概率论与数理统计实验报告

合集下载

《概率论与数理统计》实验报告答案

《概率论与数理统计》实验报告答案

《概率论与数理统计》实验报告学生姓名李樟取学生班级计算机122学生学号************指导教师吴志松学年学期2013-2014学年第1学期实验报告一成绩 日期 年 月 日实验名称 单个正态总体参数的区间估计实验性质 综合性实验目的及要求1.了解【活动表】的编制方法;2.掌握【单个正态总体均值Z 估计活动表】的使用方法; 3.掌握【单个正态总体均值t 估计活动表】的使用方法; 4.掌握【单个正态总体方差卡方估计活动表】的使用方法; 5.掌握单个正态总体参数的区间估计方法.实验原理利用【Excel 】中提供的统计函数【NORMISINV 】和平方根函数【SQRT 】,编制【单个正态总体均值Z 估计活动表】,在【单个正态总体均值Z 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【总体标准差】的具体值,就可以得到相应的统计分析结果。

1设总体2~(,)X N μσ,其中2σ已知,12,,,n X X X 为来自X 的一个样本,12,,,n x x x 为样本的观测值于是得到μ的置信水平为1-α 的置信区间为利用【Excel 】中提供的统计函数【TINV 】和平方根函数【SQRT 】,编制【单个正态总体均值t 估计活动表】,在【单个正态总体均值t 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【样本标准差】的具体值,就可以得到相应的统计分析结果。

2.设总体2~(,)X N μσ,其中2σ未知,12,,,n X X X 为来自X 的一个样本,12,,,nx x x 为样本的观测值整理得/2/21X z X z n n P αασαμσ⎧⎫=-⎨⎬⎩⎭-<<+/2||1/X U z P n ασμα⎧⎫⎪⎪==-⎨⎬⎪⎪⎩⎭-</2/2,x z x z nn αασσ⎛⎫-+⎪⎝⎭22(1)(1)1/X P t n t n S nααμα⎧⎫---<<-=-⎨⎬⎩⎭22(1)(1)1S S P X t n X t n n n ααμα⎧⎫--<<+-=-⎨⎬⎩⎭故总体均值μ的置信水平为1α-的置信区间为利用【Excel 】中提供的统计函数【CHIINV 】,编制【单个正态 总体方差卡方估计活动表】,在【单个正态总体方差卡方估计活动 表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均 值】和【样本方差】的具体值,就可以得到相应的统计分析结果。

概率论与数理统计数学实验

概率论与数理统计数学实验

概率论与数理统计数学实验目录实验一几个重要的概率分布的MATLAB实现 p2-3 实验二数据的统计描述和分析 p4-8 实验三参数估计 p9-11 实验四假设检验 p12-14 实验五方差分析 p15-17 实验六回归分析 p18-27实验一 几个重要的概率分布的MATLAB 实现实验目的(1) 学习MATLAB 软件与概率有关的各种计算方法 (2) 会用MATLAB 软件生成几种常见分布的随机数 (3) 通过实验加深对概率密度,分布函数和分位数的理解Matlab 统计工具箱中提供了约20种概率分布,对每一种分布提供了5种运算功能,下表给出了常见8种分布对应的Matlab 命令字符,表2给出了每一种运算功能所对应的Matlab 命令字符。

当需要某一分布的某类运算功能时,将分布字符与功能字符连接起来,就得到所要的命令。

例1 求正态分布()2,1-N ,在x=1.2处的概率密度。

解:在MATLAB 命令窗口中输入: normpdf(1.2,-1,2) 结果为: 0.1089例2 求泊松分布()3P ,在k=5,6,7处的概率。

解:在MATLAB 命令窗口中输入: poisspdf([5 6 7],3)结果为:0.1008 0.0504 0.0216 例3 设X 服从均匀分布()3,1U ,计算{}225P X .-<<。

解:在MATLAB 命令窗口中输入:unifcdf(2.5,1,3)-unifcdf(-2,1,3) 结果为:0.75000例4 求概率995.0=α的正态分布()2,1N 的分位数αX 。

解:在MATLAB 命令窗口中输入: norminv(0.995,1,2) 结果为:6.1517例5 求t 分布()10t 的期望和方差。

解:在MATLAB 命令窗口中输入: [m,v]=tstat(10) m = 0 v =1.2500例6 生成一个2*3阶正态分布的随机矩阵。

概率论与数理统计上机实验报告

概率论与数理统计上机实验报告

概率论与数理统计上机实验报告实验一【实验目的】熟练掌握 MATLAB 软件的关于概率分布作图的基本操作会进行常用的概率密度函数和分布函数的作图绘画出分布律图形【实验要求】掌握 MATLAB 的画图命令 plot掌握常见分布的概率密度图像和分布函数图像的画法【实验容】2 、设X : U (−1,1)(1 )求概率密度在 0 ,0.2 ,0.4 ,0.6 ,0.8,1 ,1.2 的函数值;(2 )产生 18 个随机数(3 行 6 列)(3 )又已知分布函数F ( x) = 0.45 ,求x(4 )画出X 的分布密度和分布函数图形。

