奥数 圆柱专题
最新圆柱圆锥奥数练习题

六年奥数综合练习题(二)一、有一个圆柱形面包,要切一刀把它分成两块,截面会是什么形状的图形?二、用铁皮做一个如图所示的工件(单位:厘米),需用铁皮多少平方厘米?三、一个圆锥的底面周长是18.84厘米,高是4厘米。
从圆锥的顶点沿着高将它切成两半后,表面积之和比原圆锥的表面积增加了多少平方厘米?1)切开后表面积增加了2个三角形截面截面底边长为底面直径,高为圆锥高则底面直径=18.84/3.14=6分米半径为6/2=3分米则高=(25/2)*2/6=25/6分米则体积=3.14*3*3*(25/6)/3=39.25立方分米四、在一个边长为4厘米的正方体的前后、上下、左右面的中心位置挖去一个底面半径为1厘米,高为1厘米的圆柱,求挖去后物体的表面积。
正方体原来的表面积为4*4*6=96平方厘米挖去圆柱后增加6个圆柱的侧面积,则圆柱侧面积=3.14*1*2*1=6.28平方厘米最后为96+6.28*6=133.68平方厘米五、一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积增加25.12平方厘米,求原来圆柱的表面积是多少平方厘米?六、七、把一个横截面是正方形的长方体木料切削成一个最大的圆柱体,此圆柱的表面积是32.97平方厘米,底面直径与高的比是1:3,原长方体的表面积是多少平方厘米?八、如图,在一个底面积为324平方厘米的正方体铸铁中,以相对的两面为底,挖出一个最大的圆柱,然后在剩下的铸铁表面涂上油漆,求涂油漆的面积是多少?九、图中是个柱体,高30厘米,底面是一个半径10厘米,圆心为270°的扇形,求这个柱体的表面积和体积。
十、如图上半部是个半圆柱,下半部是一个长方体,它的表面积是多少平方厘米?十一、如图在一个圆柱上挖了一个边长为2厘米的方形的孔,现在这个物体的表面积是多少平方厘米?十一、如图是一个半径为4厘米,高为4厘米的圆柱,在它的中间依次向下挖去半径分别为3厘米,2厘米,1厘米,高分别为2厘米,1厘米,0.5厘米的圆柱,最后得的立体图形表面积是多少平方厘米?十二、如图一块长方体铁皮,利用图中的阴影部分刚好能做成一个圆柱形油桶(接头处忽略不计),求这个油桶的容积?大长方形的长是16.56,由小长方形的长a加上圆的直径d得到,小长方形的宽b等于两个等圆直径之和,也就是2d,小长方形是圆柱侧面展开图,所以其一边长应等于圆周长πd=3.14d,b=2d,所以b是高h,a=3.14d,a+d=16.56,3.14d+d=16.56,d=4cm,r=d/2=2cmh=b=2d=8cm,因此圆柱体积是V=πr^2*h=3.14*4*8=100.48cm^3由于没有说铁皮厚度,所以油桶的容积就是圆柱体积。
奥数之计算圆柱的表面积

奥数之计算圆柱的表面积计算圆柱的表面积是数学中一个重要的问题,它在日常生活中具有广泛的应用。
本文将讨论通过奥数方法如何计算圆柱的表面积。
一、圆柱表面积的定义先来看一下圆柱表面积的定义。
圆柱的表面积是指圆柱体完整的表面积,包括两个底面和侧面。
圆柱的底面是圆形,而侧面则是一个矩形。
我们通常用标准单位来表示圆柱的面积,例如平方米、平方厘米等。
二、计算圆柱的表面积接下来,我们将讨论通过奥数方法如何计算圆柱的表面积。
1. 计算底面积首先,我们需要计算圆柱的底面积。
圆柱的底面积是指圆的面积,计算方法为:底面积= πr²其中,r为圆的半径,π为圆周率,等于3.14。
2. 计算侧面积接下来,我们需要计算圆柱的侧面积。
圆柱的侧面积是指矩形的面积,计算方法为:侧面积 = 周长 ×直线段长度在圆柱中,矩形的周长等于圆的周长,即2πr,直线段长度等于圆柱的高度,用h表示。
因此,圆柱的侧面积计算方法为:侧面积= 2πrh3. 计算总面积最后,我们需要计算圆柱的总面积。
圆柱的总面积等于两个底面积之和再加上侧面积,即:总面积 = 2 ×底面积 + 侧面积= 2πr² + 2πrh= 2πr(r + h)三、奥数方法的应用通过奥数方法,我们可以更快地计算圆柱的表面积,并在实际生活中应用它。
例如,在建筑设计领域,工程师需要计算建筑物柱子的表面积,从而决定需要多少场漆来进行涂装。
在日常生活中,我们也会用到圆柱的表面积。
例如,当我们买圆柱形的水樽时,我们会关注它的表面积来确定是否足够使用。
因此,通过奥数方法计算圆柱的表面积是非常实用的技能。
结论:本文介绍了通过奥数方法如何计算圆柱的表面积。
圆柱的表面积是指圆柱体完整的表面积,包括两个底面和侧面。
我们可以通过计算圆柱的底面积和侧面积来得到圆柱的总面积。
在实际生活中,我们可以应用圆柱的表面积来解决很多问题,例如在建筑设计领域和日常生活中。
六年级数学圆柱圆锥应用题奥数题拓展难题带答案

六年级数学圆柱圆锥应用题奥数题拓展难题带答案这个圆柱体的表面积可以分为底面和侧面两部分。
底面的面积为圆的面积,用半径为3厘米计算,即3.14×3×3=28.26平方厘米。
侧面的面积可以看成是长方形的面积,长为圆周长,即18.84厘米,宽为圆柱的高,即4厘米,所以侧面的面积为18.84×4=75.36平方厘米。
因此,这个圆柱体的表面积为28.26+75.36=103.62平方厘米。
4、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30立方厘米。
现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。
问:瓶内现有饮料多少立方厘米?首先计算瓶子的底面积,即圆的面积,用半径计算,假设瓶子的半径为r,那么底面积为3.14×r×r。
由于瓶子的容积为30立方厘米,而正放时饮料高度为20厘米,所以正放时瓶子中的饮料体积为底面积乘以高度,即3.14×r×r×20.同样的,倒放时瓶子中的饮料体积为3.14×r×r×5.因此,瓶内现有饮料的体积为30-3.14×r×r×20或30-3.14×r×r×5,具体取决于瓶子是正放还是倒放。
