小学奥数圆的周长与面积

合集下载

五年级奥数圆和扇形的周长与面积二

五年级奥数圆和扇形的周长与面积二

加油站
C B
答案:1
【例6】(★★★★)(北大附中“资优博雅杯”数学竞赛)(2)如图,阴影正方形的顶点分别是大正方形
各边的中点,分别以大正方形各边的一半为直径向外
各边的中点分别以大正方形各边的一半为直径向外
做半圆,再分别以阴影正方形的各边为直径向外作半
圆,形成个月牙形个月牙形
圆,形成8个“月牙形”。

这8个“月牙形”的总面积
为32平方厘米,问大正方形EFGH的面积是多少?
A
H
D
加加点睛
三个转化:化未知为已知;
化不规则为规则;为不可求为可求
四个基本方法:割补、变换、
差不变、整体、
重点例题:例1,例2,例3,例4,例5。

六年级奥数第12讲圆的周长与面积

六年级奥数第12讲圆的周长与面积

学生课程讲义
有关圆的计算是指与圆有关的图形的周长和面积的计算,其中组合图形的面积是学习的重点。

在进行组合图形计算时,必须掌握有关概念、公式,要仔细观察、认真思考,看清组合图形是由哪几个基本图形组成的,看清题目的已知条件和问题,要注意找出图中的隐蔽条件与已知条件和问题的联系。

圆的周长:当一条线段绕着它的一个端点O,在平面上旋转一周时,它的另一个端点所画的封闭曲线叫做圆,端点O就是这个圆的圆心,这条封闭曲线的长度就是这个圆的周长,用C来表示,连接圆心到圆上任意一点的线段叫半径,一般用字母r来表示,通过圆并且两端都在圆上的
线段叫直径,用字母d表示,用
S
表示圆的面积,于是有下列公式
d=2r C=πd=2πr
S=πr2(其中π是圆周率,取π=3.14)
圆上两点间的部分叫做弧,这两点与圆心连接所得两条半径的夹角叫做圆心角,一般用n 表示圆心角的度数,用L表示弧长,则L=n
180
πr
圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形,则S=n
360πr2=1
2
Lr
【例1】计算图中阴影部分的面积。

(单位:
厘米)
【例2】求图中外圆的周长。

(单位:分米)
【例3】已知AC=AB,求图中阴影部分的周长。

小学六年级奥数 第十八章 圆的周长和面积

小学六年级奥数 第十八章 圆的周长和面积

第十八章 圆的周长和面积知识要点如右图所示,当一条线段OA 绕着固定端点O 在平面内旋转一周,它的另一端点A 在平面内画出了一条封闭的曲线,这条封闭的曲线叫做圆。

围成圆的曲线叫做圆周,线段OA 叫做圆的半径,通常用r 或R 表示。

O 点是这个圆的圆心。

在同一个圆中,所有的半径都相等。

通过圆心,并且两端都在圆上的线段叫做直径。

在同一个圆内,所有直径都相等,且等于半径的2倍。

圆心决定圆的位置,半径决定圆的大小。

无论什么圆,它的周长除以直径的商是一个固定的数,这个数叫圆周率,用π表示。

如果用C 表示圆周的长度,d 表示这个圆的直径,那么,π=C d 。

π是一个无限不循环小数:π=3.14159265358979323846…圆的周长:C =2πr 或C =πd 圆的面积:S =πr 2=π(2d )2=π(2C π)2=24C π 扇形是由圆心角的两条半径和圆心角所对的弧围成的图形。

如果扇形的圆心角是n ,那么当圆周长C =2πr 时,扇形的弧长计算方法:L =360n ×2πr =180n ×πr 例1 (第五届“希望杯”邀请赛试题)如图,ABCD 是边长为10厘米的正方形,且AB 是半圆的直径,则阴影部分的面积是 平方厘米。

(π取3.14)点拨 过E 点作AB 的垂线,垂足为O ,因为∠CAB=45°,所以点O 是半圆的圆心,则阴影部分的面积等于梯形OECB 的面积,减去圆O 面积的14。