【实验方案】熟练运用基本的MATLAB指令【设计程序和结果】1.计算函数值Fx=unifcdf(0, -1,1)Fx=unifcdf(0.2, -1,1)Fx=unifcdf(0.4, -1,1)Fx=unifcdf(0.6, -1,1)Fx=unifcdf(0.8, -1,1)Fx=unifcdf(1.0, -1,1)Fx=unifcdf(1.2, -1,1)结果Fx =0.5000Fx =0.6000Fx =0.7000Fx =0.8000Fx =0.9000Fx =1Fx =12.产生随机数程序:X=unifrnd(-1,1,3,6)结果:X =0.6294 0.8268 -0.4430 0.9298 0.9143 -0.7162 0.8116 0.2647 0.0938 -0.6848 -0.0292 -0.1565 -0.7460 -0.8049 0.9150 0.9412 0.6006 0.83153.求x程序:x=unifinv(0.45, -1,1)结果:x =-0.10004.画图程序:x=-1:0.1:1;px=unifpdf(x, -1,1);fx=unifcdf(x, -1,1);plot(x,px,'+b');hold on;plot(x,fx,'*r');legend('均匀分布函数','均匀分布密度');结果:【小结】运用基本的MATLAB指令可以方便的解决概率论中的相关问题,使数学问题得到简化。

概率论与数理统计实验2:抛硬币实验的随机模拟实验报告

概率论与数理统计实验2:抛硬币实验的随机模拟实验报告
19
10000000
5000153
4999847
0.5000153
2.数据处理
实验编号
频率
3.数据分析
(1)对于每次实验,实验之前,实验的结果是不确定的;
(2)对于每次实验,正面向上的频率有时大于0.5,有时小于0.5,正面向上的频率并不是确定值;
(3)随着实验次数的增加,正面出现的频率逐渐趋近于0.5
scanf("%d,&m"); //无用输入函数,只是为了让此程序直接可以在win7系统上以dos窗口运行
}
三、实验结果及分析
1.实验数据
投硬币实验
实验编号
实验次数
正面向上的次数
反面向上的次数
正面向上的频率
1
10
3
7
0.3
2
30
15
15
0.5
3
50
28
22
0.56
4
100
48
52
0.48
5
1000
507
30000
15088
14912
0.502933333
14
50000
24124
25876
0.48248
15
100000
50145
49855
0.50145
16
200000
1002Байду номын сангаас8
99792
0.50104
17
500000
249955
250045
0.49991
18
1000000
500198
499802
0.500198

概率论与数理统计实验报告

概率论与数理统计实验报告

四、线性回归分析 4.为研究某一化学反应过程中温度 x 对产品质量指标 y 的影响,测得数据如下:
x C y
100 45
110 51
120 54
130 61
140 66
150 70
160 74
170 78
2
180 85
190 89
假设 x 和 y 之间呈线性相关关系,即 y 0 1 x , ~ N (0, ) 求(1) y 关于 x 的线性回归方程; (2) 的无偏估计; (3)检验 y 对 x 的线性回归是否显著(显著性水平 0.05 )
2
三、两个正态总体均值差的检验( t 检验) 。 3.在平炉上进行一项试验以确定改变操作方法的建议是否会增加钢的得率,试验是在同一 只平炉上进行的,每炼一炉钢时除操作方法外,其他条件都尽可能做到相同。先用标准方 法炼一炉,然后用建议的新方法炼一炉,以后交替进行,各炼 10 炉,其得钢率分别为 (1)标准方法 78.1 72.4 76.2 74.3 77.4 78.4 76.0 75.5 76.7 77.3 (2)新方法 79.1 81.0 77.3 79.1 80.0 79.1 79.1 77.3 80.2 82.1 设这两个样本相互独立,且分别来自正态总体 N (1 , 2 ) 和 N ( 2 , 2 ) ,1 , 2 , 2 均未知, 问新方法能否提高得钢率(取 0.05 )?
2
(4)求 1 的置信度为 95%置信区间; (5)求当 x0 200 C 时产质量指标 y0 的 95%置信区间。
自我创新实验:
教师评分:
二、 未知时的 检验。 2.某种电子元件的寿命 X (以小时计)服从正态分布, , 均未知,现测得 16 只元 , 件的寿命如下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问:是否有理由认为元件的平均寿命大于 225(小时)?