5、一个圆柱形的玻璃杯盛有水,水面高2.5厘米,玻璃杯内侧底面积是72平方厘米,在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块,这时水面高多少厘米?首先计算玻璃杯的底面积,即圆的面积,用半径计算,假设玻璃杯的半径为r,那么底面积为3.14×r×r。
由于水面高度为2.5厘米,所以水的体积为底面积乘以水面高度,即3.14×r×r×2.5.放进正方体铁块后,水的体积减少了,但玻璃杯的容积不变,所以铁块的体积就等于水的减少量。
正方体铁块的体积为6×6×6=216立方厘米,所以水的减少量也为216立方厘米。
六下奥数4(圆柱和圆锥整理)

一、圆的面积:S=πr²1、已知半径。
如:沼气池底面半径5米,深2米,求占地面积。
解法:直接套用公式。
解答:S=πr²=3.14×5²=78.5(cm²)2、已知直径。
如:篮球场中间的圆圈直径是3m,面积是多少?解法:先求半径,再套用公式。
解答:r=d÷2=S=πr²=3、已知周长。
如:周长是12.56dm的圆形面积是多少?解法:先求半径,再套用公式。
解答:r=C÷π÷2=S=πr²=二、圆的周长:C=2πr1、已知半径。
如:秒针长12厘米,走一圈针尖扫过的距离是多少?解法:直接套用公式。
解答:C=2πr=2、已知直径。
如:压路机滚筒直径1米,滚动一周前进几米?解法一:先求半径,再套用公式。
解答:r=C=解法二:直接用公式C=πd解答:C=三、圆柱侧面积:S=2πrh=πdh=Ch1、已知半径和高。
如:圆柱形钢材,2、已知直径和高。
如:铁皮罐头3、已知周长和高。
如:侧面展开是边长15.7厘米的正方形,侧面积是多少?4、逆应用——已知侧面积和高。
如:圆柱侧面积12.56平方米,高2米,求半径。
5、逆应用——已知侧面积和底面周长。
如:圆柱侧面积12.56平方米,底面周长6.28米,求高。
四、圆柱表面积(一)完整:S=2πr²+2πrh1、已知半径。
如:圆柱形木料2、已知直径。
如:圆柱形水池,要在底面和池壁贴瓷砖,3、已知周长。
如:一根木头(二)无盖:S=πr²+2πrh1、已知半径。
如:无盖的消防用黄沙桶2、已知直径。
如:无盖油桶,3、已知周长。
如:广场花柱(三)烟囱(侧面积):S=2πrh1、已知半径。
如:烟囱底面2、已知直径。
如:压路机滚轮3、已知周长。
如:大厅圆柱形立柱(四)求出面积后。
(1)烟囱做20节(2)若每平方米用油漆0.2升,(3)平均每千克油漆可涂5平方米,(五)面积变化。
【数学】圆柱与圆锥(奥数)

【数学】圆柱与圆锥(奥数)一、圆柱与圆锥1.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。
大棚内的空间有多大?【答案】解:3.14×(2÷2)2×15÷2=23.55(立方米)答:大棚内的空间有23.55立方米。
【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积÷2=大棚内的空间大小,据此列式解答.2.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。
【解析】【分析】根据题意可知,先求出圆锥形铅锥的体积,用圆柱形玻璃杯上面的空白部分的体积+溢出的水的体积=圆锥形铅锥的体积,然后用圆锥形铅锥的体积÷÷铅锥的底面积=铅锥的高,据此列式解答.3.计算下面圆柱的表面积和体积,圆锥的体积。
(1)(2)【答案】(1)解:表面积:3.14×52×2+3.14×5×2×13=157+408.2=565.2(cm2)体积:3.14×52×13=1020.5(dm3)(2) ×3.14×82×15= ×3.14×64×15=1004.8(cm3)【解析】【分析】(1)圆柱的表面积=底面积×2+侧面积,侧面积=底面周长×高,圆柱的体积=底面积×高,根据公式计算即可;(2)圆锥的体积=底面积×高×,根据公式计算体积即可。
小学奥数--圆柱与圆锥-精选练习例题-含答案解析(附知识点拨及考点)

立体图形表面积 体积 圆柱h r222π2πS rh r =+=+圆柱侧面积个底面积 2πV r h =圆柱圆锥hr 22ππ360n S l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长 21π3V r h =圆锥体 板块一 圆柱与圆锥【例 1】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)11111.50.5【考点】圆柱与圆锥 【难度】3星 【题型】解答 【解析】 从上面看到图形是右上图,所以上下底面积和为22 3.14 1.514.13⨯⨯=(立方米),侧面积为2 3.14(0.51 1.5)118.84⨯⨯++⨯=(立方米),所以该物体的表面积是14.1318.8432.97+=(立方米).【答案】32.97【例 2】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?例题精讲圆柱与圆锥【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为266π10π()24π560π18π20π98π307.722⨯+⨯⨯+⨯=++==(平方厘米). 【答案】307.72【例 3】 (希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 当圆柱的高是12厘米时体积为210300π()122ππ⨯⨯=(立方厘米) 当圆柱的高是12厘米时体积为212360π()102ππ⨯⨯=(立方厘米).所以圆柱体的体积为300π立方厘米或360π立方厘米. 【答案】300π立方厘米或360π立方厘米【例 4】 如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 圆的直径为:()16.561 3.144÷+=(米),而油桶的高为2个直径长,即为:428(m)⨯=,故体积为100.48立方米.