解 过E 点作AB 的垂线,垂足为0。

∵∠CAB =45°,∴点0是半圆的圆心。

则S 阴影=S 梯形OECB -14S ⊙O=(5+10)×5÷2- ×52=17.875(平方厘米)例2 将半径分别是4厘米和3厘米的两个半圆,如图放置。

求阴影部分的周长。

点拨阴影部分的周长为小半圆的弧长加上大半圆的弧长,再加两条线段的长。

两个半圆的半径分别为4厘米和3厘米;两条线段分别是4厘米和3×2-4=2(厘米)。

小学数学奥数中常用的数据及规律

小学数学奥数中常用的数据及规律

小学数学奥数中常用的数据及规律常用数学数据和规律圆周率常用数据:圆周率是一个重要的数学常数,通常用符号π表示。

在小学奥数中,常用的圆周率数据是3.14.我们可以通过简单的乘法来计算圆的周长或面积。

例如,半径为1cm的圆的周长是3.14×1=3.14cm,直径为2cm的圆的周长是3.14×2=6.28cm。

常用特殊数的乘积:在小学奥数中,有一些特殊的数字乘积是经常用到的。

例如,25×3=75,25×4=100,25×8=200,125×3=375,125×4=500,125×8=1000,625×16=,37×3=111.常用平方数:平方数是一个整数与自己相乘的结果。

在小学奥数中,常用的平方数有1²=1,2²=4,3²=9,4²=16,5²=25,6²=36,7²=49,8²=64,9²=81,10²=100,20²=400,30²=900,40²=1600,50²=2500,60²=3600,70²=4900,80²=6400,90²=8100,100²=.常用分数与小数的互化:在小学奥数中,我们需要学会将分数和小数互相转换。

例如,1/2可以转换为0.5,3/4可以转换为0.75,1/5可以转换为0.2,2/5可以转换为0.4,3/5可以转换为0.6,4/5可以转换为0.8,1/8可以转换为0.125,3/8可以转换为0.375,5/8可以转换为0.625,7/8可以转换为0.875,1/20可以转换为0.05,3/20可以转换为0.15,5/20可以转换为0.25,9/20可以转换为0.45,11/20可以转换为0.55,1/25可以转换为0.04,2/25可以转换为0.08,3/25可以转换为0.12,4/25可以转换为0.16,6/25可以转换为0.24.常用立方数:立方数是一个整数与自己相乘再与自己相乘的结果。

六年级圆的周长奥数题

六年级圆的周长奥数题

六年级圆的周长奥数题一、基础题型1. 一个圆的半径是3厘米,它的周长是多少厘米?- 解析:根据圆的周长公式C = 2π r(其中C表示周长,π通常取3.14,r为半径)。

