2019版高考数学(文)培优增分一轮全国经典版增分练第3章 三角函数、解三角形 3-4a Word版含解析

合集下载

2019年高考数学一轮复习 第3章 三角函数、解三角形 第2讲 同角三角函数的基本关系与诱导公式增分练

2019年高考数学一轮复习 第3章 三角函数、解三角形 第2讲 同角三角函数的基本关系与诱导公式增分练

2019年高考数学一轮复习 第3章 三角函数、解三角形 第2讲 同角三角函数的基本关系与诱导公式增分练1.[xx·洛阳模拟]下列各数中与sinxx°的值最接近的是( ) A.12 B.32 C .-12D .-32答案 C解析 xx°=5×360°+180°+39°, ∴sinxx°=-sin39°和-sin30°接近.选C.2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3C.π6D.π3 答案 D解析 ∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3.∵|θ|<π2,∴θ=π3.3.[xx·华师附中月考]已知tan(α-π)=34,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则sin ⎝ ⎛⎭⎪⎫α+π2=( )A.45 B .-45C.35 D .-35答案 B解析 tan(α-π)=34⇒tan α=34.又因为α∈⎝ ⎛⎭⎪⎫π2,3π2,所以α为第三象限的角,所以sin ⎝ ⎛⎭⎪⎫α+π2=cos α=-45. 4.已知f (α)=π-απ-α-π-αα,则f ⎝⎛⎭⎪⎫-31π3的值为( ) A.12 B .-13C .-12D.13答案 C解析 ∵f (α)=sin α·cos α-cos αtan α=-cos α,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝⎛⎭⎪⎫10π+π3=-cos π3=-12. 5.已知sin ⎝ ⎛⎭⎪⎫α+π12=13,则cos ⎝ ⎛⎭⎪⎫α+7π12的值为( )A.13 B .-13C .-223D.223答案 B解析 cos ⎝ ⎛⎭⎪⎫α+7π12=cos ⎝ ⎛⎭⎪⎫π2+α+π12=-sin ⎝ ⎛⎭⎪⎫α+π12=-13.选B. 6.已知tan x =2,则sin 2x +1的值为( ) A .0 B.95 C.43 D.53答案 B解析 sin 2x +1=2sin 2x +cos 2x sin 2x +cos 2x =2tan 2x +1tan 2x +1=95.故选B. 7.[xx·福建泉州模拟]已知1+sin αcos α=-12,则cos αsin α-1的值是( )A.12 B .-12C .2D .-2答案 A解析 因为1-sin 2α=cos 2α,cos α≠0,1-sin α≠0,所以(1+sin α)(1-sin α)=cos αcos α,所以1+sin αcos α=cos α1-sin α,所以cos α1-sin α=-12,即cos αsin α-1=12.故选A.8.已知角α的终边上一点P (3a,4a )(a <0),则cos ()540°-α的值是________.答案 35解析 c os(540°-α)=cos(180°-α)=-cos α.因为a <0,所以r =-5a ,所以cos α=-35,所以cos(540°-α)=-cos α=35.9.[xx·北京东城模拟]已知sin θ+cos θ=713,θ∈(0,π),则tan θ=________.答案 -125解析 解方程组⎩⎪⎨⎪⎧sin θ+cos θ=713,sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧sin θ=1213,cos θ=-513或⎩⎪⎨⎪⎧sin θ=-513,cos θ=1213(舍).故tan θ=-125.10.[xx·淮北模拟]sin 4π3·cos 5π6·tan ⎝ ⎛⎭⎪⎫-4π3的值是________. 答案 -334解析 原式=sin ⎝ ⎛⎭⎪⎫π+π3·cos ⎝⎛⎭⎪⎫π-π6·tan ( -π-π3 )= ⎝⎛⎭⎪⎫-sin π3·⎝ ⎛⎭⎪⎫-cos π6·⎝ ⎛⎭⎪⎫-tan π3=⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-32×(-3)=-334. 1.[xx·湖北荆州联考]若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B解析 ∵△ABC 是锐角三角形,则A +B >π2,∴A >π2-B >0,B >π2-A >0,∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,sin B >sin ⎝ ⎛⎭⎪⎫π2-A =cos A ,∴cos B -sin A <0,sin B -cos A >0, ∴点P 在第二象限.选B.2.[xx·新乡模拟]若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin θcos θ=3716,则sin θ=( )A.35 B.45 C.74D.34答案 D解析 ∵sin θcos θ=3716,∴(sin θ+cos θ)2=1+2sin θcos θ=8+378,(sin θ-cos θ)2=1-2sin θcos θ=8-378,∵θ∈⎣⎢⎡⎦⎥⎤π4,π2,∴sin θ+cos θ=3+74 ①,sin θ-cos θ=3-74 ②,联立①②得,sin θ=34.3.已知cos(75°+α)=513,α是第三象限角,则sin(195°-α)+cos(α-15°)的值为________.答案 -1713解析 因为cos(75°+α)=513>0,α是第三象限角,所以75°+α是第四象限角, sin(75°+α)=-1-cos2+α=-1213.所以sin(195°-α)+cos(α-15°) =sin[180°+(15°-α)]+cos(15°-α) =-sin(15°-α)+cos(15°-α)=-sin[90°-(75°+α)]+cos[90°-(75°+α)] =-cos(75°+α)+sin(75°+α) =-513-1213=-1713.4.求值:sin(-1200°)·cos1290°+cos(-1020°)·sin(-1050°)+tan945°. 解 原式=-sin1200°·cos1290°+cos1020°·(-sin1050°)+tan 945° =-sin120°·cos210°+cos300°·(-sin330°)+tan225° =(-sin60°)·(-cos30°)+cos60°·sin30°+tan45°=32×32+12×12+1=2. 5.[xx·南京检测]已知f (α)=π-απ-α⎝⎛⎭⎪⎫-α+3π2cos ⎝ ⎛⎭⎪⎫π2-α-π-α.(1)化简f (α);(2)若α是第三象限角,且cos ⎝⎛⎭⎪⎫α-3π2=15,求f (α)的值. 解 (1)f (α)=π-απ-α⎝⎛⎭⎪⎫-α+3π2cos ⎝ ⎛⎭⎪⎫π2-α-π-α=sin αcos α-sin αsin αsin α=-cos α.(2)因为α是第三象限角,且cos ⎝⎛⎭⎪⎫α-3π2=-sin α=15,sin α=-15.所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-152=-265.所以f (α)=-cos α=265.2019年高考数学一轮复习第一章集合与常用逻辑用语 1.3 简单的逻辑联结词、全称量词与存在量词讲义分析解读江苏高考近五年没有考查本部分知识,在复习时主要要理解逻辑联结词“或”“且”“非”的含义,会写含有全称量词与存在量词的命题的否定.五年高考考点一简单的逻辑联结词(xx湖南改编,5,5分)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是(填序号).答案②③考点二全称量词与存在量词1.(xx课标Ⅰ改编,3,5分)设命题p:∃n∈N,n2>2n,则¬p为.答案∀n∈N,n2≤2n2.(xx山东,12,5分)若“∀x∈,tan x≤m”是真命题,则实数m的最小值为.答案 13.(xx重庆理改编,2,5分)命题“对任意x∈R,都有x2≥0”的否定为.答案存在x0∈R,使得<04.(xx四川理改编,4,5分)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则¬p 为.答案∃x∈A,2x∉B三年模拟A组xx模拟·基础题组考点一简单的逻辑联结词1.(苏教选2—1,一,2,变式)若命题p:0是偶数,命题q:2是3的约数,则下列命题中为真的是.①p且q;②p或q;③ ;④p且q.答案②2.(苏教选2—1,一,2,变式)若p、q是两个命题,且“p或q”的否定是真命题,则p、q的真假性是. 答案p假q假3.(苏教选2—1,一,2,变式)对于命题p、q,若p且q为真命题,则下列四个命题:①p或q是真命题;②p且q是真命题;③p且q是假命题;④p或q是假命题.其中真命题是.答案①③考点二全称量词与存在量词4.(xx江苏南通中学测试)若命题“存在x∈R,ax2+4x+a≤0”为假命题,则实数a的取值范围是.答案(2,+∞)5.(xx江苏南京溧水中学质检,2)命题“∀x∈R,x2+2x+5>0”的否定是.答案∃x0∈R,+2x0+5≤06.(xx江苏苏州期中,2)若命题p:∃x∈R,使x2+ax+1<0,则p: .答案∀x∈R,x2+ax+1≥0B组xx模拟·提升题组(满分:30分时间:15分钟)一、填空题(每小题5分,共15分)1.(xx江苏南京师大附中期初调研,8)已知命题p:∃x∈R,x2+2x+a≤0是真命题,则实数a的取值范围是.答案(-∞,1]2.(xx江苏前黄中学第二次学情调研,8)已知下列四个命题,其中真命题的序号是(把所有真命题的序号都填上).(1)命题“∃x∈R,x2+x+1>0”的否定是“∀x∈R,x2+x+1<0”;(2)命题“在△ABC中,若A>B,则sin A>sin B”的逆命题为真命题;(3)“f '(x0)=0”是“函数f(x)在x=x0处取得极值”的充分不必要条件;(4)直线y=x+b不能作为函数f(x)=图象的切线.答案(2)(4)3.(xx江苏泰州一模,5)若命题“存在x∈R,ax2+4x+a≤0”为假命题,则实数a的取值范围是.答案(2,+∞)二、解答题(共15分)4.(xx江苏盐城期中,15)设p:实数x满足x2-4ax+3a2<0,其中a>0;q:实数x满足<0.(1)若a=1,且p∨q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.解析(1)由x2-4ax+3a2<0,得(x-3a)(x-a)<0,因为a>0,所以a<x<3a,当a=1时,1<x<3,即p为真时,实数x的取值范围是1<x<3.<0等价于(x-2)(x-3)<0,解得2<x<3,即q为真时,实数x的取值范围是2<x<3.若p∨q为真,则实数x的取值范围是1<x<3.(2)p是q的必要不充分条件等价于q⇒p且p⇒/ q,则有或所以实数a的取值范围是1≤a≤2.C组xx模拟·方法题组方法1 含有逻辑联结词的命题的真假判断1.若命题p:不等式4x+6>0的解集为,命题q:关于x的不等式(x-4)(x-6)<0的解集为{x|4<x<6},则“p且q”“p 或q”“ ”形式的命题中的真命题是.答案p或q,p且q2.分别指出下列各组命题构成的“p∧q”“p∨q”“ ”形式的命题的真假.(1)p:6<6,q:6=6;(2)p:梯形的对角线相等,q:梯形的对角线互相平分;(3)p:函数y=x2+x+2的图象与x轴没有公共点,q:不等式x2+x+2<0无解;(4)p:函数y=cos x是周期函数,q:函数y=cos x是奇函数.解析(1)∵p为假命题,q为真命题,∴p∧q为假命题,p∨q为真命题,p为真命题.(2)∵p为假命题,q为假命题,∴p∧q为假命题,p∨q为假命题,p为真命题.(3)∵p为真命题,q为真命题,∴p∧q为真命题,p∨q为真命题,p为假命题.(4)∵p为真命题,q为假命题,∴p∧q为假命题,p∨q为真命题,p为假命题.方法2 全称(存在性)命题真假的判定3.下列命题中的真命题的个数是.①∃x∈R,使得sin x+cos x=;②∃x∈(-∞,0),2x<3x;③∀x∈(0,π),sin x>cos x.答案04.已知命题p:∃x∈R,使tan x=1,命题q:∀x∈R,x2>0.下面结论正确的是.①命题“p∧q”是真命题;②命题“p∧ ”是假命题;③命题“ ∨q”是真命题;④命题“ ∧ ”是假命题.答案④方法3 全称(存在性)命题的否定5.(xx江苏姜堰中学高三期中)命题“∀x∈,sin x>0”的否定是.答案∃x∈,sin x≤06.命题“任意x∈R,|x-2|+|x-4|>3”的否定是.答案存在x∈R,使得|x-2|+|x-4|≤37.判断下列命题是全称命题还是存在性命题,并写出它们的否定:(1)p:对任意的x∈R,x2+x+1=0都成立;(2)p:∃x∈R,x2+2x+5>0.解析(1)由于命题中含有全称量词“任意的”,因而是全称命题;又由于“任意的”的否定为“存在一个”,因此,p:存在一个x∈R,使x2+x+1≠0成立.(2)由于“∃x∈R”表示存在一个实数x,即命题中含有存在量词“存在一个”,因而是存在性命题;又由于“存在一个”的否定为“任意一个”,因此,p:∀x∈R,x2+2x+5≤0.方法4 与逻辑联结词、全称(存在性)命题有关的参数问题8.(xx江苏盐城高三(上)期中)命题“∃x∈R,使x2-ax+1<0”是真命题,则a的取值范围是.答案(-∞,-2)∪(2,+∞)9.已知p:函数y=x2+mx+1在(-1,+∞)上单调递增,q:4x2+4(m-2)x+1>0恒成立.若p或q为真,p且q为假,求m的取值范围.解析若函数y=x2+mx+1在(-1,+∞)上单调递增,则-≤-1,∴m≥2,即p:m≥2;若4x2+4(m-2)x+1>0恒成立,则Δ=16(m-2)2-16<0,解得1<m<3,即q:1<m<3.因为p或q为真,p且q为假,所以p、q一真一假,当p真q假时,解得m≥3.当p假q真时,解得1<m<2.综上可知,m的取值范围是{m|m≥3或1<m<2}.。