【答案】100.48立方米【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】做成的圆柱体的侧面是由中间的长方形卷成的,可见这个长方形的长与旁边的圆的周长相等,则剪下的长方形的长,即圆柱体底面圆的周长为:2π1062.8⨯⨯=(厘米),原来的长方形的面积为:10462.81022056()()(平方厘米).⨯+⨯⨯=【答案】2056【例 5】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为12.562 6.28÷=厘米,底面半径为6.28 3.1421÷÷=厘米,所以原来的圆柱体的体积是2⨯⨯==(立方厘米).π188π25.12【答案】25.12【巩固】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】圆柱体底面周长和高相等,说明圆柱体侧面展开是一个正方形.高缩短4厘米,表面积就减少50.24平方厘米.阴影部分的面积为圆柱体表面积减少部分,值是50.24平方厘米,所以底面周长是50.24412.56⨯=(平方厘米),两÷=(厘米),侧面积是:12.5612.56157.7536个底面积是:()2⨯÷÷⨯=(平方厘米).所以表面积为:3.1412.56 3.142225.12+=(平方厘米).157.753625.12182.8736【答案】182.8736【例 6】(两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm,则这个圆柱)体木棒的侧面积是________2cm.(π取3.14【考点】圆柱与圆锥【难度】3星【题型】解答第2题【解析】根据题意可知,切开后表面积增加的就是两个长方形纵切面.设圆柱体底面半径为r,高为h,那么切成的两部分比原来的圆柱题表面积大:2r h⨯=,所以,圆柱体侧面积为:502(cm)222008(cm)r h⨯⨯=,所以22⨯⨯⨯=⨯⨯=.r h2π2 3.145023152.56(cm)【答案】3152.56【巩固】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了=)40平方厘米,求圆柱体的体积.(π3【考点】圆柱与圆锥【难度】3星【题型】解答【解析】圆柱切开后表面积增加的是两个长方形的纵切面,长方形的长等于圆柱体的高为10厘米,宽为圆柱底面的直径,设为2r,则210240r=(厘米).圆柱体积为:r⨯⨯=,12⨯⨯=(立方厘米).π11030【答案】30【例 7】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)【考点】圆柱与圆锥【难度】3星【题型】解答【解析】从图中可以看出,拼成的长方体的底面积与原来圆柱体的底面积相同,长方体的前后两个侧面面积与原来圆柱体的侧面面积相等,所以增加的表面积就是长方体左右两个侧面的面积.(法1)这两个侧面都是长方形,且长等于原来圆柱体的高,宽等于圆柱体底面半径.可知,圆柱体的高为()2÷⨯=(厘米),所以增加的表面积为2421650.24 3.1424⨯⨯=(平方厘米);(法2)根据长方体的体积公式推导.增加的两个面是长方体的侧面,侧面面积与长方体的长的乘积就是长方体的体积.由于长方体的体积与圆柱体的体积相等,为50.24立方厘米,而拼成的长方体的长等于圆柱体底面周长的一半,为3.142 6.28⨯=厘米,所以侧面长方形的面积为50.24 6.288÷=平方厘米,所以增加的表面积为8216⨯=平方厘米.【答案】16【例 8】右图是一个零件的直观图.下部是一个棱长为40cm的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【考点】圆柱与圆锥【难度】3星【题型】解答【解析】这是一个半圆柱体与长方体的组合图形,通过分割平移法可求得表面积和体积分别为:11768平方厘米,89120立方厘米.【答案】89120【例 9】输液100毫升,每分钟输2.5毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】100毫升的吊瓶在正放时,液体在100毫升线下方,上方是空的,容积是多少不好算.但倒过来后,变成圆柱体,根据标示的格子就可以算出来.由于每分钟输2.5毫升,12分钟已输液2.51230⨯=(毫升),因此开始输液时液面应与50毫升的格线平齐,上面空的部分是50毫升的容积.所以整个吊瓶的容积是10050150+=(毫升).【答案】150【例 10】(”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)8(单位:厘米)4106【考点】圆柱与圆锥【难度】3星【题型】解答【解析】由于瓶子倒立过来后其中水的体积不变,所以空气部分的体积也不变,从图中可以看出,瓶中的水构成高为6厘米的圆柱,空气部分构成高为1082-=厘米的圆柱,瓶子的容积为这两部分之和,所以瓶子的容积为:24π()(62) 3.1432100.482⨯⨯+=⨯=(立方厘米).【答案】100.48【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 由题意,液体的体积是不变的,瓶内空余部分的体积也是不变的,因此可知液体体积是空余部分体积的623÷=倍.所以酒精的体积为326.4π62.17231⨯=+立方厘米,而62.172立方厘米62.172=毫升0.062172=升.【答案】0.062172【巩固】一个酒瓶里面深30cm ,底面内直径是10cm ,瓶里酒深15cm .把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm .酒瓶的容积是多少?