概率论与数理统计MATLAB上机实验报告

概率论与数理统计MATLAB上机实验报告

《概率论与数理统计》MATLAB上机实验实验报告一、实验目的1、熟悉matlab的操作。

了解用matlab解决概率相关问题的方法。

2、增强动手能力,通过完成实验内容增强自己动手能力。

二、实验内容1、列出常见分布的概率密度及分布函数的命令,并操作。

概率密度函数分布函数(累积分布函数) 正态分布normpdf(x,mu,sigma) cd f(‘Normal’,x, mu,sigma);均匀分布(连续)unifpdf(x,a,b) cdf(‘Uniform’,x,a,b);均匀分布(离散)unidpdf(x,n) cdf(‘Discrete Uniform’,x,n);指数分布exppdf(x,a) cdf(‘Exponential’,x,a);几何分布geopdf(x,p) cdf(‘Geometric’,x,p);二项分布binopdf(x,n,p) cdf(‘Binomial’,x,n,p);泊松分布poisspdf(x,n) cdf(‘Poisson’,x,n);2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X(1) 试计算X=45的概率和X≤45 的概率;(2) 绘制分布函数图形和概率分布律图形。

答:(1)P(x=45)=pd =3.0945e-07P(x<=45)=cd =5.2943e-07(2)3、用Matlab软件生成服从二项分布的随机数,并验证泊松定理。

用matlab依次生成(n=300,p=0.5),(n=3000,p=0.05),(n=30000,p=0.005)的二项分布随机数,以及参数λ=150的泊松分布,并作出图线如下。

由此可以见得,随着n的增大,二项分布与泊松分布的概率密度函数几乎重合。

因此当n足够大时,可以认为泊松分布与二项分布一致。

4、 设22221),(y x e y x f +−=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。

温州大学瓯江学院概率论与数理统计实验报告

温州大学瓯江学院概率论与数理统计实验报告

温州大学瓯江学院
概率论与数理统计实验报告
实验名称:实验2 圆周率的近似计算——蒲丰投针问题
实验目的:
1.加深理解几何概型的概率的概念和计算方法
2.掌握无理数的近似计算方法
3.了解Excel软件在模拟仿真中的应用
实验要求:
1.掌握Excel自带的随机数发生器产生随机数——(a,b)区间上均匀分布的随机数
2.理解等可能产生区间之内任一个随机数函数命令
3理解条件检测函数命令if
4.理解条件计数函数命令countif
实验内容:
1. 1777年,法国科学家蒲丰(Buffon)提出了投针试验问题.平面上画有等距离

(0)
a a>
的一些平行直线,现向此平面任意投掷一根长为
()
b b a
<
的针,取4
a=, 3
b=,试求针与某一平行直线相交的概率,并计算圆周率的近似值.
实验步骤(实验代码):实验结果及分析、感想等:(将操作中打开的必要窗口界面抓图放到
R:
****************************************
谢翠华阅,2019年10月30日,成绩:90。

温州大学瓯江学院概率论与数理统计实验报告 (3)

温州大学瓯江学院概率论与数理统计实验报告 (3)

温州大学瓯江学院
概率论与数理统计实验报告
实验名称:实验3 随机变量的分布 实验目的:
1.加深理解随机变量的概率密度和分布函数的概念
2.掌握二项分布与泊松分布的近似关系
3.了解Excel 软件在模拟仿真中的应用
实验要求:
1.掌握二项分布计算概率函数binomdist 和泊松分布计算概率函数possion
2.掌握计算正态分布概率密度值和分布函数值的命令函数normdist 以及标准正态分布的计算概率密度值和分布函数值的命令函数norm.s.dist
实验内容:
1.画二项分布与泊松分布的近似关系图
其中二项分布中的参数25,n = 0.52,p = 泊松分布中的参数*13n p λ== 2.画正态分布的概率密度函数图和分布函数图 (1)在同一个坐标系中画出均值为3,3,5-,标准差为2的正态分布概率密度图形;
(2)在同一个坐标系中画出均值为6,标准差为1,2,3的正态分布概率密度图形.
实验步骤(实验代码):实验结果及分析、感想等:(将操作中打开的必要窗口界面抓图放到
2:
R:
**************************************** 谢翠华阅,2019年10月30日,成绩:90 ****************************************。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计实验报告
一、实验目的
1.学会用matlab求密度函数与分布函数
2.熟悉matlab中用于描述性统计的基本操作与命令
3.学会matlab进行参数估计与假设检验的基本命令与操作
二、实验步骤与结果
概率论部分:
实验名称:各种分布的密度函数与分布函数
实验内容:
1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设
定)。