2019版高考数学理培优增分一轮全国经典版增分练:第3

2019版高考数学理培优增分一轮全国经典版增分练:第3

板块四 模拟演练·提能增分[A 级 基础达标]1.[2017·全国卷Ⅲ]已知sin α-cos α=43,则sin2α=( ) A .-79 B .-29 C.29 D.79 答案 A解析 ∵sin α-cos α=43,∴(sin α-cos α)2=1-2sin αcos α=1-sin2α=169,∴sin2α=-79.故选A.2.[2017·山东高考]函数y =3sin2x +cos2x 的最小正周期为 ( )A.π2B.2π3 C .π D .2π 答案 C解析 y =3sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,T =2π2=π.故选C.3.[2018·武汉模拟]计算tan15°+1tan15°的值为( ) A. 2 B .2 C .4 D .2 2 答案 C解析 tan15°+1tan15°=sin15°cos15°+cos15°sin15°=sin 215°+cos 215°sin15°cos15°=2sin30°=4.故选C. 4.[2018·重庆质检]计算sin20°cos110°+cos160°sin70°的值为( )A .0B .1C .-1 D.12 答案 C解析 原式=sin20°cos(180°-70°)+cos(180°-20°)·sin70°=-sin20°cos70°-cos20°sin70°=-(sin20°·cos70°+cos20°sin70°)=-sin90°=-1.故选C.5.在△ABC 中,tan A +tan B +3=3tan A tan B ,则C 等于( ) A.π3 B.2π3 C.π6 D.π4 答案 A解析 由已知得tan A +tan B =-3(1-tan A tan B ), ∴tan A +tan B 1-tan A tan B=-3,即tan(A +B )=- 3. 又tan C =tan[π-(A +B )]=-tan(A +B )=3,0<C <π,∴C =π3. 6.[2018·大连模拟]若sin α+cos αsin α-cos α=12,则tan2α等于________.答案 34解析 sin α+cos αsin α-cos α=12,等式左边分子、分母同除以cos α,得tan α+1tan α-1=12,解得tan α=-3,则tan2α=2tan α1-tan 2α=34.7.已知sin α=cos2α,α∈⎝⎛⎭⎪⎫π2,π,则tan α=________.答案 -33解析 sin α=1-2sin 2α,∴2sin 2α+sin α-1=0.∴(2sin α-1)(sin α+1)=0,∵α∈⎝ ⎛⎭⎪⎫π2,π,∴2sin α-1=0.∴sin α=12,cos α=-32. ∴tan α=-33.8.[2017·全国卷Ⅱ]函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.答案 1解析 f (x )=1-cos 2x +3cos x -34=-⎝⎛⎭⎪⎫cos x -322+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1],∴当cos x =32时,f (x )取得最大值,最大值为1. 9.已知f (x )=23sin x cos x +2cos 2x -1(x ∈R ).(1)求函数f (x )的最小正周期及在⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值;(2)若f (x 0)=65,x 0∈⎣⎢⎡⎦⎥⎤π4,π2,求cos ⎝ ⎛⎭⎪⎫2x 0+π6的值. 解 (1)∵f (x )=23sin x cos x +2cos 2x -1 =3sin2x +cos2x =2sin ⎝⎛⎭⎪⎫2x +π6, ∴函数f (x )的最小正周期为T =π, ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴f (x )max =f ⎝ ⎛⎭⎪⎫π6=2,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-1.(2)由(1)可知f (x 0)=2sin ⎝ ⎛⎭⎪⎫2x 0+π6=65, 即sin ⎝ ⎛⎭⎪⎫2x 0+π6=35,又∵x 0∈⎣⎢⎡⎦⎥⎤π4,π2,∴2x 0+π6∈⎣⎢⎡⎦⎥⎤2π3,7π6, ∴cos ⎝ ⎛⎭⎪⎫2x 0+π6<0, 即cos ⎝ ⎛⎭⎪⎫2x 0+π6=-1-sin 2⎝ ⎛⎭⎪⎫2x 0+π6=-45. 10.[2018·宝鸡模拟]已知α为锐角,cos ⎝ ⎛⎭⎪⎫α+π4=55.(1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin ⎝ ⎛⎭⎪⎫2α+π3的值.解 (1)因为α∈⎝⎛⎭⎪⎫0,π2,所以α+π4∈⎝⎛⎭⎪⎫π4,3π4,所以sin ⎝ ⎛⎭⎪⎫α+π4=1-cos 2⎝ ⎛⎭⎪⎫α+π4=255, 所以tan ⎝⎛⎭⎪⎫α+π4=sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=2. (2)因为sin ⎝ ⎛⎭⎪⎫2α+π2=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π4 =2sin ⎝⎛⎭⎪⎫α+π4cos ⎝⎛⎭⎪⎫α+π4=45,cos ⎝ ⎛⎭⎪⎫2α+π2=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π4=2cos 2⎝ ⎛⎭⎪⎫α+π4-1=-35, 所以sin ⎝ ⎛⎭⎪⎫2α+π3=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2α+π2-π6 =sin ⎝⎛⎭⎪⎫2α+π2cos π6-cos ⎝⎛⎭⎪⎫2α+π2sin π6=43+310.[B 级 知能提升]1.[2018·天水模拟]若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin2θ=378,则sin θ等于( ) A.35 B.45 C.74 D.34 答案 D解析 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,cos2θ≤0,所以cos2θ=-1-sin 22θ=-18.又因为cos2θ=1-2sin 2θ=-18,所以sin 2θ=916,sin θ=34.故选D.2.[2017·全国卷Ⅲ]函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B .1 C.35 D.15 答案 A解析 解法一:∵f (x )=15sin ⎝⎛⎭⎪⎫x +π3+cos ⎝⎛⎭⎪⎫x -π6=15⎝ ⎛⎭⎪⎫12sin x +32cos x +32cos x +12sin x=110sin x +310cos x +32cos x +12sin x =35sin x +335cos x =65sin ⎝ ⎛⎭⎪⎫x +π3,∴当x =π6+2k π(k ∈Z )时,f (x )取得最大值65.故选A. 解法二:∵⎝⎛⎭⎪⎫x +π3+⎝⎛⎭⎪⎫π6-x =π2,∴f (x )=15sin ⎝⎛⎭⎪⎫x +π3+cos ⎝⎛⎭⎪⎫x -π6=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫π6-x=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3 =65sin ⎝ ⎛⎭⎪⎫x +π3≤65.∴f (x )max =65.故选A.3.[2016·全国卷Ⅰ]已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝⎛⎭⎪⎫θ-π4=________.答案 -43解析 因为θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,所以θ+π4为第一象限角,所以cos ⎝ ⎛⎭⎪⎫θ+π4=45,所以tan ⎝ ⎛⎭⎪⎫θ-π4=sin ⎝ ⎛⎭⎪⎫θ-π4cos ⎝ ⎛⎭⎪⎫θ-π4= -cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫θ-π4sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫θ-π4=-cos ⎝ ⎛⎭⎪⎫θ+π4sin ⎝ ⎛⎭⎪⎫θ+π4=-43. 4.已知函数f (x )=⎝ ⎛⎭⎪⎫sin x 2+cos x 22-2sin 2x 2.(1)若f (x )=233,求sin2x 的值;(2)求函数F (x )=f (x )·f (-x )+f 2(x )的最大值与单调递增区间. 解 (1)由题意知f (x )=1+sin x -(1-cos x )=sin x +cos x , 又∵f (x )=233,∴sin x +cos x =233, ∴sin2x +1=43,∴sin2x =13.(2)F (x )=(sin x +cos x )·[sin(-x )+cos(-x )]+(sin x +cos x )2 =cos 2x -sin 2x +1+sin2x =cos2x +sin2x +1 =2sin ⎝⎛⎭⎪⎫2x +π4+1, 当sin ⎝ ⎛⎭⎪⎫2x +π4=1时,F (x )取得最大值,即F (x )max =2+1.令-π2+2k π≤2x +π4≤π2+2k π(k ∈Z ), ∴k π-3π8≤x ≤k π+π8(k ∈Z ),从而函数F (x )的最大值为2+1,单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8(k ∈Z ).5.[2018·四川检测]已知函数f (x )=cos x ·sin ⎝⎛⎭⎪⎫x +π3-3cos 2x +34,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值和最小值.解 (1)由已知,有f (x )=cos x ·⎝ ⎛⎭⎪⎫12sin x +32cos x -3cos 2x +34=12sin x ·cos x -32cos 2x +34 =14sin2x -34(1+cos2x )+34 =14sin2x -34cos2x =12sin ⎝ ⎛⎭⎪⎫2x -π3. 所以f (x )的最小正周期T =2π2=π.(2)由x ∈⎣⎢⎡⎦⎥⎤-π4,π4得2x -π3∈⎣⎢⎡⎦⎥⎤-5π6,π6, 则sin ⎝⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-1,12, 即函数f (x )=12sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-12,14.所以函数f (x )在闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值为14,最小值为-12.。

