步。
In[3]~In[5]进行的是符号运算,可以得到期望、方差等的一般公式。
这是本程序与一般统计软件的不同之处,充分体现了Mathematica的特色。
接下来给出具体的参数值,进行数值计算,这些计算取代了查表。
以下是一些更广泛、深入的例子。
例4观察下面离散分布的各种计算。
In[1]:= << Statistics `DiscreteDistributions`In[2]:= h=HypergeometricDistribution[n,M,N];Mean[h]MnOut[3]=NIn[4]:=Variance[h]Out[4]=N N N n N M Mn )1())(1(+-+-- In[5]:= p=PoissonDistribution[5];PDF[p ,2]Out[6]=5225e In[7]:=N[%]Out[7]=0.0842243In[8]:=PDF[p ,20] //NOut[8]=2.64121×10-7In[9]:=N[CDF[p ,20],20]Out[9]=0.99999991890749540112In[10]:=ExpectedValue[x^2,p ,x]Out[10]=30In[11]:=RandomArray[p ,{2,10}]Out[11]={{3,4,6,10,2,5,7,2,5,5},{4,3,2,11,5,4,2,2,4,6}}说明:在上例中表明,超几何分布的参数按我国教科书的习惯来表示,这里求出的期望和方差公式就与教科书上的相同了。