当r = 3厘米时,C=2×3.14×3 = 18.84厘米。

2. 已知圆的直径是8分米,求这个圆的周长。

- 解析:因为圆的周长C=π d(d是直径),当d = 8分米时,C = 3.14×8=25.12分米。

3. 一个圆的半径扩大到原来的2倍,它的周长扩大到原来的几倍?- 解析:设原来圆的半径为r,则原来的周长C_1 = 2π r。

半径扩大2倍后变为2r,此时周长C_2=2π×(2r) = 4π r。

C_2div C_1=(4π r)div(2π r)=2,所以它的周长扩大到原来的2倍。

4. 有一个圆形花坛,半径是5米,在它的周围铺一条宽1米的小路,求小路的外沿周长是多少米?- 解析:小路的外沿半径为5 + 1=6米。

根据圆的周长公式C = 2π r,当r = 6米时,C=2×3.14×6 = 37.68米。

5. 一个半圆的直径是10厘米,求这个半圆的弧长(周长的一半)。

- 解析:圆的周长C=π d,半圆的弧长为(1)/(2)π d。

当d = 10厘米时,弧长=(1)/(2)×3.14×10 = 15.7厘米。

二、组合图形中的圆周长问题6. 正方形的边长为10厘米,在正方形内画一个最大的圆,求这个圆的周长。

- 解析:正方形内最大的圆的直径等于正方形的边长,即d = 10厘米。

根据圆的周长公式C=π d,C = 3.14×10 = 30.4厘米。

7. 长方形的长是12厘米,宽是8厘米,在长方形内画一个最大的半圆,求这个半圆的弧长。

- 解析:因为长方形的长是12厘米,宽是8厘米,所以这个半圆的直径最大为12厘米。

半圆的弧长=(1)/(2)π d=(1)/(2)×3.14×12 = 18.84厘米。

六年级上册奥数题圆的面积

六年级上册奥数题圆的面积

小学六年级奥数教材课程圆的周长和面积一条线段绕着它固定的一端在平面内旋转一周,它的另一端在平面内画出一条封闭的曲线,这条封闭的曲线就是圆。

画圆时,固定的一点叫做圆心,从圆心到圆上任意一点的线段叫做圆的半径,在同一个圆中,所有的半径都相等。

通过圆心,并且两端在圆上的线段叫做直径。

在同一个圆中,所有的直径都相等,且等于半径的2倍。

圆心决定圆的位置,半径决定圆的大小。

任意一个圆,它的周长除以直径的商总是一个固定的数,这个数叫圆周率。

如果用C 表示圆周的长度,d 表示这个圆的直径,r 表示它的半径,π表示圆周率,就有C dπ=或2C r。

π是一个无限不循环小数,π=3.14159265358979323846…。

圆的周长:C=2πr 或C=πd,圆的面积:S=πr 2。

圆的周长和面积计算的基本方法是仔细观察,发现特点,找出内在的联系,常常通过对图形的割补、旋转、平移、等积变形等方法加以解决。

需要精巧的构思和恰当的设计,把形象思维和抽象思维结合起来。

(本讲π均取 3.14)例1、上海外滩海关大钟钟面的直径是5.8米,钟面的面积是多少平方米?时针长2.7米,时针绕一圈时针尖端走过途径的长度是多少米?(得数保留一位小数)分析与解法:钟面的直径是5.8米这个条件是直接的,时针长指的是半径。