2.向空中抛硬币100次,落下为正面的概率为0.5,。

记正面向上的次数
为x,
(1)计算x=45和x<45的概率,
(2)给出随机数x的概率累积分布图像和概率密度图像。

3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。

程序:
1.计算三种随机变量分布的方差与期望
[m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3
[m1,v1]=poisstat(5> %泊松分布,取lambda=5
[m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12
计算结果:
m0 =3 v0 =2.1000
m1 =5 v1 =5
m2 =1 v2 =0.0144
2.计算x=45和x<45的概率,并绘图
Px=binopdf(45,100,0.5> %x=45的概率
Fx=binocdf(45,100,0.5> %x<45的概率
x=1:100。

p1=binopdf(x,100,0.5>。

p2=binocdf(x,100,0.5>。

subplot(2,1,1>
plot(x,p1>
title('概率密度图像'>
subplot(2,1,2>
plot(x,p2>
title('概率累积分布图像'>
结果:
Px =0.0485 Fx =0.1841
3.t(10>分布与标准正态分布的图像
subplot(2,1,1>
ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]>
title('标准正态分布概率密度曲线图'>
subplot(2,1,2>
ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。

b5E2RGbCAP
title('t(10>分布概率密度曲线图'>
结果:
分析:
检验:
1.二项分布的期望与方差:
泊松分布的期望与方差:
5
正态分布的期望与方差:
2.计算x=45与x<45的概率
=0.0485
0.1841
结论:
当n越大时,t分布越趋近于正态分布。

数理统计部分<估计与检验):实验名称:抽样分布,参数估计及假设检验
实验内容:
1.区间估计
题目内容:
从一大批袋装糖果中随机的取出内16袋,称得重量如下<g):
508 507.68 498.5 502 503 511 498 511
513 506 492 497 506.5 501 510 498
设袋装糖果的重量近似的服从正态分布,试求总体均值与方差的区间估计<置信度分别为0.95与 0.9)。

p1EanqFDPw
分析:
糖果重量满足于正态分布,且需对均值与方差进行区间估计。

故该问题可采用正态分布的参数估计的命令normfit进行求解。

DXDiTa9E3d
程序:
(1)单个正态总体数学期望与方差的区间估计
X=[508 507.68 498.5 502 503 511 498 511 513 506 492 497 506.5 501 510 498]。

RTCrpUDGiT
[mu,sigma,muci,sigmaci]=normfit(X,0.05>
[mu,sigma,muci,sigmaci]=normfit(X,0.1>
计算结果:
mu=503.9175 sigma=6.1315 muci=500.6502 507.1848 sigmaci=4.5294 9.48975PCzVD7HxA
mu =503.9175 sigma=6.1315 muci =501.2303 506.6047 sigmaci=4.7499 8.8129jLBHrnAILg
结论:
糖果的总体均值的置信区间为<=0.05):muci =[500.6502,507.1848]
糖果方差的置信区间为<=0.1):sigmaci =[4.7499,8.8129]
2.假设检验
某食品厂使用自动装罐机生产罐头,每罐标准是500克,标准差为10克。

现抽取10罐,测得重量分别是:495,510,498,503,492,502,512,497,506克。

假定罐头的重量服从正态分布,显著性水平为
0.05,问装罐机工作是否正常?xHAQX74J0X
分析:
由于罐头的重量服从正态分布,且标准差已知,故属于单正态总体均值的假设检验,采用u检验法。

程序:
clear。

x=[495,510,498,503,492,502,512,497,506]。

sigma=10。

mu=500。

[h,p,ci,z]=ztest(x,mu,sigma,0.05,0>
计算结果:
h =0 p=0.6171 ci=495.1335 508.1999
z=0.5000LDAYtRyKfE
结论:由于h=0,故可认为在显著性水平=0.05的情况下,接受原假设,即装罐机工作正常
三、实验总结与体会
1.上机时对于matlab的命令应该灵活使用,明白命令中每个参数的意义
及输出内容的意义,对于matlab命令的理解也应该联系概率论的理
论基础Zzz6ZB2Ltk
2.学习matlab的命令注意学会总结各个命令的用处与差异,不至于对相
似的命令混淆。

3.对概率论与数理统计这门学科的实际应用方面有了更深的理解。

4.理论与实践应该紧密的联系起来。

申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

相关文档
最新文档