(π取3)253015【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 观察前后,酒瓶中酒的总量没变,即瓶中液体体积不变.当酒瓶倒过来时酒深25cm ,因为酒瓶深30cm ,这样所剩空间为高5cm 的圆柱,再加上原来15cm 高的酒即为酒瓶的容积. 酒的体积:101015π375π22⨯⨯= 瓶中剩余空间的体积1010(3025)π125π22-⨯⨯= 酒瓶容积:375π125π500π1500(ml)+==【答案】1500【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 由已知条件知,第二个图上部空白部分的高为752cm -=,从而水与空着的部分的比为4:22:1=,由图1知水的体积为104⨯,所以总的容积为()4022160÷⨯+=立方厘米.【答案】60【巩固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米?(π3=)5cm【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥的高为x 厘米.由于两次放置瓶中空气部分的体积不变,有:()22215π611π6π63x x ⨯⨯=-⨯⨯+⨯⨯⨯,解得9x =, 所以容器的容积为:221π612π69540π16203V =⨯⨯+⨯⨯⨯==(立方厘米). 【答案】1620【例 11】 (希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降________厘米.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 在水中的木块体积为55375⨯⨯=(立方厘米),拿出后水面下降的高度为7550 1.5÷=(厘米)【答案】1.5【例 12】 有两个棱长为8厘米的正方体盒子,A 盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B 盒中放入直径为4厘米、高为8厘米的圆柱体铁块4个,现在A 盒注满水,把A 盒的水倒入B 盒,使B 盒也注满水,问A 盒余下的水是多少立方厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 将圆柱体分别放入A 盒、B 盒后,两个盒子的底面被圆柱体占据的部分面积相等,所以两个盒子的底面剩余部分面积也相等,那么两个盒子的剩余空间的体积是相等的,也就是说A 盒中装的水恰好可以注满B 盒而无剩余,所以A 盒余下的水是0立方厘米.【答案】A 盒余下的水是0立方厘米【例 13】 兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米?(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 最后拉出的面条直径是原先面棍的164,则截面积是原先面棍的2164,细面条的总长为:21.6646553.6⨯=(米).注意运用比例思想.【答案】6553.6【例 14】 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 因为18分钟水面升高:502030-=(厘米).所以圆柱中没有铁块的情形下水面升高20厘米需要的时间是:20181230⨯=(分钟),实际上只用了3分钟,说明容器底面没被长方体底面盖住的部分只占容器底面积的13:124=,所以长方体底面面积与容器底面面积之比为3:4. 【答案】3:4【例 15】 一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 根据等积变化原理:用水的体积除以水的底面积就是水的高度.(法1):808(8016)6406410⨯÷-=÷=(厘米);(法2):设水面上升了x 厘米.根据上升部分的体积=浸入水中铁块的体积列方程为:8016(8)x x =+,解得:2x =,8210+=(厘米).(提问”圆柱高是15厘米”,和”高为12厘米的长方体铁块”这两个条件给的是否多余?)【答案】10【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 8010(8016)12.5⨯÷-=,因为12.512>,所以此时水已淹没过铁块,8010(8016)1232⨯--⨯=,32800.4÷=,所以现在水深为120.412.4+=厘米【答案】12.4【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 玻璃杯剩余部分的体积为80(1513)160⨯-=立方厘米,铁块体积为1612192⨯=立方厘米,因为160192<,所以水会溢出玻璃杯,所以现在水深就为玻璃杯的高度15厘米【总结】铁块放入玻璃杯会出现三种情况:①放入铁块后,水深不及铁块高;②放入铁块后,水深比铁块高但未溢出玻璃杯;③水有溢出玻璃杯.【说明】教师可以在此穿插一个关于阿基米德测量黄金头冠的体积的故事. 一天国王让工匠做了一顶黄金的头冠,不知道工匠有没有掺假,必须知道黄金头冠的体积是多少,可是又没有办法来测量.(如果知道体积,就可以称一下纯黄金相应体积的重量,再称一下黄金头冠的重量,就能知道是否掺假的结果了)于是,国王就把测量头冠体积的任务交给他的大臣阿基米德.(小朋友们,你们能帮阿基米德解决难题吗?)阿基米德苦思冥想不得其解,就连晚上沐浴时还在思考这个问题.当他坐进水桶里,看到水在往外满溢时,突然灵感迸发,大叫一声:”我找到方法了……”,就急忙跑出去告诉别人,大家看到了一个还光着身子的阿基米德.他的方法是:把水桶装满水,当把黄金头冠放进水桶,浸没在水中时,所收集的溢出来的水的体积正是头冠的体积.