2019届高考数学(文)大一轮:第3章 三角函数、解三角形 第3节 两角和与差的正弦、余弦和正切公式

2019届高考数学(文)大一轮:第3章 三角函数、解三角形 第3节 两角和与差的正弦、余弦和正切公式

第三节两角和与差的正弦、余弦和正切公式1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式推导出两角差的正弦、正切公式.3.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).知识点一 两角和与差的正弦、余弦、正切公式 1.基本公式sin(α±β)=________, cos(α±β)=________, tan(α±β)=________. 2.公式变形(1)tan α±tan β=________.(2)函数f(α)=asin α+bcos α(a ,b 为常数),可以化为f(α)=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a 或f(α)=a 2+b 2·cos(α-φ)⎝⎛⎭⎪⎫其中tan φ=a b .答案1.sin αcos β±cos αsin β cos αcos β∓sin αsin β tan α±tan β1∓tan αtan β2.(1)tan(α±β)(1∓tan αtan β)1.sin75°的值为________.解析:sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30°=22×32+22×12=6+24. 答案:6+242.已知cos α=-35,α∈⎝ ⎛⎭⎪⎫π2,π,则sin ⎝⎛⎭⎪⎫α+π3的值是____. 解析:∵cos α=-35,α∈⎝ ⎛⎭⎪⎫π2,π,∴sin α=45,∴sin ⎝ ⎛⎭⎪⎫α+π3=sin αcos π3+cos αsin π3=45×12+⎝ ⎛⎭⎪⎫-35×32=4-3310.答案:4-33103.tan20°+tan40°+3tan20°tan40°=________. 解析:∵tan60°=tan(20°+40°)=tan20°+tan40°1-tan20°tan40°,∴tan20°+tan40°=tan60°(1-tan20°tan40°) =3-3tan20°tan40°,∴原式=3-3tan20°tan40°+3tan20°tan40°= 3. 答案: 3知识点二 二倍角的正弦、余弦、正切公式 1.基本公式 sin2α=________.cos2α=________=________=________. tan2α=________. 2.有关公式的逆用、变形等(1)cos 2α=________,sin 2α=________. (2)1+sin2α=(sin α+cos α)2, 1-sin2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4. 答案1.2sin αcos α cos 2α-sin 2α 2cos 2α-1 1-2sin 2α 2tan α1-tan 2α 2.(1)1+cos2α2 1-cos2α24.计算:tan7.5°1-tan 27.5°=________. 解析:tan7.5°1-tan 27.5°=12×2tan7.5°1-tan 27.5° =12tan15°=12tan(45°-30°) =12×tan45°-tan30°1+tan45°tan30°=12×1-331+33=2-32. 答案:2-325.(2016·浙江卷)已知2cos 2x +sin2x =Asin(ωx +φ)+b(A>0),则A =________,b =________. 解析:由于2cos 2x +sin2x =1+cos2x +sin2x =2sin(2x +π4)+1,所以A =2,b =1.答案: 2 1热点一 三角公式的正用与逆用【例1】 (1)化简:+sin θ+cos θ⎝⎛⎭⎪⎫sin θ2-cos θ22+2cos θ(0<θ<π);(2)求值:sin50°(1+3tan10°).【解】 (1)由θ∈(0,π),得0<θ2<π2,∴cos θ2>0,∴2+2cos θ=4cos2θ2=2cos θ2. 又(1+sin θ+cos θ)⎝ ⎛⎭⎪⎫sin θ2-cos θ2=⎝⎛⎭⎪⎫2sin θ2cos θ2+2cos 2θ2⎝ ⎛⎭⎪⎫sin θ2-cos θ2=2cos θ2⎝ ⎛⎭⎪⎫sin 2θ2-cos 2θ2=-2cos θ2cos θ.故原式=-2cos θ2cos θ2cosθ2=-cos θ.(2)sin50°(1+3tan10°) =sin50°(1+tan60°·tan10°)=sin50°·cos60°cos10°+sin60°sin10°cos60°cos10°=sin50°·cos 60°-10°cos60°cos10°=2sin50°cos50°cos10°=sin100°cos10°=cos10°cos10°=1.(1)求sin7°+cos15°sin8°cos7°-sin 15°sin8°的值;(2)求tan20°+4sin20°的值. 解:(1)原式 =-+cos15°sin8°--sin15°sin8°=sin15°cos8°cos15°cos8°=tan15°=tan(45°-30°)=tan45°-tan30°1+tan45°tan30°=1-331+33=3-13+1=2- 3. (2)原式=sin20°cos20°+4sin20°=sin20°+4sin20°cos20°cos20°=sin20°+2sin40°cos20°=-++cos20°=32cos10°+32sin10°cos20°=332cos10°+12sin10°cos20°=3-cos20°= 3.热点二 三角函数式求值 考向1 给值求值【例2】 已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.【解】 (1)∵α,β∈⎝ ⎛⎭⎪⎫0,π2,从而-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010.(2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×(-1010)=91050.1.在本例条件下,求sin(α-2β)的值. 解:∵sin(α-β)=-1010,cos(α-β)=31010,cos β=91050,sin β=131050.∴sin(α-2β)=sin[(α-β)-β]=sin(α-β)cos β-cos(α-β)sin β=-2425.2.若本例中“sin α=35”变为“tan α=35”,其他条件不变,求tan(2α-β)的值.解:∵tan α=35,tan(α-β)=-13,∴tan(2α-β)=tan[α+(α-β)]=tan α+α-β1-tan αα-β=35-131+35×13=29.考向2 给值求角【例3】 已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.【解】 ∵tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ=12-171+12×17=13>0,∴0<α<π2.又∵tan2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan2α-tan β1+tan2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.(1)(2016·新课标全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin2α=( )A.725B.15C .-15D .-725(2)已知cos α=-1213,cos(α+β)=17226,且α∈⎝ ⎛⎭⎪⎫π,3π2,α+β∈⎝ ⎛⎭⎪⎫3π2,2π,求β的值. 解析:(1)因为cos ⎝ ⎛⎭⎪⎫π4-α=cos π4cos α+sin π4sin α=22(sin α+cos α)=35,所以sin α+cos α=325,所以1+sin2α=1825,所以sin2α=-725,故选D. (2)解:∵π<α<3π2,3π2<α+β<2π,∴0<β<π.又cos α=-1213,cos(α+β)=17226,∴sin α=-513,sin(α+β)=-7226.cos β=cos[(α+β)-α]=17226×⎝ ⎛⎭⎪⎫-1213+⎝ ⎛⎭⎪⎫-7226×⎝ ⎛⎭⎪⎫-513=-22,且0<β<π,所以β=3π4.答案:(1)D热点三 三角恒等变换的综合应用 【例4】 (2016·天津卷)已知函数 f(x)=4tanxsin ⎝⎛⎭⎪⎫π2-x cos ⎝⎛⎭⎪⎫x -π3- 3.(Ⅰ)求f(x)的定义域与最小正周期;(Ⅱ)讨论f(x)在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性. 【解】 (Ⅰ)f(x)的定义域为{x|x≠π2+k π,k ∈Z}.f(x)=4tanxcosxcos ⎝⎛⎭⎪⎫x -π3- 3=4sinxcos ⎝ ⎛⎭⎪⎫x -π3-3=4sinx ⎝ ⎛⎭⎪⎫12cosx +32sinx - 3=2sinxcosx +23sin 2x -3=sin2x +3(1-cos2x)- 3 =sin2x -3cos2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.所以,f(x)的最小正周期T =2π2=π.(Ⅱ)令z =2x -π3,函数y =2sinz 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z. 由-π2+2k π≤2x-π3≤π2+2k π,得-π12+k π≤x≤5π12+k π,k ∈Z.设A =[-π4,π4],B ={x|-π12+k π≤x≤5π12+k π,k ∈Z},易知A∩B=[-π12,π4].所以,当x ∈[-π4,π4]时,f(x)在区间[-π12,π4]上单调递增,在区间[-π4,-π12]上单调递减.已知函数f(x)=2cos 2ωx -1+23sin ωxcos ωx(0<ω<1),直线x =π3是函数f(x)的图象的一条对称轴.(1)求函数f(x)的单调递增区间;(2)已知函数y =g(x)的图象是由y =f(x)的图象上各点的横坐标伸长到原来的2倍,然后再向左平移2π3个单位长度得到的,若g ⎝ ⎛⎭⎪⎫2α+π3=65,α∈⎝⎛⎭⎪⎫0,π2,求sin α的值. 解:(1)f(x)=cos2ωx +3sin2ωx =2sin ⎝⎛⎭⎪⎫2ωx +π6,由于直线x =π3是函数f(x)=2sin ⎝ ⎛⎭⎪⎫2ωx +π6的图象的一条对称轴,所以sin ⎝ ⎛⎭⎪⎫2π3ω+π6=±1.因此2π3ω+π6=k π+π2(k ∈Z),解得ω=32k +12(k ∈Z),又0<ω<1,所以ω=12,所以f(x)=2sin ⎝⎛⎭⎪⎫x +π6.由2k π-π2≤x+π6≤2k π+π2(k ∈Z),得2k π-2π3≤x≤2k π+π3(k ∈Z),所以函数f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+π3(k ∈Z).(2)由题意可得g(x)=2sin ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫x +2π3+π6,即g(x)=2cos x2,由g ⎝ ⎛⎭⎪⎫2α+π3=2cos ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫2α+π3=2cos ⎝ ⎛⎭⎪⎫α+π6=65,得cos ⎝ ⎛⎭⎪⎫α+π6=35, 又α∈⎝ ⎛⎭⎪⎫0,π2,故π6<α+π6<2π3,所以sin ⎝⎛⎭⎪⎫α+π6=45, 所以sin α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6-π6=sin ⎝ ⎛⎭⎪⎫α+π6·cos π6-cos ⎝⎛⎭⎪⎫α+π6·sin π6=45×32-35×12=43-310.求值、化简、证明是三角函数中最常见的题型,其解题一般思路为“五遇六想”即:遇切割,想化弦;遇多元,想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值;想消元,引辅角.“五遇六想”作为解题经验的总结和概括,操作简便,十分有效.其中蕴含了一个变换思想(找差异,抓联系,促进转化),两种数学思想(转化思想和方程思想),三个追求目标(化为特殊角的三角函数值,使之出现相消项或相约项),三种变换方法(切割化弦法,消元降次法,辅助元素法).三角恒等变换中的解题策略三角恒等变换位于三角函数与数学变换的结合点,其公式多、变法活的特点使不少同学在学习此知识点时感到困难重重,力不从心.本文介绍了几种常用的三角恒等变换中的解题策略,旨在帮助大家全面、系统地了解和掌握三角变换中的常规思路与基本技巧,促进同学们的推理能力和运算能力的提升.策略1 从角入手,寻找关系好解题解有关三角函数的题目时,要特别注意角与角之间的关系,只要明确了其中的关系,解题就完成了一半.【例1】 已知α为锐角,且cos ⎝ ⎛⎭⎪⎫α+π6=35,则sin α=________. 【解析】 解法1:cos ⎝ ⎛⎭⎪⎫α+π6=32cos α-12sin α=35,①又sin 2α+cos 2α=1,② 由①可得cos 2α=13⎝⎛⎭⎪⎫sin α+652,代入②并整理得100sin 2α+60sin α-39=0, 解得sin α=43-310,或sin α=-43+310(舍).解法2:因为α为锐角,即α∈⎝⎛⎭⎪⎫0,π2,所以α+π6∈⎝ ⎛⎭⎪⎫π6,2π3,则sin ⎝⎛⎭⎪⎫α+π6=1-cos 2⎝⎛⎭⎪⎫α+π6=45,所以sin α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6-π6=sin ⎝ ⎛⎭⎪⎫α+π6cos π6-cos ⎝ ⎛⎭⎪⎫α+π6sin π6=43-310.【答案】43-310【点评】 不少同学习惯用解法1,却往往因运算量大而出现了各种问题;解法2抓住了α=⎝ ⎛⎭⎪⎫α+π6-π6这一关系,减少了运算量,使求解轻松简捷. 策略2 从函数名入手,化切为弦助解题在有关三角函数的题目中,当正弦(余弦)与正切“相遇”时,可采用化切为弦的方法,即将正切转化为正弦(余弦).【例2】 求1+cos20°2sin20°-sin10°⎝ ⎛⎭⎪⎫1tan5°-tan5°.【解】 因为1tan5°-tan5°=cos5°sin5°-sin5°cos5°=cos 25°-sin 25°sin5°cos5°=2cos10°sin10°, 所以原式=2cos 210°4sin10°cos10°-sin10°·2co s10°sin10°=cos10°2sin10°-sin20°sin10°=cos10°2sin10°--sin10° =cos10°2sin10°-cos10°-3sin10°2sin10°=3sin10°2sin10°=32. 策略3 从结构入手,存同化异探思路三角恒等变换中的公式较多,每个公式都有其固有的结构.解题时要善于从结构入手,存同化异,寻求结构形式的统一.【例3】 (1)已知3sin β=sin(2α+β),α≠k π+π2,α+β≠k π+π2(k ∈Z).求证:tan(α+β)=2tan α;(2)已知cosxcosy =12,求sinxsiny 的取值范围. 【解】 (1)证明:由3sin β=sin(2α+β)得3sin[(α+β)-α]=sin[(α+β)+α],即3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α,整理可得sin(α+β)cos α=2cos(α+β)·sin α. 因为α≠k π+π2,α+β≠k π+π2(k ∈Z), 所以cos(α+β)·cos α≠0,则有tan(α+β)=2tan α.(2)设p =sinxsiny ,则cos(x -y)=cosxcosy +sinxsiny =12+p ,cos(x +y)=cosxcosy -sinxsiny =12-p. 因为|cos(x±y)|≤1, 所以-1≤12+p≤1,且-1≤12-p≤1, 解得-12≤p≤12. 【点评】 题(1)由条件向结论靠拢,从统一角的结构入手,顺利完成解题;题(2)从结构的相似(部分相似)展开联想,寻找解题突破口,亦成功解题.这两个方法都是值得重视的、从结构入手解题的常用方法.策略4 “先化简后求值”与“先局部后整体”“先化简后求值”本是初中数学中的一种题型,这里将其引申为一种解题策略.这种策略能简化解题过程,有事半功倍之功效;“先局部后整体”,则与之相反,虽其方法略显笨拙,但其逐个“击破”的策略却能降低解题难度,且解题方向明确,也是一个不错的思路.【例4】 已知0<x<π4,sin ⎝ ⎛⎭⎪⎫π4-x =513,求 cos2x cos ⎝ ⎛⎭⎪⎫π4+x 的值. 【解】 解法1(先化简后求值): 原式=cos 2x -sin 2x22-=2(cosx +sinx)=2cos ⎝ ⎛⎭⎪⎫π4-x , ∵0<x<π4,∴0<π4-x<π4, 则原式=21-sin 2⎝ ⎛⎭⎪⎫π4-x =2413. 解法2(先局部后整体):cos ⎝ ⎛⎭⎪⎫π4+x =cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-x =sin ⎝ ⎛⎭⎪⎫π4-x =513. 下面从两个角度求cos2x :角度1:cos2x =sin ⎝⎛⎭⎪⎫π2-2x =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-x =2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x ; 角度2:cos2x =cos 2x -sin 2x =(cosx -sinx)·(cosx+sinx)=2sin ⎝ ⎛⎭⎪⎫π4-x ·2cos ⎝ ⎛⎭⎪⎫π4-x =2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x . ∵0<x<π4,∴0<π4-x<π4, 则cos ⎝ ⎛⎭⎪⎫π4-x =1-sin 2⎝ ⎛⎭⎪⎫π4-x =1213, 故cos2x =2×513×1213=120169. 所以cos2x cos ⎝ ⎛⎭⎪⎫π4+x =120169÷513=2413. 【点评】 采用“先化简后求值”解题简捷流畅,采用“先局部后整体”解题思路简单,条理清晰.两种方法各有千秋,都是值得我们重视的好方法.。