解:钟面的面积是:3.14×(5.8×2)2≈26.4(平方米)。

时针绕一圈时针尖端走过途径的长度是:2×3.14×2.7≈17.0(米)。

例2、如图所示,试比较大圆的面积与阴影部分的面积、大圆的周长与阴影部分的周长。

图图(1)分析与解法:本题有两问,一是比较阴影部分面积与大圆的面积;二是比较阴影部分周长与大圆的周长。

为了考虑问题方便,我们把图经过割补成图(1),在图(1)中更容易看出大圆与小圆阴影部分的关系。

学习目标总结重点AOB解:先比较大圆面积与阴影部分的面积。

设大圆半径为r,则小圆半径为r,大圆面积为S 1=πr 2。

二年级奥数(圆形)-附答案

二年级奥数(圆形)-附答案

二年级奥数(圆形)-附答案题目一:计算圆的周长问题:一个圆形的周长是16厘米,求该圆的半径和面积。

答案:根据圆的周长公式可知,周长等于2πr(其中r为圆的半径),所以可以得到以下方程式:16 = 2πr求解上述方程式,解得r = 8/π 厘米。

接着,我们可以使用圆的面积公式计算圆的面积。

根据公式,圆的面积等于πr²,将半径代入计算可得:面积= π * (8/π)² = 64/π 平方厘米。

所以该圆的半径为8/π 厘米,面积为64/π 平方厘米。

题目二:计算扇形的面积问题:一个扇形的半径为10米,弧长为5米,求该扇形的面积。

答案:扇形的面积可以通过使用扇形面积公式来计算。

根据公式,扇形的面积等于弧长除以圆的周长乘以圆的面积。

首先,我们需要计算圆的周长,可以使用圆的周长公式计算:周长= 2πr = 2π * 10 = 20π 米。

然后,我们可以计算扇形的面积,将已知的半径和弧长代入公式:面积= (5 / 20π) * π * 10² = 10 平方米。

所以该扇形的面积为 10 平方米。

题目三:计算圆环的面积问题:一个圆环的外半径为12厘米,内半径为8厘米,求该圆环的面积。

答案:圆环的面积可以通过使用圆环面积公式来计算。

根据公式,圆环的面积等于外圆面积减去内圆面积。

首先,我们可以计算外圆的面积和内圆的面积,使用圆的面积公式:外圆面积= π * (12²) = 144π 平方厘米。

内圆面积= π * (8²) = 64π 平方厘米。

然后,我们可以计算圆环的面积,将已知的外圆面积和内圆面积相减:面积= 144π - 64π = 80π 平方厘米。

所以该圆环的面积为80π 平方厘米。

以上是二年级奥数圆形相关问题的答案。

希望对您有帮助!。

小学圆的面积奥数题100道及答案(完整版)

小学圆的面积奥数题100道及答案(完整版)

小学圆的面积奥数题100道及答案(完整版)题目1一个圆的半径是3 厘米,它的面积是多少平方厘米?答案:圆的面积= π×半径×半径,即3.14×3×3 = 28.26(平方厘米)题目2圆的直径是8 分米,求面积。

答案:半径= 8÷2 = 4 分米,面积= 3.14×4×4 = 50.24(平方分米)题目3一个圆的周长是18.84 米,求其面积。

答案:周长= 2×π×半径,所以半径= 18.84÷(2×3.14)= 3 米,面积= 3.14×3×3 = 28.26(平方米)题目4圆的面积是12.56 平方厘米,求半径。

答案:3.14×半径×半径= 12.56,半径×半径= 4,半径= 2 厘米题目5直径为10 厘米的圆,面积比半径为6 厘米的圆的面积小多少?答案:直径10 厘米的圆半径为5 厘米,面积为 3.14×5×5 = 78.5 平方厘米;半径6 厘米的圆面积为3.14×6×6 = 113.04 平方厘米,小113.04 - 78.5 = 34.54 平方厘米题目6一个圆的半径扩大3 倍,面积扩大多少倍?答案:原来面积= π×半径×半径,半径扩大3 倍后,面积= π×(3×半径)×(3×半径)= 9×π×半径×半径,面积扩大9 倍题目7两个圆的半径分别是2 厘米和3 厘米,它们面积的和是多少?答案:面积分别为3.14×2×2 = 12.56 平方厘米,3.14×3×3 = 28.26 平方厘米,和为12.56 + 28.26 = 40.82 平方厘米题目8一个圆的面积是50.24 平方分米,在里面画一个最大的正方形,正方形的面积是多少?答案:圆的半径= √(50.24÷3.14)= 4 分米,正方形的对角线是圆的直径为8 分米,正方形面积= 对角线×对角线÷2 = 8×8÷2 = 32 平方分米题目9圆的半径由4 厘米增加到6 厘米,面积增加了多少平方厘米?答案:原来面积= 3.14×4×4 = 50.24 平方厘米,新面积= 3.14×6×6 = 113.04 平方厘米,增加了113.04 - 50.24 = 62.8 平方厘米题目10在一个边长为8 厘米的正方形中画一个最大的圆,圆的面积是多少?答案:圆的直径= 8 厘米,半径= 4 厘米,面积= 3.14×4×4 = 50.24 平方厘米题目11已知圆的面积是28.26 平方米,求周长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11讲圆的周长与面积(一)
例1:右图中大圆的周长与大圆中四个小圆周长的和相比,谁大?
思路分析:设大圆的直径为D,四个小圆的直径为d1,d2,d3,
d4,则有D= d1+d2+d3+d4。