【答案】15【例 16】 一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 把放入铁块后的玻璃杯看作一个底面如右图的新容器,底面积是72—6×6=36(平方厘米).水的体积是72 2.5180⨯=(立方厘米).后来水面的高为180÷36=5(厘米).【答案】5【例 17】 一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 若圆柱体能完全浸入水中,则水深与容器底面面积的乘积应等于原有水的体积与圆柱体在水中体积之和,因而水深为:222515217517.72πππ⨯⨯+⨯⨯⨯=(厘米).它比圆柱体的高度要大,可见圆柱体可以完全浸入水中.于是所求的水深便是17.72厘米.【答案】17.72【例 18】 有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 两个圆柱直径的比是1:2,所以底面面积的比是1:4.铁块在两个杯中排开的水的体积相同,所以乙杯中水升高的高度应当是甲杯中下降的高度的14,即120.54⨯=(厘米). 【答案】0.5【巩固】有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 根据题意可知,圆柱形钢材的体积等于桶里下降部分水的体积,因为钢材底面半径是水桶底面半径的520,即41,钢材底面积就是水桶底面积的161.根据体积一定,圆柱体的底面积与高成反比例可知,钢材的长是水面下降高度的16倍.6÷(520)2=96(厘米),(法2):3.14×202×6÷(3.14×52)=96(厘米). 【答案】96【例 19】 一个盛有水的圆柱形容器底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为18厘米的铁圆柱垂直放人容器中.求这时容器的水深是多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 若铁圆柱体能完全浸入水中,则水深与容积底面积的乘积应等于原有水的体积与圆柱体在水中体积之和,因而水深为:22251521817.725πππ⨯⨯+⨯⨯=⨯(厘米);它比铁圆柱体的高度要小,那么铁圆柱体没有完全浸入水中.此时容器与铁圆柱组成一个类似于下图的立体图形.底面积为225221πππ-=,水的体积保持不变为2515315ππ⨯=.所以有水深为315617217ππ=(厘米),小于容器的高度20厘米,显然水没有溢出于是6177厘米即为所求的水深. 【答案】6177【例 20】 如图11-7,有一个圆柱和一个圆锥,它们的高和底面直径都标在图上,单位是厘米.那么,圆锥体积与圆柱体积的比是多少?【关键词】华杯赛,初赛,3题【考点】圆柱与圆锥 【难度】3星 【题型】解答 【解析】 圆锥的体积是211624,33ππ⨯⨯⨯=,圆柱的体积是248128ππ⨯⨯=.所以,圆锥体积与圆柱体积的比是16:1281:243ππ=. 【答案】1:24【例 21】 一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的圆柱形容器中,水面高多少厘米? 【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥形容器底面积为S ,圆柱体内水面的高为h ,根据题意有:1243S Sh ⨯⨯=,可得8h =厘米. 【答案】8【例 22】 (”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水 升.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 圆锥容器的底面积是现在装水时底面积的4倍,圆锥容器的高是现在装水时圆锥高的2倍,所以容器容积是水的体积的8倍,即508400⨯=升.【答案】400【例 23】 如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多?多的是少的的几倍?甲乙【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥容器的底面半径为r ,高为h ,则甲、乙容器中水面半径均为23r ,则有21π3V r h =容器,221228ππ33381V r h r h =⨯=乙水(),222112219πππ333381V r h r h r h =-⨯=甲水(),2219π198188π81r h V V r h ==甲水乙水,即甲容器中的水多,甲容器中的水是乙容器中水的198倍. 【答案】198倍【例 24】 张大爷去年用长2米、宽1米的长方形苇席围成容积最大的圆柱形粮囤.今年改用长3米宽2米的长方形苇席围成容积最大的圆柱形的粮囤.问:今年粮囤的容积是去年粮囤容积的多少倍? 【关键词】华杯赛,决赛,口试,23题【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 底面周长是3,半径是32π,2233()24πππ⨯=所以今年粮囤底面积是234π,高是2.同理,去年粮囤底面积是224π,高是1.2232(2)(1) 4.5.44ππ⨯÷⨯=因此,今年粮囤容积是去年粮囤容积的4.5倍.【答案】4.5【例 25】 (仁华考题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是 平方米.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 缠绕在一起时塑料薄膜的体积为:22208ππ1008400π22⎡⎤⎛⎫⎛⎫⨯-⨯⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(立方厘米),薄膜展开后为一个长方体,体积保持不变,而厚度为0.04厘米,所以薄膜展开后的面积为8400π0.04659400÷=平方厘米65.94=平方米.