全国版2019版高考数学一轮复习第3章三角函数解三角形第4讲函数y=增分练sin(ωx+φ)的图象及

全国版2019版高考数学一轮复习第3章三角函数解三角形第4讲函数y=增分练sin(ωx+φ)的图象及

第4讲函数y=A sin(ωx+φ)的图象及应用板块一知识梳理·自主学习[必备知识]考点1 y=A sin(ωx+φ)的有关概念y=A sin(ωx+φ)(A>0,ω>0),x∈[0,+∞)振幅周期频率相位初相A T=2πωf=1T=ω2πωx+φφ考点2 用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示.x 0-φωπ2-φωπ-φω3π2-φω2π-φωωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 0考点3 函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤[必会结论]函数y =A sin(ωx +φ)(A >0,ω>0)的图象的两种作法:(1)五点法:用“五点法”作图,关键是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3π2,2π来求出相应的x ,通过列表,描点得出图象.如果在限定的区间内作图象,还应注意端点的确定.(2)图象变换法:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径“先平移后伸缩”(即“先φ后ω”)与“先伸缩后平移”(即“先ω后φ”).[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)将y =sin2x 的图象向右平移π3个单位长度,得到y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象.( )(2)函数f (x )=A sin(ωx +φ)(A ≠0)的最大值为A ,最小值为-A .( )(3)把y =sin 12x 的图象上点的横坐标伸长为原来的2倍,得到y =sin ωx 的图象,则ω的值为14.( )(4)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( )(5)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( )答案 (1)× (2)× (3)√ (4)× (5)√2.[2018·柳州模拟]若函数y =sin(ωx +φ)(ω>0)的部分图象如图,则ω=( )A .5B .4C .3D .2答案 B解析 由图象可知,T 2=x 0+π4-x 0=π4,即T =π2=2πω,故ω=4.3.[2016·全国卷Ⅰ]将函数y =2sin ( 2x +⎭⎪⎫π6的图象向右平移14个周期后,所得图象对应的函数为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x +π4B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3C .y =2sin ⎝ ⎛⎭⎪⎫2x -π4D .y =2sin ⎝⎛⎭⎪⎫2x -π3 答案 D解析 函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的周期为π,所以将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移π4个单位长度后,得到函数图象对应的解析式为y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π6=2sin ⎝ ⎛⎭⎪⎫2x -π3.故选D.4.[2018·西安模拟]已知函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( )A .关于点⎝ ⎛⎭⎪⎫π3,0对称B .关于直线x =π4对称C .关于点⎝ ⎛⎭⎪⎫π4,0对称 D .关于直线x =π3对称答案 D 解析2πω=π得ω=2,函数f (x )的对称轴满足2x +π3=k π(k ∈Z ),解得x =k π2-π6(k ∈Z ),当k =1时,x =π3.选D. 5.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,0<φ<π2的部分图象如图所示,则f (x )的解析式是( )A.f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 B .f (x )=2sin ⎝⎛⎭⎪⎫x +π3 C .f (x )=2sin ⎝⎛⎭⎪⎫2x +π6 D .f (x )=2sin ⎝⎛⎭⎪⎫x +π6 答案 B解析 由图象知函数的最大值为2,即A =2,函数的周期T =4⎝⎛⎭⎪⎫7π6-2π3=2π=2πω,解得ω=1,即f (x )=2sin(x +φ),由题图知7π6+φ=3π2+2k π(k ∈Z ),解得φ=π3+2k π(k ∈Z ),又因为0<φ<π2,所以φ=π3,故f (x )=2sin ⎝⎛⎭⎪⎫x +π3.6.[2018·海南模拟]把函数y =sin x 的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图象向左平移π4个单位,得到的函数图象的解析式是( )A .y =cos2xB .y =-sin2xC .y =sin ⎝ ⎛⎭⎪⎫2x -π4D .y =sin ⎝⎛⎭⎪⎫2x +π4答案 A解析 由y =sin x 图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,所得图象的解析式为y =sin2x ,再向左平移π4个单位得y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4,即y =cos2x .板块二 典例探究·考向突破 考向三角函数的图象变换例 1 将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A .y =sin ⎝⎛⎭⎪⎫2x -π10 B .y =sin ⎝⎛⎭⎪⎫2x -π5C .y =sin ⎝ ⎛⎭⎪⎫12x -π10D .y =sin ⎝ ⎛⎭⎪⎫12x -π20 答案 C解析 将函数y =sin x 的图象上所有的点向右平移π10个单位长度后,所得图象的函数解析式为y =sin ⎝ ⎛⎭⎪⎫x -π10;再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是y =sin ⎝ ⎛⎭⎪⎫12x -π10.故选C. 触类旁通两种图象变换的区别由y =sin x 的图象变换到y =A sin(ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位长度;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位长度.【变式训练1】 将函数y =cos ⎝⎛⎭⎪⎫x -π3的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位,所得函数图象的一条对称轴是( )A .x =π4B .x =π6C .x =π D.x =π2答案 D解析 y =cos ⎝⎛⎭⎪⎫x -π3――→横坐标伸长到原来的2倍纵坐标不变y =cos ⎝ ⎛⎭⎪⎫12x -π3――→向左平移π6个单位y =cos[12⎝ ⎛⎭⎪⎫x +π6-π3],即y =cos ⎝ ⎛⎭⎪⎫12x -π4.由余弦函数的性质知,其对称轴一定经过图象的最高点或最低点,又当x =π2时,y =cos(12×π2-π4)=1.故选D.考向求函数y =A sin(ωx +φ)的解析式例 2 [2016·全国卷Ⅱ]函数y =A sin(ωx +φ)的部分图象如图所示,则( )A.y =2sin ⎝ ⎛⎭⎪⎫2x -π6 B .y =2sin ⎝⎛⎭⎪⎫2x -π3 C .y =2sin ⎝ ⎛⎭⎪⎫x +π6 D .y =2sin ⎝⎛⎭⎪⎫x +π3 答案 A解析 由题图知A =2,T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,则T =π,所以ω=2,则y =2sin(2x +φ),因为题图经过点⎝⎛⎭⎪⎫π3,2,所以2sin ⎝ ⎛⎭⎪⎫2×π3+φ=2,2π3+φ=2k π+π2,k ∈Z ,即φ=2k π-π6,k ∈Z . 当k =0时,φ=-π6,所以y =2sin ⎝ ⎛⎭⎪⎫2x -π6.故选A.触类旁通确定y =A sin(ωx +φ)+b (A >0,ω>0)的解析式的步骤(1)求A ,b ,确定函数的最大值M 和最小值m ,则A =M -m2,b =M +m2.(2)求ω,确定函数的周期T ,则ω=2πT.(3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.【变式训练2】 已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2,y =f (x )的部分图象如图,则f ⎝ ⎛⎭⎪⎫π24=________.答案3解析 由函数图象,知T 2=3π8-π8,所以T =π2,即πω=π2,所以ω=2.结合图象可得2×π8+φ=k π+π2,k ∈Z ,即φ=k π+π4,k ∈Z .因为|φ|<π2,所以φ=π4.又由图象过点(0,1),代入得A tan π4=1,所以A =1.所以函数的解析式为f (x )=tan ⎝⎛⎭⎪⎫2x +π4,所以f ⎝ ⎛⎭⎪⎫π24=tan π3= 3.考向函数y =A sin(ωx +φ)的图象与性质的综合应用命题角度1 函数图象与性质的综合应用例 3 [2015·全国卷Ⅰ]函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈Z 答案 D解析 由图象可知ω4+φ=π2+2m π,5ω4+φ=3π2+2m π,m ∈Z ,所以ω=π,φ=π4+2m π,m ∈Z ,所以函数f (x )=cos ⎝ ⎛⎭⎪⎫πx +π4+2m π=cos ⎝ ⎛⎭⎪⎫πx +π4的单调递减区间为2k π<πx +π4<2k π+π,k ∈Z ,即2k -14<x <2k +34,k ∈Z .故选D.命题角度2 图象变换与性质的综合应用例 4 [2018·太原模拟]已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝ ⎛⎭⎪⎫π12,0对称D .关于点⎝⎛⎭⎪⎫5π12,0对称答案 B解析 ∵f (x )的最小正周期为π,∴2πω=π,ω=2,∴f (x )的图象向右平移π3个单位后得到g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3+φ=sin ⎝ ⎛⎭⎪⎫2x -2π3+φ的图象,又g (x )的图象关于原点对称,∴-2π3+φ=k π,k ∈Z ,∴φ=2π3+k π,k ∈Z ,又|φ|<π2,∴φ=-π3,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3.当x =π12时,2x -π3=-π6,∴A ,C 错误;当x =5π12时,2x -π3=π2,∴B 正确,D 错误.命题角度3 函数图象与实际问题的综合应用例 5 如图所示,某地一天从6时到14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b .(1)求这段时间的最大温差; (2)写出这段曲线的函数解析式.解 (1)由图可得,这段时间的最大温差是30-10=20 ℃.(2)图中从6时至14时的图象是函数y =A sin(ωx +φ)+b 的半个周期的图象. ∴12·2πω=14-6,解得ω=π8. 由图可得,A =12(30-10) =10,b =12(30+10)=20.这时y =10sin ⎝ ⎛⎭⎪⎫π8x +φ+20. 将x =6,y =10代入上式,可取φ=3π4.综上,所求解析式为y =10sin ⎝ ⎛⎭⎪⎫π8x +3π4+20,x ∈[6,14].触类旁通函数y =A sin(ωx +φ)(A >0,ω>0)的性质(1)奇偶性:当φ=k π(k ∈Z )时,函数y =A sin(ωx +φ)为奇函数;当φ=k π+π2(k∈Z )时,函数y =A sin(ωx +φ)为偶函数.(2)周期性:y =A sin(ωx +φ)的最小正周期为T =2πω.(3)单调性:根据y =sin t 和t =ωx +φ(ω>0)的单调性来研究,由-π2+2k π≤ωx+φ≤π2+2k π(k ∈Z )得单调递增区间;由π2+2k π≤ωx +φ≤3π2+2k π(k ∈Z )得单调递减区间.(4)对称性:利用y =sin x 的对称中心为(k π,0)(k ∈Z )求解,令ωx +φ=k π(k ∈Z )求得对称中心的横坐标.利用y =sin x 的对称轴为x =k π+π2(k ∈Z )求解,令ωx +φ=k π+π2(k ∈Z )得其对称轴.核心规律1.已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,由ω=2πT即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.2.由函数y =A sin(ωx +φ)的性质求解析式时,若最大值与最小值对应的自变量为x 1,x 2,则T2=|x 1-x 2|min .通过代入解析式点的坐标解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.满分策略1.在三角函数的平移变换中,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|.2.