大圆的周长=πD,四个小圆周长的和
=πd1+πd2+πd3+πd4=π(d1+d2+d3+d4),显然两周长相等。

解:两圆周长相等。

例2:求右图中阴影部分的周长。

思路分析:阴影部分周长包括三个部分:半圆的直径(扇形的
一条半径);二是半圆的弧长;三是圆心角为30°的扇形的弧长。

解:半圆的弧长:3.14×30÷2=47.1(厘米)
扇形的弧长:2×3.14×30÷12=15.7(厘米)
阴影部分周长:47.1+15.7+30=92.8(厘米)
例3:如右图,已知正方形的面积是60平方厘米,求圆的面积。

思路分析:圆的面积公式是S=πr²,但这里不能求出半径。

我们
可以将r²看作一个整体,就可以求出圆的面积。

解:3.14×(60÷4)=47.1(平方厘米)
例4:右图中,三个圆的面积都是200平方分米,求阴影部分面积。

思路分析:首先三个圆的半径相等,而阴影部分拼起来正好是
一个半圆。

(三角形内角和为180°)
解:200÷2=100(平方分米)
例5:下图中,圆的半径为6厘米,求阴影部分面积。

思路分析:将左图沿水平直径折叠,使阴影部分拼合成两个三角形,如图(a)。

再将图(a)带阴影的三角形绕长方形AB边中点O逆时针方向旋转90°,于是两个带阴影的三角形就拼合成了一个正方形,如图(b)。

解:S=6×6=36(平方厘米)
例6:求右图中阴影部分的面积。

(单位:厘米)
思路分析:连结点A与圆心O。

阴影部分的面积可用扇形
ABO的面积减去△ABO的面积求得。

阴影部分的面积还可以
用半圆的面积先减去扇形AOC的面积,再减去△ABO的面积
求得。

解法一:12÷2=6(厘米)
3.14×6²×(180-30×2)÷360-6×5.2÷2
=22.08(平方厘米)
解法二:3.14×6²÷2-3.14×6²×60÷360-6×5.2÷2=22.08(平方厘米)
例7:如图是由正方形和半圆形组成的图形。

其中P点为半圆周的中点,Q点为正方形一边的中点。

已知正方形的边长为10,那么阴影部分的面积是多少?(π取3.14)思路分析:过P做AD平行线,交AB于O点,P为半圆周的中点,所以O为AB中点。

有2ABCD DPC 101S 1010100S 12.522
ππ=⨯==⨯⨯=半圆,(). AOP OPQB 101101S 510+37.5S 105550.2222∆⎡⎤⎛⎫=⨯⨯==++⨯⨯= ⎪⎢⎥⎝
⎭⎣⎦梯形(), ABCD AOP DPC OPQB S S S S 10012.537.55012.512.551.75.ππ∆+-=+--=+≈半圆梯形- 作业:
1. 图中的等边三角形边长10厘米,求阴影部分周长。

2. 右图中有A 、B 、C 三个圆,已知C 圆的半径是1厘米, 求 A 、B 两个圆的周长相差几厘米?
3. 求图中阴影部分的周长。

(单位:厘米)
4. 如右图,在正方形ABCD 中,BD=20厘米,另外C 又在以 A 为圆心的圆周上。

求阴影部分的面积。

5. 如图,正方形面积是90平方厘米,求阴影部分面积。

6. 如下图,已知AD=BD=3厘米,求阴影部分面积。

7. 如上图半圆内有一个直角三角形ABC ,AB 长3厘米, AC 长4厘米,求阴影部分面积。

(AB ²+AC ²=BC ²)
8. 右图中,圆O 的直径为8厘米,求阴影部分面积。

9. 如右图,圆的直径AB=6厘米,平行四边形ABCD 的面积 是7平方厘米,∠ABC=30°,求阴影部分面积。

1.
2.2*3.14*1=6.28(厘米)3.
4.114平方厘米
5.
6.
7.
8.
9.
[2×2-3.14×(2÷2)²]×2=1.72(平方厘米)。

相关文档
最新文档