另解:也可以先求出展开后薄膜的长度,再求其面积.由于展开前后薄膜的侧面的面积不变,展开前为22208ππ84π22⎛⎫⎛⎫⨯-⨯= ⎪ ⎪⎝⎭⎝⎭(平方厘米),展开后为一个长方形,宽为0.04厘米,所以长为84π0.046594÷=厘米,所以展开后薄膜的面积为6594100659400⨯=平方厘米65.94=平方米.【答案】65.94【巩固】图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4 毫米,问:这卷纸展开后大约有多长?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 将这卷纸展开后,它的侧面可以近似的看成一个长方形,它的长度就等于面积除以宽.这里的宽就是纸的厚度,而面积就是一个圆环的面积. 因此,纸的长度 :()22 3.1410093.1410 3.1437143.50.040.04⨯-⨯-⨯≈≈==纸卷侧面积纸的厚度(厘米)所以,这卷纸展开后大约71.4米.【答案】71.4【巩固】如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 卷在一起时铜版纸的横截面的面积为2218050ππ7475π22⎛⎫⎛⎫⨯-⨯= ⎪ ⎪⎝⎭⎝⎭(平方厘米),如果将其展开,展开后横截面的面积不变,形状为一个长方形,宽为0.25毫米(即0.025厘米),所以长为7475π0.025938860÷=厘米9388.6=米.所以这卷铜版纸的总长是9388.6米. 本题也可设空心圆柱的高为h ,根据展开前后铜版纸的总体积不变进行求解,其中h 在计算过程将会消掉.【答案】9388.6米【例 26】 (人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下底面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 ⑴先求表面积.表面积可分为外侧表面积和内侧表面积.外侧为6个边长10厘米的正方形挖去4个边长4厘米的正方形及2个直径4厘米的圆,所以,外侧表面积为:210106444π225368π⨯⨯-⨯⨯-⨯⨯=-(平方厘米);内侧表面积则为右上图所示的立体图形的表面积,需要注意的是这个图形的上下两个圆形底面和前后左右4个正方形面不能计算在内,所以内侧表面积为:()24316244π22π232192328π24π22416π⨯⨯+⨯⨯-⨯+⨯⨯⨯=+-+=+(平方厘米),所以,总表面积为:22416π5368π7608π785.12++-=+=(平方厘米).⑵再求体积.计算体积时将挖空部分的立体图形取出,如右上图,只要求出这个几何体的体积,用原立方体的体积减去这个体积即可.挖出的几何体体积为:24434444π2321926424π25624π⨯⨯⨯+⨯⨯+⨯⨯⨯=++=+(立方厘米);所求几何体体积为:()10101025624π668.64⨯⨯-+=(立方厘米). 【答案】668.64板块二 旋转问题【例 27】 如图,ABC 是直角三角形,AB 、AC 的长分别是3和4.将ABC ∆绕AC 旋转一周,求ABC ∆扫出的立体图形的体积.(π 3.14=)CB A43【考点】旋转问题 【难度】3星 【题型】解答【解析】 如右上图所示,ABC ∆扫出的立体图形是一个圆锥,这个圆锥的底面半径为3,高为4,体积为:21π3412π37.683⨯⨯⨯==.【答案】37.68【例 28】 已知直角三角形的三条边长分别为3cm ,4cm ,5cm ,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米?(π取3.14) 【考点】旋转问题 【难度】3星 【题型】解答【解析】 以3cm 的边为轴旋转一周所得到的是底面半径是4cm ,高是3cm 的圆锥体,体积为2313.144350.24(cm )3⨯⨯⨯= 以4cm 的边为轴旋转一周所得到的是底面半径是3cm ,高是4cm 的圆锥体,体积为2313.143437.68(cm )3⨯⨯⨯= 以5cm 的边为轴旋转一周所得到的是底面半径是斜边上的高345 2.4⨯÷=cm 的两个圆锥,高之和是5cm 的两个圆的组合体,体积为2313.14 2.4530.144(cm )3⨯⨯⨯=【答案】30.144【巩固】如图,直角三角形如果以BC 边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC 边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB 为轴旋转一周,那么所形成的几何体的体积是多少?ABC【考点】旋转问题 【难度】3星 【题型】解答【解析】 设BC a =,AC b =,那么以BC 边为轴旋转一周,所形成的圆锥的体积为2π3ab ,以AC 边为轴旋转一周,那么所形成的圆锥的体积为2π3a b ,由此可得到两条等式:224836ab a b ⎧=⎪⎨=⎪⎩,两条等式相除得到43b a =,将这条比例式再代入原来的方程中就能得到34a b =⎧⎨=⎩,根据勾股定理,直角三角形的斜边AB 的长度为5,那么斜边上的高为2.4.如果以AB 为轴旋转一周,那么所形成的几何体相当于两个底面相等的圆锥叠在一起,底面半径为2.4,高的和为5,所以体积是22.4π59.6π3⨯=.【答案】9.6π【例 29】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC 的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?(π取3)。
关于圆柱和圆锥奥数