函数f (x )=A sin(ωx +φ)的图象关于直线x =x 0对称,则ωx 0+φ=k π+π2(k ∈Z ),即过函数图象的最高点或最低点,且与x 轴垂直的直线为其对称轴.3.函数f (x )=A sin(ωx +φ)的图象关于点(x 0,0)成中心对称,则ωx 0+φ=k π(k ∈Z ),即函数图象与x 轴的交点是其对称中心.板块三 启智培优·破译高考题型技法系列5——异名三角函数的图象变换技巧[2017·全国卷Ⅰ]已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2解题视点 解决三角函数图象变换题时,若两函数异名,则通常利用公式sin x =cos ⎝ ⎛⎭⎪⎫x -π2和cos x =sin ⎝⎛⎭⎪⎫x +π2将异名三角函数转化为同名三角函数,然后分析变换过程.解析 首先利用诱导公式化异名为同名.y =sin ⎝⎛⎭⎪⎫2x +2π3=cos ⎝ ⎛⎭⎪⎫2x +2π3-π2=cos ⎝ ⎛⎭⎪⎫2x +π6=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12, 由y =cos x 的图象得到y =cos2x 的图象,需将曲线C 1上各点的横坐标缩短到原来的12,纵坐标不变;由y =cos2x 的图象得到y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12的图象,需将y =cos2x 的图象上的各点向左平移π12个单位长度.故选D.答案 D答题启示 三角函数图象变换(1)伸缩变换:将y =sin x 图象上的各点的横坐标变为原来的ω倍,纵坐标不变,可得到y =sin ⎝ ⎛⎭⎪⎫1ωx 的图象;将y =sin x 图象上各点的纵坐标变为原来的A 倍,横坐标不变,可得到y =A sin x 的图象.(2)平移变换:函数图象的平移变换遵循“左加右减”的法则,但是要注意平移量是指自变量x 的变化量.跟踪训练[2018·合肥二检]为了得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,可将函数y =sin2x 的图象( )A .向左平移5π6单位长度B .向右平移5π6单位长度C .向左平移5π12单位长度D .向右平移5π12单位长度答案 C解析 由题意,得y =cos ⎝ ⎛⎭⎪⎫2x +π3=sin ⎝ ⎛⎭⎪⎫2x +π3+π2=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +5π12,则它是由y =sin2x 向左平移5π12个单位得到的.故选C.板块四 模拟演练·提能增分[A 级 基础达标]1.要得到函数y =sin 12x 的图象,只需将函数y =sin ⎝ ⎛⎭⎪⎫12x -π3的图象( )A .向左平移π3个单位B .向右平移π3个单位C .向左平移2π3个单位D .向右平移2π3个单位答案 C解析 ∵y =sin ⎝ ⎛⎭⎪⎫12x -π3=sin ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫x -2π3,∴要得到y =sin 12x 的图象,只需将y =sin ⎝ ⎛⎭⎪⎫12x -π3的图象向左平移2π3个单位即可.2.[2018·沧州模拟]若ω>0,函数y =cos ⎝ ⎛⎭⎪⎫ωx +π6的图象向右平移2π3个单位长度后与原图象重合,则ω的最小值为( )A.43B.23 C .3 D .4 答案 C解析 将y =cos ⎝ ⎛⎭⎪⎫ωx +π6的图象向右平移2π3个单位后为y =cos ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -2π3+π6=cos ⎝ ⎛⎭⎪⎫ωx +π6-2ωπ3,所以有2ωπ3=2k π,即ω=3k ,k ∈Z ,又ω>0,所以k ≥1,故ω=3k ≥3.故选C.3.[2018·临沂模拟]已知函数f (x )=A cos(ωx +θ)的图象如图所示,f ⎝ ⎛⎭⎪⎫π2=-23,则f ⎝ ⎛⎭⎪⎫-π6=( )A .-23B .-12 C.23 D.12答案 A解析 由题干图知,函数f (x )的周期T =2⎝⎛⎭⎪⎫11π12-7π12=2π3,所以f ⎝ ⎛⎭⎪⎫-π6=f ⎝ ⎛⎭⎪⎫-π6+2π3=f ⎝ ⎛⎭⎪⎫π2=-23. 4.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位长度后,得到一个偶函数的图象,则φ的一个可能取值为( )A.3π4 B.π4 C.3π8 D .-π4答案 B解析 y =sin(2x +φ)――→向左平移π8个单位长度y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8+φ=sin ⎝ ⎛⎭⎪⎫2x +π4+φ,则由π4+φ=π2+k π(k ∈Z ),根据选项检验可知φ的一个可能取值为π4.故选B.5.[2018·广东茂名一模]如图,函数f (x )=A sin(2x +φ)⎝ ⎛⎭⎪⎫A >0,|φ|<π2的图象过点(0,3),则f (x )的图象的一个对称中心是( )A.⎝ ⎛⎭⎪⎫-π3,0B.⎝ ⎛⎭⎪⎫-π6,0C.⎝⎛⎭⎪⎫π6,0D.⎝⎛⎭⎪⎫π4,0答案 B解析 由题中函数图象可知:A =2, 由于函数图象过点(0,3), 所以2sin φ=3,即sin φ=32,由于|φ|<π2, 所以φ=π3,则有f (x )=2sin ⎝⎛⎭⎪⎫2x +π3. 由2x +π3=k π,k ∈Z 可解得x =k π2-π6,k ∈Z ,故f (x )的图象的对称中心是⎝⎛⎭⎪⎫k π2-π6,0,k ∈Z ,则f (x )的图象的一个对称中心是⎝ ⎛⎭⎪⎫-π6,0.故选B.6.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎢⎡⎦⎥⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的月平均气温最低,为18 ℃,则10月份的平均气温值为________℃.答案 20.5解析 依题意知,a =28+182=23,A =28-182=5,∴y =23+5cos ⎣⎢⎡⎦⎥⎤π6(x -6),当x =10时,y =23+5cos ⎝ ⎛⎭⎪⎫π6×4=20.5.7.[2018·南宁模拟]函数f (x )=cos(ωx +φ)(ω>0,0≤φ≤π)的图象如图,则f (x )=________.答案 cos ⎝ ⎛⎭⎪⎫π4x +π4解析 由图象得:T =4×2=8, ∴ω=2π8=π4,代入(-1,1),得cos ⎝ ⎛⎭⎪⎫-π4+φ=1,∴-π4+φ=2k π,k ∈Z ,即φ=2k π+π4,k ∈Z ,又∵0≤φ≤π,∴φ=π4.∴f (x )=cos ⎝ ⎛⎭⎪⎫π4x +π4.8.[2014·重庆高考]将函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝ ⎛⎭⎪⎫π6=________. 答案22解析 把函数y =sin x 的图象向左平移π6个单位长度得到y =sin ⎝⎛⎭⎪⎫x +π6的图象,再把函数y =sin ⎝⎛⎭⎪⎫x +π6图象上每一点的横坐标伸长为原来的2倍,纵坐标不变,得到函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +π6的图象,所以f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫12×π6+π6=sin π4=22.9.[2018·长春调研]函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,-π2<φ<π2,x ∈R 的部分图象如图所示.(1)求函数y =f (x )的解析式;(2)当x ∈⎣⎢⎡⎦⎥⎤-π,-π6时,求f (x )的取值范围.解 (1)由题中图象得A =1,T 4=2π3-π6=π2,所以T =2π,则ω=1.将点⎝ ⎛⎭⎪⎫π6,1代入得sin ⎝ ⎛⎭⎪⎫π6+φ=1,又-π2<φ<π2,所以φ=π3,因此函数f (x )=sin ⎝⎛⎭⎪⎫x +π3.(2)由于-π≤x ≤-π6,-2π3≤x +π3≤π6,所以-1≤sin ⎝⎛⎭⎪⎫x +π3≤12,所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤-1,12.10.已知f (x )=A sin(ωx +φ)(A >0,ω>0)的最小正周期为2,且当x =13时,f (x )的最大值为2.(1)求f (x )的解析式;(2)在闭区间⎣⎢⎡⎦⎥⎤214,234上是否存在f (x )的对称轴?如果存在求出其对称轴.若不存在,请说明理由.解 (1)由T =2知2πω=2得ω=π.又因为当x =13时f (x )max =2,知A =2.且π3+φ=2k π+π2(k ∈Z ),故φ=2k π+π6(k ∈Z ). ∴f (x )=2sin ⎝ ⎛⎭⎪⎫πx +2k π+π6=2sin ⎝ ⎛⎭⎪⎫πx +π6,故f (x )=2sin ⎝⎛⎭⎪⎫πx +π6. (2)存在.令πx +π6=k π+π2(k ∈Z ),得x =k +13(k ∈Z ).由214≤k +13≤234.得5912≤k ≤6512,又k ∈Z ,知k =5. 故在⎣⎢⎡⎦⎥⎤214,234上存在f (x )的对称轴,其方程为x =163.[B 级 知能提升]1.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的图象,可以将函数y =cos2x 的图象( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度答案 B解析 y =cos2x =sin ⎝ ⎛⎭⎪⎫2x +π2,由y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4 得到y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12,只需向右平移π3个单位长度. 2.[2018·郑州模拟]将函数f (x )=-cos2x 的图象向右平移π4个单位后得到函数g (x )的图象,则g (x )具有性质( )A .最大值为1,图象关于直线x =π2对称B .在⎝ ⎛⎭⎪⎫0,π4上单调递减,为奇函数C .在⎝ ⎛⎭⎪⎫-3π8,π8上单调递增,为偶函数D .周期为π,图象关于点⎝ ⎛⎭⎪⎫3π8,0对称答案 B解析 由题意得,g (x )=-cos2⎝ ⎛⎭⎪⎫x -π4=-cos ⎝⎛⎭⎪⎫2x -π2=-sin2x .最大值为1,而g ⎝ ⎛⎭⎪⎫π2=0,图象不关于直线x =π2对称,故A 错误;当x ∈⎝⎛⎭⎪⎫0,π4时,2x ∈⎝⎛⎭⎪⎫0,π2,g (x )单调递减,显然g (x )是奇函数,故B 正确;当x ∈⎝ ⎛⎭⎪⎫-3π8,π8时,2x ∈⎝ ⎛⎭⎪⎫-3π4,π4,此时不满足g (x )单调递增,也不满足g (x )是偶函数,故C 错误;周期T =2π2=π,g ⎝ ⎛⎭⎪⎫3π8=-22,故图象不关于点⎝ ⎛⎭⎪⎫3π8,0对称.故选B.3.将函数f (x )=sin2x 的图象向右平移φ⎝ ⎛⎭⎪⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( )A.5π12 B.π3 C.π4 D.π6答案 D解析 由已知得g (x )=sin(2x -2φ),满足|f (x 1)-g (x 2)|=2,不妨设此时y =f (x )和y =g (x )分别取得最大值与最小值,又|x 1-x 2|min =π3,令2x 1=π2,2x 2-2φ=-π2,此时|x 1-x 2|=⎪⎪⎪⎪⎪⎪π2-φ=π3,又0<φ<π2,故φ=π6.选D.4.已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数y =f (x )的最大值和最小值.解 (1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,k ∈Z ,由-π2≤φ<π2得k =0,所以φ=π2-2π3=-π6.综上,ω=2,φ=-π6.(2)由(1)知f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6, 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-π6≤2x -π6≤5π6,∴当2x -π6=π2,即x =π3时,f (x )最大=3;当2x -π6=-π6,即x =0时,f (x )最小=-32.5.[2015·湖北高考]某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx +φ 0π2 π3π2 2π xπ3 5π6 A sin(ωx+φ) 05-5(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎪⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:ωx +φ 0 错π 错误2π x 错误错错误错误错误A sin(ωx+φ)0 5 0 -5且函数表达式为f (x )=5sin ⎝ ⎛⎭⎪⎫2x -6. (2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎪⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎪⎫5π12,0成中心对称,令k π2+π12-θ=5π12,k ∈Z ,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.。

2019版+全国版+高考数学一轮复习第3章三角函数解三角形第3讲三角函数的图象和性质增分练.doc

2019版+全国版+高考数学一轮复习第3章三角函数解三角形第3讲三角函数的图象和性质增分练.doc

第3讲三角函数的图象和性质板块四 模拟演练•提能增分[A 级基础达标]1. [2018 •石家庄模拟]函数f\x ) =tan (2x —的单调递增区间是()gZ)答案BJIJIJI£兀 兀 斤兀 5兀解析 由 I — <2x ― </cn +—(ZreZ)得, —<y<-^~+—(ZrEZ),所以函( JI \Ji An数 A%) =tan|单调递增区间为I ——2. [2018・桂林模拟]若函数f{x ) =sin —-—(0G [0,2兀])是偶函数,则0=()JI A -T3 nC-答案Cx-\- d> JI解析 V f{x )为偶函数,关于y 轴对称,尸0为其对称轴・・•・一;—=—+kTi ,令x=0,3 Ji3 JT。

=3&兀+三厂,当斤=0时,。

=七一.选C 项.答案A解析 对于选项A,注意到y=sin (2x+E~) = cos2/的周期为 函数.故选A.4. 函数f (x ) =tan e* e>0)的图象的相邻两支截直线尸1所得的线段长为才,则的值是()°JIkn 1 5n_ 212' 2 12兀1 " I2 12' 2 12( nC. ’兀 +石,+ 3(圧Z)(Aez).故选B ・3. [2018 •福州模拟]下列函数中,周期为兀, JI JI目•在T 上为减函数的是() A. y=si n 2^4B. ( 兀y=cosl 2%+—C. y=sin(^+_D.JI JI且在~y~上是减(圧Z)A . (圧Z)B . 2兀 2A. 0 C. 1答案DJIH H解析 由条件可知,fd )的周期是〒•由一=〒,得0=4,所以71tan —n 5 n增区间为—卩f 以寸+,即(i )=—+k^ (A^Z), o Z bJl -亠JIA. 0,TB. _12,'JI 5 n '"5 n 1C. T ,6 _D. _ 6答案 C 2^ ae [0,叮)的增区间是()B.平Dp(JT5.函数 y=2sinl —解析 \* y — 2 s i n f ~0~—2 -vj = —2sin (2x JI 6H v ,由—+2ZrJi W2x —石0乜一+2£兀, JT 5 Ji 解畤+REW 才+E ©即函数的增区间为n5兀胫z, ・・.6.[2018 •深圳模拟]函数y=logl 2cosx 的一个单调减区间是()A. (一兀,0)B. (0, n)C.(0, yD.JI y 0答案D解析 首先应保证cos^>0①;函数y= ]ogj_2COST的单调减区间,即函数P的单调增区间②•易知只有选项D 符合①②.7. [2018・郑州模拟]如果函数y=3sin (2x+ Q )的图象关于直线x=—^f 称,则= cosxI 如的最小值为(JIA.石JIB-TJTc ~JT答案解析 由题意,得 sinf2X —+ O )=±l. 2= tanD.JI答案[—1,1]—解析 V0, — , /.2^+^-e 丁,n .•.sinf2^+yje[0, 1], /.ye[-l, 1]. 9. [2018 •江苏模拟]函数尸lg sin2x+y]9 — x 2的定义域为10. 如果函数y=3cos (2/+0)的图象关于点(飞为 _______ .答案T解析 依题意得3cos&厂+町=0, g-+0 = m+守,e = H -3^~(kwZ ),所以I 如的最小值是土[B 级知能提升]1. [2017・全国卷III]设函数/V )=cos (x+才)则下列结论错误的是( A. 代方的一个周期为一2兀O JTB. y=fU )的图象关于直线x=g ■対称C. 心+兀)的一个零点为尸+ JTJIJ-1, %e并且取最大值时%的值当2x+ji ji r f即"=迈时尸取得最大值答案 一3,JI2解析由sin2^r>0, 9-/^0,JI <x<k^ +~^ 得 2「一 3 W/W3・Jl 1V K lf.•・一3Wx<—~ 或 0</<E ~.二函数0成中心对称,那么丨如的最小值f{x)在的值域为 ( JI 8.函数 y=2sinl 2^+— 单调递减答案D解析A 项,因为f(x) =cos^+yj 的周期为2&JI (AEZ),所以的一个周期为一2兀, f nA JTA 项正确.B 项,因为f(0 =cos|j+勺图象的对称轴为直线x=H -y(AeZ),所以 尸 一. 8 兀 . (4 n A ,4 Jif (劝的图象关于直线/=[厂对称,B 项正确• C 项,f\x+ Ji) =cosl.令x+——=k^+_ (A^Z),得 fir,当 £=1 吋,x=—,所以 f(x+ TI )的一个零点为C( n \JI2 n项正确.D 项,因为f\x) =cos^+yj 的递减区间为2k +—J(AeZ),递增区 间为^Ji+—, 2^n+—J(>VeZ),所以=,=是减区间,匕厂,町是增区间,D 项错 、口•庆•故选D.2. [2018 •宁夏模拟]已知 G >0,函数 f{x) =sin (^x+•的取值范围是()C L ) JT JT JI~+T^T f解析 ,JI z 6; JI JI JT JT( JI由H , Q>o 得,—^―+—<(^x+—< 3 Ji +了,又 y=sinx 在(勺-3 JIn)上单调递减,则D. (0,2)答案Acos^-=— »且 彳务j = cos 兀=一1, .I 要使f(x)的值域是一1,5 JiJI JI3’'解析 l+lm ,可知~r —3x+—3z»+—JT 3 JI 1371 +沪〒上递减,所以s解得3.已知函数f{x) =cos JT圧 —,m I/zzeR 且/〃>百丿,若f(x)的值域是-1,平]则/〃的最大值是 答案罟需要n解得弓W 虑冷?,即/〃的最大值是专•3 69 18 184. [2018 •广东模拟]设函数f(%) =tan(?—) (1) 求函数f(0的定义域、周期和单调区间;(2) 求不等式一1 W 萌的解集.解 ⑴ rh(Rwz),5 JI 得 +2An (Aez),所以函数/tr)的定义域是n 5兀1且puJ1 n因为3=&所以周期7=—=2n.Z3JI ,% JI JI , z 、y+kn <-——<—+An (&WZ),nb JT得一—+2A^<X —+2A JI (Aez).( JI 5 n 、所以函数fd)的单调递增区间是(—§+2&口,—+2A JT J (圧 Z).兀 X JI JI z 得一丁+&兀丁冬三+加(&UZ). "“兀 4兀 、解得石+21 WxW 丁+21 XZ). 所以不等式一的解集是 兀 4兀*石+2力*穴飞-+2巾,AEZ .5. 己知函数f(x) =sin( OJX + 0) (0〈以1, 0W OW 兀)是R 上的偶函数,其图象关于点对称. ⑴求0, 3的值;(2)求代方的单调递增区I'可; 3兀 JI⑶汪 ,y ,求fd)的最大值与最小值.解(1)因为f^x) =sin((^x+ 是R 上的偶函数,所以(l)=—+k^. , kEZ,且 , 兀 •“、OW OW n ,贝9 0=77,即 f{x) =cos OJX .rh (2)由一1 ^tan因为图象关于点』(牛,0)对称,所以3 •丄*=++«", WWZ,且0< <V<1,所以Q=彳.2 2(2)由(1)得f^x) =cos~^,由一兀+2斤兀£亍02斤兀且&EZ得,3«兀圧Z,' 3 n ・所以函数fd)的递增区间是3AH-— 3AH,蛙乙「3 兀JI ~1 2 「JT JT '(3)因为/丘——,y ,所以-—> —,2当尹=0时,即*=0,函数f(x)的最大值为1,当彳*= 一守时,即/=—斗二函数代力的最小值为0.。

2019版高考数学理培优增分一轮全国经典版增分练:第3

2019版高考数学理培优增分一轮全国经典版增分练:第3

板块四 模拟演练·提能增分[A 级 基础达标]1.[2018·洛阳模拟]下列各数中与sin2019°的值最接近的是( ) A.12 B.32 C .-12 D .-32 答案 C解析 2019°=5×360°+180°+39°, ∴sin2019°=-sin39°和-sin30°接近.选C.2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( ) A .-π6 B .-π3 C.π6 D.π3 答案 D解析 ∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3.∵|θ|<π2,∴θ=π3.3.[2018·华师附中月考]已知tan(α-π)=34,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则sin ⎝⎛⎭⎪⎫α+π2=( ) A.45 B .-45 C.35 D .-35 答案 B解析 tan(α-π)=34⇒tan α=34.又因为α∈⎝ ⎛⎭⎪⎫π2,3π2,所以α为第三象限的角,所以sin ⎝⎛⎭⎪⎫α+π2=cos α=-45.4.已知f (α)=sin (π-α)cos (2π-α)cos (-π-α)tan α,则f ⎝ ⎛⎭⎪⎫-31π3的值为( )A.12 B .-13 C .-12 D.13答案 C解析 ∵f (α)=sin α·cos α-cos αtan α=-cos α,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫10π+π3=-cos π3=-12. 5.已知sin ⎝ ⎛⎭⎪⎫α+π12=13,则cos ⎝ ⎛⎭⎪⎫α+7π12的值为( ) A.13 B .-13 C .-223 D.223 答案 B解析 cos ⎝ ⎛⎭⎪⎫α+7π12=cos ⎝ ⎛⎭⎪⎫π2+α+π12=-sin ⎝ ⎛⎭⎪⎫α+π12=-13.选B. 6.已知tan x =2,则sin 2x +1的值为( ) A .0 B.95 C.43 D.53 答案 B解析 sin 2x +1=2sin 2x +cos 2x sin 2x +cos 2x =2tan 2x +1tan 2x +1=95.故选B.7.[2018·福建泉州模拟]已知1+sin αcos α=-12,则cos αsin α-1的值是( )A.12 B .-12 C .2 D .-2 答案 A解析 因为1-sin 2α=cos 2α,cos α≠0,1-sin α≠0,所以(1+sin α)(1-sin α)=cos αcos α,所以1+sin αcos α=cos α1-sin α,所以cos α1-sin α=-12,即cos αsin α-1=12.故选A.8.已知角α的终边上一点P (3a,4a )(a <0),则cos ()540°-α的值是________.答案 35解析 cos(540°-α)=cos(180°-α)=-cos α.因为a <0,所以r =-5a ,所以cos α=-35,所以cos(540°-α)=-cos α=35.9.[2018·北京东城模拟]已知sin θ+cos θ=713,θ∈(0,π),则tan θ=________.答案 -125 解析解方程组⎩⎨⎧sin θ+cos θ=713,sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧sin θ=1213,cos θ=-513或⎩⎪⎨⎪⎧sin θ=-513,cos θ=1213(舍).故tan θ=-125.10.[2018·淮北模拟]sin 4π3·cos 5π6·tan ⎝ ⎛⎭⎪⎫-4π3的值是________.答案 -334解析 原式=sin ⎝ ⎛⎭⎪⎫π+π3·cos ⎝ ⎛⎭⎪⎫π-π6·tan ( -π-π3 )= ⎝⎛⎭⎪⎫-sin π3·⎝ ⎛⎭⎪⎫-cos π6·⎝ ⎛⎭⎪⎫-tan π3=⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-32×(-3)=-334. [B 级 知能提升]1.[2018·湖北荆州联考]若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B解析 ∵△ABC 是锐角三角形,则A +B >π2,∴A >π2-B >0,B>π2-A >0,∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,sin B >sin ⎝ ⎛⎭⎪⎫π2-A =cos A ,∴cos B -sin A <0,sin B -cos A >0, ∴点P 在第二象限.选B.2.[2018·新乡模拟]若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin θcos θ=3716,则sin θ=( ) A.35 B.45 C.74 D.34 答案 D解析 ∵sin θcos θ=3716,∴(sin θ+cos θ)2=1+2sin θcos θ=8+378,(sin θ-cos θ)2=1-2sin θcos θ=8-378,∵θ∈⎣⎢⎡⎦⎥⎤π4,π2,∴sin θ+cos θ=3+74 ①,sin θ-cos θ=3-74②,联立①②得,sin θ=34.3.已知cos(75°+α)=513,α是第三象限角,则sin(195°-α)+cos(α-15°)的值为________.答案 -1713解析 因为cos(75°+α)=513>0,α是第三象限角, 所以75°+α是第四象限角,sin(75°+α)=-1-cos 2(75°+α)=-1213. 所以sin(195°-α)+cos(α-15°) =sin[180°+(15°-α)]+cos(15°-α) =-sin(15°-α)+cos(15°-α)=-sin[90°-(75°+α)]+cos[90°-(75°+α)] =-cos(75°+α)+sin(75°+α)=-513-1213=-1713.4.求值:sin(-1200°)·cos1290°+cos(-1020°)·sin(-1050°)+tan945°.解 原式=-sin1200°·cos1290°+cos1020°·(-sin1050°)+tan945°=-sin120°·cos210°+cos300°·(-sin330°)+tan225°=(-sin60°)·(-cos30°)+cos60°·sin30°+tan45°=32×32+12×12+1=2.5.[2018·南京检测]已知f (α)=sin (π-α)cos (2π-α)cos ⎝ ⎛⎭⎪⎫-α+3π2cos ⎝⎛⎭⎪⎫π2-αsin (-π-α).(1)化简f (α);(2)若α是第三象限角,且cos ⎝ ⎛⎭⎪⎫α-3π2=15,求f (α)的值. 解 (1)f (α)=sin (π-α)cos (2π-α)cos ⎝ ⎛⎭⎪⎫-α+3π2cos ⎝ ⎛⎭⎪⎫π2-αsin (-π-α)=sin αcos α(-sin α)sin αsin α=-cos α. (2)因为α是第三象限角,且cos ⎝ ⎛⎭⎪⎫α-3π2=-sin α=15,sin α=-15.所以cos α=-1-sin 2α=-1-⎝⎛⎭⎪⎫-152=-265.所以f (α)=-cos α=265.。