关于圆柱和圆锥奥数:1.用铁皮做一个底面半径是20cm ,高是50cm 的圆柱形无盖水桶,至少需要多少平方米的铁皮 ?2.一座大厦有四根同样的圆柱,已知圆柱的底面周长是15.7dm ,高10m ,如果要把圆柱的侧面都包裹上彩布,至少需彩布多少平方分米 ?3.小明有一个百宝箱,上部是一个圆柱的一半,下部是一个长50cm ,宽40cm ,高20cm 的长方体,小明这个百宝箱的表面积是多少 ?4.一瓶2.5升的果汁,倒入底面直径为4cm ,高为5cm 的圆柱形杯子里,可以倒几杯?(得数保留整数)5.如图,想想办法,你能否求出它的体积?( 单位:分米)6、一个圆锥的体积比与它等底等高的圆柱的体积少6.28立方厘米,那么,这个圆柱的体积是多少立方厘米?7、一个圆柱和一个圆锥的体积相等,圆锥高是圆柱高的三分之二,求圆锥和圆柱的底面积比是多少?8、一段长宽高的比是5:4:3的长方体木材,棱长总和是96厘米,把它加工成一个最大的圆锥,这个圆锥的体积是多少?9、一个底面直径为20厘米的圆柱形木桶里装有水,水中淹没着一个底面直径为18厘米、高为20厘米的铁质圆锥体。
当圆锥体取出后,桶内水面将降低多少?10、一圆柱形水桶内有一段长4厘米,宽3厘米的长方体铁块浸入水中,水面上升8厘米,如果把长方体竖立,露出水面3厘米,则水面下降1.5厘米,求长方体铁块的体积?11、如下图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?12、用一块长6.28厘米、宽3.14厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。
这样做成的铁桶的容积最大是多少?13、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。
现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见下图)。
问:瓶内现有饮料多少立方分米?14、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。
【数学】圆柱与圆锥(奥数)
【数学】圆柱与圆锥(奥数)一、圆柱与圆锥1.一个圆柱形的汽油桶,底面半径是2分米,高是5分米,做这个桶至少要用多少平方分米的铁皮?它的容积是多少升?【答案】解:3.14×22×2+3.14×2×2×5=3.14×4×2+3.14×4×5=25.12+62.8=87.92(dm2)3.14×22×5=62.8(dm3)62.8dm3=62.8L答:做这个桶至少要用87.92平方分米的铁皮。
它的容积是62.8升。
【解析】【分析】需要铁皮的面积就是油桶的表面积,用底面积的2倍加上侧面积就是表面积,圆柱的侧面积=底面周长×高;圆柱的容积=底面积×高,根据公式计算即可。
2.一个圆柱形钢管,内直径是20cm,水在钢管内的流速是每秒40cm,每秒流过的水是多少cm3?【答案】解:3.14×(20÷2)2×40=314×40=12560(cm3)答:每秒流过的水是12560cm3。
【解析】【分析】钢管是圆柱形,流出的水也是圆柱形。
用钢管的横截面面积乘每秒流出水的长度即可求出流过水的体积。
3.计算圆柱的表面积。
【答案】解:3.14×(6÷2)²×2+3.14×6×10=3.14×18+3.14×60=56.52+188.4=244.92(cm³)【解析】【分析】圆柱的表面积是两个底面积加上侧面积,根据圆面积公式计算底面积,用底面周长乘高求出侧面积。
4.计算下面圆柱的表面积。
(单位:厘米)【答案】解:3.14×(4÷2)²×2+3.14×4×6=100.48(平方厘米)【解析】【分析】圆柱体的表面积是两个底面积加上一个侧面积,底面积根据圆面积公式计算,用底面周长乘高求出侧面积。
六下 第三单元圆柱与圆锥提高题和奥数题(附答案)
第三单元圆柱和圆锥提高题和奥数题板块一圆柱的认识例题1.选择哪些材料恰好能做成一个圆柱形的盒子?d=2cm d=3cm d=4cmA B C练习1.在下面的材料中,选择()能做成圆柱。
2号 3号4号 5号A.1号、2号和3号B.1号、4号和5号C.1号、2号和4号例题2.一个圆柱的底面直径是6.28cm,高是4.5cm.如果沿底面直径垂直于底面把这个圆柱切成完全相同的两半,那么切面的面积是多少?练习2.(1)一个底面周长是9.42厘米,商是5厘米的圆柱,沿底面直径垂直于底面把它切割成两个半圆柱后,切面的面积一共是多少平方厘米?(2)把一个圆柱的侧面沿高展开后得到一个正方形,这个圆柱的商与底面直径的比是多少?例题3.一个圆柱形蛋糕盒的底面直径是20厘米,高是15厘米,用彩绳将它捆扎(如右图),打结处在圆心,打结部分长30厘米。
求所用彩绳的全长是多少厘米?练习3.一个圆柱形蛋糕用彩绳捆扎,如果打结部分用了35厘米,打结处在圆心,一共用了多长彩绳?板块二圆柱的表面积例题1.一块长方形的钢板,利用图中阴影部分刚好能做成一个圆柱形的带盖水桶(接头处忽略不计),求这个水桶的表面积。
16.56dm练习 1.(1)如下图,有一张长方形铁皮,剪下两个圆及一个长方形,正好可以做成一个圆柱,这个圆柱的底面半径为10厘米,原来这张长方形铁皮的面积是多少平方厘米?(2)有一张长方形铁皮(尺寸如图所示),剪下阴影部分正好能围成一个圆柱,求圆柱的表面积是多少。
例题2.工人师傅要在一个零件(如右图)的表面涂一层防锈材料。
这个零件是由两个圆柱构成的,小圆柱的直径是4厘米,高是2厘米;大圆柱的直径是6厘米,高是5厘米。
这个零件涂防锈材料的面积是多少?练习2.用3个高都是2分米,底面半径分别为2分米、1分米和0.5分米的圆柱组成一个物体(如图),求该物体的表面积。
例题3.如图,是长为8,宽为4的长方形,以长方形的长为轴旋转一周。
求所形成的立体图形的表面积。
圆柱圆锥提高题和奥数题
圆柱圆锥提高题和奥数题Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】圆柱与圆锥这一讲学习与圆柱体和圆锥体有关的体积、表面积等问题。