2019版高考数学文培优增分一轮全国经典版增分练:第3章 三角函数、解三角形 3-3a 含解析 精品

板块四 模拟演练·提能增分[A 级 基础达标]1.[2018·石家庄模拟]函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) 答案 B解析 由k π-π2<2x -π3<k π+π2(k ∈Z )得,k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间为⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).故选B.2.[2018·桂林模拟]若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3 C.3π2 D.5π3答案 C解析 ∵f (x )为偶函数,关于y 轴对称,x =0为其对称轴.∴x +φ3=π2+k π,令x =0,φ=3k π+3π2,当k =0时,φ=3π2.选C 项.3.[2018·福州模拟]下列函数中 ,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( )A .y =sin ⎝ ⎛⎭⎪⎫2x +π2B .y =cos ⎝ ⎛⎭⎪⎫2x +π2C .y =sin ⎝⎛⎭⎪⎫x +π2D .y =cos ⎝⎛⎭⎪⎫x +π2答案 A解析 对于选项A ,注意到y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos2x 的周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上是减函数.故选A.4.函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =1所得的线段长为π4,则f ⎝ ⎛⎭⎪⎫π12的值是( )A .0 B.33 C .1 D. 3答案 D解析 由条件可知,f (x )的周期是π4.由πω=π4,得ω=4,所以f ⎝ ⎛⎭⎪⎫π12=tan ⎝ ⎛⎭⎪⎫4×π12=tan π3= 3.5.函数y =2sin ⎝ ⎛⎭⎪⎫π6-2x (x ∈[0,π])的增区间是( ) A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤π12,7π12 C.⎣⎢⎡⎦⎥⎤π3,5π6 D.⎣⎢⎡⎦⎥⎤5π6,π 答案 C解析 ∵y =2sin ⎝ ⎛⎭⎪⎫π6-2x =-2sin ⎝ ⎛⎭⎪⎫2x -π6,由π2+2k π≤2x -π6≤3π2+2k π,k ∈Z ,解得π3+k π≤x ≤5π6+k π,k ∈Z ,即函数的增区间为⎣⎢⎡⎦⎥⎤π3+k π,5π6+k π,k ∈Z ,∴当k =0时,增区间为⎣⎢⎡⎦⎥⎤π3,5π6.6.[2018·深圳模拟]函数y =log 12cos x 的一个单调减区间是( )A .(-π,0)B .(0,π)C.⎝ ⎛⎭⎪⎫0,π2D.⎝ ⎛⎭⎪⎫-π2,0 答案 D解析 首先应保证cos x >0 ①;函数y =log 12cos x 的单调减区间,即函数μ=cos x 的单调增区间 ②.易知只有选项D 符合①②.7.[2018·郑州模拟]如果函数y =3sin(2x +φ)的图象关于直线x =π6对称,则|φ|的最小值为( )A.π6B.π4 C.π3 D.π2答案 A解析 由题意,得sin ⎝ ⎛⎭⎪⎫2×π6+φ=±1.所以π3+φ=π2+k π,即φ=π6+k π(k ∈Z ), 故|φ|min =π6.8.函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3-1,x ∈⎣⎢⎡⎦⎥⎤0,π3的值域为________,并且取最大值时x 的值为________.答案 [-1,1] π12解析 ∵x ∈⎣⎢⎡⎦⎥⎤0,π3,∴2x +π3∈⎣⎢⎡⎦⎥⎤π3,π, ∴sin ⎝ ⎛⎭⎪⎫2x +π3∈[0,1],∴y ∈[-1,1].当2x +π3=π2时,即x =π12时y 取得最大值1.9.[2018·江苏模拟]函数y =lg sin2x +9-x 2的定义域为________.答案 ⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2解析 由⎩⎪⎨⎪⎧sin2x >0,9-x 2≥0,得⎩⎨⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3.∴-3≤x <-π2或0<x <π2.∴函数y =lg sin2x +9-x 2的定义域为⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2. 10.如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0成中心对称,那么|φ|的最小值为________.答案 π6解析 依题意得3cos ⎝ ⎛⎭⎪⎫8π3+φ=0,8π3+φ=k π+π2,φ=k π-13π6(k∈Z ),所以|φ|的最小值是π6.[B 级 知能提升]1.[2017·全国卷Ⅲ]设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称 C .f (x +π)的一个零点为x =π6D .f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减答案 D解析 A 项,因为f (x )=cos ⎝⎛⎭⎪⎫x +π3的周期为2k π(k ∈Z ),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3图象的对称轴为直线x =k π-π3(k ∈Z ),所以y =f (x )的图象关于直线x =8π3对称,B 项正确.C 项,f (x +π)=cos ⎝⎛⎭⎪⎫x +4π3.令x +4π3=k π+π2(k ∈Z ),得x=k π-56π,当k =1时,x =π6,所以f (x +π)的一个零点为x =π6,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3(k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3(k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误. 故选D.2.[2018·宁夏模拟]已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54 B.⎣⎢⎡⎦⎥⎤12,34 C.⎝ ⎛⎦⎥⎤0,12 D .(0,2)答案 A解析 由π2<x <π,ω>0得,ωπ2+π4<ωx +π4<ωπ+π4,又y =sin x 在⎝ ⎛⎭⎪⎫π2,3π2上递减,所以⎩⎪⎨⎪⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54.故选A.3.已知函数f (x )=cos ⎝⎛⎭⎪⎫3x +π3,其中x ∈⎣⎢⎡⎦⎥⎤π6,m ⎝⎛⎭⎪⎫m ∈R 且m >π6,若f (x )的值域是⎣⎢⎡⎦⎥⎤-1,-32,则m 的最大值是________.答案 5π18解析 由x ∈⎣⎢⎡⎦⎥⎤π6,m ,可知5π6≤3x +π3≤3m +π3,∵f ⎝ ⎛⎭⎪⎫π6=cos 5π6=-32,且f ⎝ ⎛⎭⎪⎫2π9=cosπ=-1,∴要使f (x )的值域是⎣⎢⎡⎦⎥⎤-1,-32,需要π≤3m +π3≤7π6,解得2π9≤m ≤5π18,即m 的最大值是5π18.4.[2018·广东模拟]设函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π3.(1)求函数f (x )的定义域、周期和单调区间; (2)求不等式-1≤f (x )≤3的解集. 解 (1)由x 2-π3≠π2+k π(k ∈Z ), 得x ≠5π3+2k π(k ∈Z ), 所以函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R ,且x ≠5π3+2k π,k ∈Z .因为ω=12,所以周期T =πω=2π. 由-π2+k π<x 2-π3<π2+k π(k ∈Z ), 得-π3+2k π<x <5π3+2k π(k ∈Z ).所以函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-π3+2k π,5π3+2k π(k ∈Z ).(2)由-1≤tan ⎝ ⎛⎭⎪⎫x 2-π3≤3,得-π4+k π≤x 2-π3≤π3+k π(k ∈Z ).解得π6+2k π≤x ≤4π3+2k π(k ∈Z ). 所以不等式-1≤f (x )≤3的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π6+2k π≤x ≤4π3+2k π,k ∈Z .5.已知函数f (x )=sin(ωx +φ)(0<ω<1,0≤φ≤π)是R 上的偶函数,其图象关于点M ⎝ ⎛⎭⎪⎫3π4,0对称. (1)求φ,ω的值; (2)求f (x )的单调递增区间;(3)x ∈⎣⎢⎡⎦⎥⎤-3π4,π2, 求f (x )的最大值与最小值.解 (1)因为f (x )=sin(ωx +φ)是R 上的偶函数,所以φ=π2+k π,k ∈Z ,且0≤φ≤π,则φ=π2,即f (x )=cos ωx .因为图象关于点M ⎝ ⎛⎭⎪⎫3π4,0对称,所以ω·3π4=π2+k π,k ∈Z ,且0<ω<1,所以ω=23.(2)由(1)得f (x )=cos 23x ,由-π+2k π≤23x ≤2k π且k ∈Z 得,3k π-3π2≤x ≤3k π,k ∈Z ,所以函数f (x )的递增区间是⎣⎢⎡⎦⎥⎤3k π-3π2,3k π,k ∈Z .(3)因为x ∈⎣⎢⎡⎦⎥⎤-3π4,π2,所以23x ∈⎣⎢⎡⎦⎥⎤-π2,π3, 当23x =0时,即x =0,函数f (x )的最大值为1, 当23x =-π2时,即x =-3π4,函数f (x )的最小值为0.。

[推荐学习]2019版高考数学(文)高分计划一轮狂刷练:第3章三角函数、解三角形-3-3a

[推荐学习]2019版高考数学(文)高分计划一轮狂刷练:第3章三角函数、解三角形-3-3a[基础送分 提速狂刷练]一、选择题1.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎪⎫4π3,0成中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2 答案 A解析 依题意得3cos ⎝ ⎛⎭⎪⎫8π3+φ=0,8π3+φ=k π+π2,φ=k π-136π(k∈Z),因此|φ|的最小值是π6.故选A.2.(2017·长沙模拟)已知函数y =sin ωx 在⎣⎢⎡⎦⎥⎤-π3,π3上是增函数,则实数ω的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32,0 B .[-3,0) C.⎝ ⎛⎦⎥⎤0,32 D .(0,3]答案 C解析 由于y =sin x 在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,为保证y =sin ωx 在⎣⎢⎡⎦⎥⎤-π3,π3上是增函数,所以ω>0, 且π3ω≤π2,则0<ω≤32.故选C. 3.(2017·成都调研)函数y =2sin ⎝⎛⎭⎪⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3 答案 AD .y =f (x )的图象关于点⎝ ⎛⎭⎪⎫-π2,0对称答案 D解析 由题意知,f (x )=cos x ,所以它是偶函数,A 错误;它的周期为2π,B 错误;它的对称轴是直线x =k π,k ∈Z ,C 错误;它的对称中心是点⎝ ⎛⎭⎪⎫k π+π2,0,k ∈Z ,D 正确.故选D. 6.(2017·广州综合测试)已知函数f (x )=sin(2x +φ)⎝ ⎛⎭⎪⎫0<φ<π2的图象的一个对称中心为⎝ ⎛⎭⎪⎫3π8,0,则函数f (x )的单调递减区间是( )A.⎣⎢⎡⎦⎥⎤2k π-3π8,2k π+π8(k ∈Z) B.⎣⎢⎡⎦⎥⎤2k π+π8,2k π+5π8(k ∈Z) C.⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8(k ∈Z) D.⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z) 答案 D解析 由题意得f ⎝ ⎛⎭⎪⎫3π8=sin ⎝ ⎛⎭⎪⎫2×3π8+φ=0,则2×3π8+φ=k π,k∈Z ,解得φ=-3π4+k π,k ∈Z ,又因为0<φ<π2,所以φ=π4,则f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4,则由π2+2k π≤2x +π4≤3π2+2k π,k ∈Z ,得π8+k π≤x ≤5π8+k π,k ∈Z ,所以函数f (x )=sin ⎝⎛⎭⎪⎫2x +π4的单调递减区间为⎣⎢⎡⎦⎥⎤π8+k π,5π8+k π,k ∈Z.故选D.7.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是( )A .6B .7C .8D .9 答案 C解析 由y =sin πx 3可得T =6,则由图象可知5T 4≤t ,即152≤t ,∴t min =8.故选C.8.将函数f (x )=sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象向左平移π6个单位长度后关于原点对称,则函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为( ) A .-32 B .-12 C.12 D.32答案 A解析 将f (x )=sin(2x +φ)的图象左移π6个单位长度得y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6+φ=sin ⎝⎛⎭⎪⎫2x +π3+φ的图象,该图象关于原点对称,即为奇函数,则π3+φ=k π(k ∈Z),且|φ|<π2,所以φ=-π3,即f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以当2x -π3=-π3,即x =0时,f (x )取得最小值,最小值为-32.选A.9.若函数f (x )=M sin(ωx +φ)(ω>0)在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos(ωx +φ)在[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值MD .可以取得最小值-M解析 T =2πω,g (x )=M cos(ωx +φ)=M sin ⎝ ⎛⎭⎪⎫ωx +φ+π2=M sin ⎣⎢⎡⎦⎥⎤ω⎝⎛⎭⎪⎫x +π2ω+φ,∴g (x )的图象是由f (x )的图象向左平移π2ω⎝ ⎛⎭⎪⎫即T 4得到的.由b -a =T2,可知,g (x )的图象由f (x )的图象向左平移b -a 2得到的.∴得到g (x )图象如图所示.选C.10.(2018·新疆质检)已知函数f (x )=|sin x |cos x ,给出下列五个结论:①f ⎝ ⎛⎭⎪⎫2018π3=-34;②若|f (x 1)|=|f (x 2)|,则x 1=x 2+k π(k ∈Z);③f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上单调递增;④函数f (x )的周期为π;⑤f (x )的图象关于点⎝ ⎛⎭⎪⎫π2,0成中心对称. 其中正确的结论是( )A .①⑤B .①②⑤C .②④D .②⑤解析 ①f ⎝ ⎛⎭⎪⎫2018π3=⎪⎪⎪⎪⎪⎪sin 2018π3cos 2018π3=32×⎝ ⎛⎭⎪⎫-12=-34,∴①正确;②若|f (x 1)|=|f (x 2)|,则⎪⎪⎪⎪⎪⎪12sin2x 1=⎪⎪⎪⎪⎪⎪12sin2x 2,当x 1=0,x 2=π2时也成立,∴②不正确;③∵当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )=|sin x |cos x =⎩⎪⎨⎪⎧-12sin2x ,-π4≤x <0,12sin2x ,0≤x ≤π4,∴f (x )在⎣⎢⎡⎦⎥⎤-π4,π4上不是单调函数,∴③不正确;④∵f (x +π)≠f (x ),∴函数f (x )的周期不是π,∴④不正确; ⑤∵f (x )=|sin x |cos x=⎩⎪⎨⎪⎧-12sin2x ,-π+2k π<x <2k π,12sin2x ,2k π≤x <π+2k π,k ∈Z ,∴结合图象可知f (x )的图象关于点⎝⎛⎭⎪⎫π2,0成中心对称,∴⑤正确.故选A.二、填空题11.设函数f (x )=sin(x +φ)(0<φ<π),若函数f (x )+f ′(x )是奇函数,则φ=________.答案 3π4解析 由题意得f (x )=sin(x +φ)=sin x cos φ+cos x sin φ,f ′(x )=cos(x +φ),f (x )+f ′(x )=2sin ⎝ ⎛⎭⎪⎫x +φ+π4是奇函数,因此φ+π4=k π(其中k ∈Z),φ=k π-π4.又0<φ<π,所以φ=3π4.12.将函数y =sin(ωx +φ)⎝ ⎛⎭⎪⎫π2<φ<π的图象,仅向右平移4π3,或仅向左平移2π3,所得到的函数图象均关于原点对称,则ω=________. 答案 12解析 注意到函数的两条相邻对称轴之间的距离是函数周期的一半,即有T 2=4π3-⎝ ⎛⎭⎪⎫-2π3=2π,T =4π,即2πω=4π,ω=12.13.(2017·绵阳模拟)已知函数f (x )=4cos(ωx +φ)(ω>0,0<φ<π)为奇函数,A (a,0),B (b,0)是其图象上两点,若|a -b |的最小值是1,则f ⎝ ⎛⎭⎪⎫16=________. 答案 -2解析 ∵函数f (x )=4cos(ωx +φ)(ω>0,0<φ<π)为奇函数, ∴φ=π2,f (x )=-4sin ωx .A (a,0),B (b,0)是其图象上两点,若|a -b |的最小值是1, 则12·2πω=1,∴ω=π,f (x )=-4sinπx , 则f ⎝ ⎛⎭⎪⎫16=-4sin π6=-2.14.设函数y =sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,φ∈⎝⎛⎭⎪⎫-π2,π2的最小正周期为π,且其图象关于直线x =π12对称,则在下面四个结论中:①图象关于点⎝⎛⎭⎪⎫π4,0对称;②图象关于点⎝ ⎛⎭⎪⎫π3,0对称;③在⎣⎢⎡⎦⎥⎤0,π6上是增函数; ④在⎣⎢⎡⎦⎥⎤-π6,0上是增函数.所有正确结论的编号为________. 答案 ②④解析 ∵y =sin(ωx +φ)的最小正周期为π,∴ω=2ππ=2.又其图象关于直线x =π12对称,得π6+φ=π2+k π(k ∈Z).令k =0,得φ=π3.∴y=sin ⎝ ⎛⎭⎪⎫2x +π3.当x =π3时,f ⎝ ⎛⎭⎪⎫π3=0,∴函数图象关于点⎝ ⎛⎭⎪⎫π3,0对称.所以②正确.解不等式-π2+2k π≤2x +π3≤π2+2k π,得-5π12+k π≤x ≤π12+k π(k ∈Z),所以④正确.三、解答题15.已知函数f (x )=2sin x +1.(1)设ω为大于0的常数,若f (ωx )在区间⎣⎢⎡⎦⎥⎤-π2,2π3上单调递增,求实数ω的取值范围;解16.(2017·洛阳校级月考)已知函数f (x )=sin 2x +a cosx +a ,a ∈R .(1)当a =1时,求函数f (x )的最大值;(2)如果对于区间⎣⎢⎡⎦⎥⎤0,π2上的任意一个x ,都有f (x )≤1成立,求a 的取值范围.解 (1)当a =1时,f (x )=-cos 2x +cos x +2=-⎝ ⎛⎭⎪⎫cos x -122+94,∵cos x ∈[-1,1],生活的色彩就是学习K12的学习需要努力专业专心坚持 ∴当cos x =12,即x =2k π±π3(k ∈Z)时, f (x )max =94. (2)依题意sin 2x +a cos x +a ≤1,即sin 2x +a (cos x +1)≤1对任意x ∈⎣⎢⎡⎦⎥⎤0,π2恒成立. 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,0≤cos x ≤1, 则1≤cos x +1≤2,∴a ≤ cos 2x cos x +1对任意x ∈⎣⎢⎡⎦⎥⎤0,π2恒成立. 令t =cos x +1,则1≤t ≤2,∴a ≤(t -1)2t =t 2-2t +1t=t +1t -2对任意1≤t ≤2恒成立,于是a ≤⎝ ⎛⎭⎪⎫t +1t -2min . 又∵t +1t -2≥0,当且仅当t =1,即x =π2时取等号, ∴a ≤0.。