例1如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水例2 用一块长60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。
这样做成的铁桶的容积最大是多少(精确到1厘米3)例3有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。
现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。
问:瓶内现有饮料多少立方分米例4皮球掉进一个盛有水的圆柱形水桶中。
皮球的直径为15厘米,水桶底面直径为60厘米。
皮球有4的体积浸在水中(见右图)。
问:皮球掉进水中后,水桶中的水面升高5了多少厘米例5有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图)。
如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米例6将一个底面半径为20厘米、高27厘米的圆锥形铝块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形铝块的高。
【练习】1.右图是一顶帽子。
帽顶部分是圆柱形,用黑布做;帽沿部分是一个圆环,用白布做。
如果帽顶的半径、高与帽沿的宽都是a厘米,那么哪种颜色的布用得多2.一个底面直径为20厘米的圆柱形木桶里装有水,水中淹没着一个底面直径为18厘米、高为20厘米的铁质圆锥体。
当圆锥体取出后,桶内水面将降低多少3.用直径为40厘米的圆钢锻造长300厘米、宽100厘米、厚2厘米的长方形钢板,应截取多长的一段圆钢容器高度的几分之几5.右上图是一个机器零件,其下部是棱长20厘米的正方体,上部是圆柱形的一半。
求它的表面积与体积。
6.有两个盛满水的底面半径为10厘米、高为30厘米的圆锥形容器,将它们盛的水全部倒入一个底面半径为20厘米的圆柱形容器内,求水深。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥数 圆柱专题
这一讲学习与圆柱体和圆锥体有关的体积、表面积等问
题。
例1 如右图所示,圆锥形容器中装有5升水,水面高度
正好是圆锥高度的一半,这个容器还能装多少升水?
分析与解:本题的关键是要找出容器上半部分的体积与
下半部分的关系。
这表明容器可以装8份5升水,已经装了1份,还能装
水5×(8-1)=35(升)。
例2 用一块长60厘米、宽40厘米的铁皮做圆柱形水桶
的侧面,另找一块铁皮做底。这样做成的铁桶的容积最大是
多少?(精确到1厘米3)
分析与解:铁桶有以60厘米的边为高和以40厘米的边
为高两种做法。
时桶的容积是
桶的容积是
例3 有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容
积是30分米3。现在瓶中装有一些饮料,正放时饮料高度为
20厘米,倒放时空余部分的高度为5厘米(见右图)。问:
瓶内现有饮料多少立方分米?
分析与解:瓶子的形状不规则,并且不知道底面的半径,似
乎无法计算。比较一下正放与倒放,因为瓶子的容积不变,
装的饮料的体积不变,所以空余部分的体积应当相同。将正
放与倒放的空余部分变换一下位置,可以看出饮料瓶的容积
应当等于底面积不变,高为 20+5=25(厘米)
例4 皮球掉进一个盛有水的圆柱形水桶中。皮球的直径
为15厘米,水桶
中后,水桶中的水面升高了多少厘米?
解:皮球的体积是
水面升高的高度是450π÷900π=0.5(厘米)。
答:水面升高了0.5厘米。
例5 有一个圆柱体的零件,高10厘米,底面直径是6
厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘
米,孔深5厘米(见右图)。如果将这个零件接触空气的部
分涂上防锈漆,那么一共要涂多少平方厘米?
分析与解:需要涂漆的面有圆柱体的下底面、外侧面、
上面的圆环、圆孔的侧面、圆孔的底面,其中上面的圆环与
圆孔的底面可以拼成一个与圆柱体的底面相同的圆。涂漆面
积为
例6 将一个底面半径为20厘米、高27厘米的圆锥形铝
块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,
熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形
铝块的高。
解:被熔的圆锥形铝块的体积:
被熔的圆柱形铝块的体积:π×302×20=18000π(厘
米3)。
熔成的圆柱形铝块的高:(3600π+18000π)÷(π×
152) =21600π÷225π=96(厘米)。
答:熔铸成的圆柱体高96厘米。
练习12
1.右图是一顶帽子。帽顶部分是圆柱形,用黑布做;帽
沿部分是一个圆环,用白布做。如果帽顶的半径、高与帽沿
的宽都是a厘米,那么哪种颜色的布用得多?
2.一个底面直径为20厘米的圆柱形木桶里装有水,水中
淹没着一个底面直径为18厘米、高为20厘米的铁质圆锥体。
当圆锥体取出后,桶内水面将降低多少?
3.用直径为40厘米的圆钢锻造长300厘米、宽100厘米、
厚2厘米的长方形钢板,应截取多长的一段圆钢?
容器高度的几分之几?
5.右上图是一个机器零件,其下部是棱长20厘米的正方
体,上部是圆柱形的一半。求它的表面积与体积。
6.有两个盛满水的底面半径为10厘米、高为30厘米的
圆锥形容器,将它们盛的水全部倒入一个底面半径为20厘
米的圆柱形容器内,求水深。
一个圆柱体的侧面为正方形,这个圆柱的底面的面积是10
平方,问这个圆柱的表面积是多少?
侧面积=底面周长×高(这题目里高与底面周长相等)
底面周长=3.14×半径×2,那么侧面积=(3.14×半径×2)×
(3.14×半径×2)=3.14×半径的平方×4×3.14=4×3.14×底
面面积(3.14×半径×半径)=4×3.14×10=125.6
表面积=侧面积+底面积×2=125.6+10×2=145.6