【配套K12】全国版2019版高考数学一轮复习第3章三角函数解三角形第5讲简单的三角恒等变换增分练

第5讲 简单的三角恒等变换板块四 模拟演练·提能增分[A 级 基础达标]1.[2017·全国卷Ⅲ]已知sin α-cos α=43,则sin2α=( ) A .-79 B .-29 C.29 D.79答案 A解析 ∵sin α-cos α=43,∴(sin α-cos α)2=1-2sin αcos α=1-sin2α=169,∴sin2α=-79.故选A. 2.[2017·山东高考]函数y =3sin2x +cos2x 的最小正周期为( )A.π2B.2π3C .πD .2π 答案 C解析 y =3sin2x +cos2x =2sin ⎝⎛⎭⎪⎫2x +π6,T =2π2=π.故选C. 3.[2018·武汉模拟]计算tan15°+1tan15°的值为( ) A. 2 B .2 C .4 D .2 2答案 C解析 tan15°+1tan15°=sin15°cos15°+cos15°sin15°=sin 215°+cos 215°sin15°cos15°=2sin30°=4.故选C.4.[2018·重庆质检]计算sin20°cos110°+cos160°sin70°的值为( )A .0B .1C .-1 D.12答案 C解析 原式=sin20°cos(180°-70°)+cos(180°-20°)·sin70°=-sin20°cos70°-cos20°sin70°=-(sin20°·cos70°+cos20°sin70°)=-sin90°=-1.故选C.5.在△ABC 中,tan A +tan B +3=3tan A tan B ,则C 等于( )A.π3B.2π3C.π6D.π4答案 A解析 由已知得tan A +tan B =-3(1-tan A tan B ),∴tan A +tan B 1-tan A tan B =-3,即tan(A +B )=- 3.又tan C =tan[π-(A +B )]=-tan(A +B )=3,0<C <π,∴C =π3. 6.[2018·大连模拟]若sin α+cos αsin α-cos α=12,则tan2α等于________. 答案 34解析 sin α+cos αsin α-cos α=12,等式左边分子、分母同除以cos α,得tan α+1tan α-1=12,解得tan α=-3,则tan2α=2tan α1-tan 2α=34. 7.已知sin α=cos2α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan α=________. 答案 -33解析 sin α=1-2sin 2α,∴2sin 2α+sin α-1=0.∴(2sin α-1)(sin α+1)=0,∵α∈⎝ ⎛⎭⎪⎫π2,π, ∴2sin α-1=0.∴sin α=12,cos α=-32. ∴tan α=-33. 8.[2017·全国卷Ⅱ]函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________. 答案 1解析 f (x )=1-cos 2x +3cos x -34=-⎝⎛⎭⎪⎫cos x -322+1. ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1], ∴当cos x =32时,f (x )取得最大值,最大值为1. 9.已知f (x )=23sin x cos x +2cos 2x -1(x ∈R ).(1)求函数f (x )的最小正周期及在⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值; (2)若f (x 0)=65,x 0∈⎣⎢⎡⎦⎥⎤π4,π2,求cos ⎝⎛⎭⎪⎫2x 0+π6的值. 解 (1)∵f (x )=23sin x cos x +2cos 2x -1=3sin2x +cos2x=2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴函数f (x )的最小正周期为T =π,∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴f (x )max =f ⎝ ⎛⎭⎪⎫π6=2, f (x )min =f ⎝ ⎛⎭⎪⎫π2=-1. (2)由(1)可知f (x 0)=2sin ⎝⎛⎭⎪⎫2x 0+π6=65, 即sin ⎝⎛⎭⎪⎫2x 0+π6=35, 又∵x 0∈⎣⎢⎡⎦⎥⎤π4,π2,∴2x 0+π6∈⎣⎢⎡⎦⎥⎤2π3,7π6, ∴cos ⎝⎛⎭⎪⎫2x 0+π6<0, 即cos ⎝ ⎛⎭⎪⎫2x 0+π6=-1-sin 2⎝ ⎛⎭⎪⎫2x 0+π6=-45. 10.[2018·宝鸡模拟]已知α为锐角,cos ⎝⎛⎭⎪⎫α+π4=55. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin ⎝⎛⎭⎪⎫2α+π3的值. 解 (1)因为α∈⎝⎛⎭⎪⎫0,π2,所以α+π4∈⎝ ⎛⎭⎪⎫π4,3π4, 所以sin ⎝ ⎛⎭⎪⎫α+π4=1-cos 2⎝⎛⎭⎪⎫α+π4=255, 所以tan ⎝ ⎛⎭⎪⎫α+π4=sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝⎛⎭⎪⎫α+π4=2. (2)因为sin ⎝ ⎛⎭⎪⎫2α+π2=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α+π4 =2sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=45, cos ⎝ ⎛⎭⎪⎫2α+π2=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π4=2cos 2⎝⎛⎭⎪⎫α+π4-1=-35, 所以sin ⎝ ⎛⎭⎪⎫2α+π3=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π2-π6 =sin ⎝ ⎛⎭⎪⎫2α+π2cos π6-cos ⎝⎛⎭⎪⎫2α+π2sin π6 =43+310. [B 级 知能提升]1.[2018·天水模拟]若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin2θ=378,则sin θ等于( ) A.35 B.45 C.74 D.34答案 D 解析 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,cos2θ≤0,所以cos2θ=-1-sin 22θ=-18.又因为cos2θ=1-2sin 2θ=-18,所以sin 2θ=916,sin θ=34.故选D. 2.[2017·全国卷Ⅲ]函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝⎛⎭⎪⎫x -π6的最大值为( ) A.65 B .1 C.35 D.15答案 A解析 解法一:∵f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝⎛⎭⎪⎫x -π6 =15⎝ ⎛⎭⎪⎫12sin x +32cos x +32cos x +12sin x =110sin x +310cos x +32cos x +12sin x =35sin x +335cos x =65sin ⎝⎛⎭⎪⎫x +π3, ∴当x =π6+2k π(k ∈Z )时,f (x )取得最大值65.故选A. 解法二:∵⎝ ⎛⎭⎪⎫x +π3+⎝ ⎛⎭⎪⎫π6-x =π2, ∴f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝⎛⎭⎪⎫x -π6 =15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫π6-x =15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝⎛⎭⎪⎫x +π3 =65sin ⎝⎛⎭⎪⎫x +π3≤65. ∴f (x )max =65.故选A. 3.[2016·全国卷Ⅰ]已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝⎛⎭⎪⎫θ-π4=________.答案 -43解析 因为θ是第四象限角,且sin ⎝⎛⎭⎪⎫θ+π4=35,所以θ+π4为第一象限角,所以cos ⎝ ⎛⎭⎪⎫θ+π4=45,所以tan ⎝ ⎛⎭⎪⎫θ-π4=sin ⎝ ⎛⎭⎪⎫θ-π4cos ⎝ ⎛⎭⎪⎫θ-π4=-cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫θ-π4sin ⎣⎢⎡⎦⎥⎤π2+⎝⎛⎭⎪⎫θ-π4=-cos ⎝ ⎛⎭⎪⎫θ+π4sin ⎝ ⎛⎭⎪⎫θ+π4=-43. 4.已知函数f (x )=⎝ ⎛⎭⎪⎫sin x 2+cos x 22-2sin 2x 2. (1)若f (x )=233,求sin2x 的值; (2)求函数F (x )=f (x )·f (-x )+f 2(x )的最大值与单调递增区间.解 (1)由题意知f (x )=1+sin x -(1-cos x )=sin x +cos x ,又∵f (x )=233,∴sin x +cos x =233, ∴sin2x +1=43,∴sin2x =13. (2)F (x )=(sin x +cos x )·[sin(-x )+cos(-x )]+(sin x +cos x )2=cos 2x -sin 2x +1+sin2x=cos2x +sin2x +1=2sin ⎝⎛⎭⎪⎫2x +π4+1, 当sin ⎝⎛⎭⎪⎫2x +π4=1时,F (x )取得最大值, 即F (x )max =2+1.令-π2+2k π≤2x +π4≤π2+2k π(k ∈Z ), ∴k π-3π8≤x ≤k π+π8(k ∈Z ), 从而函数F (x )的最大值为2+1,单调递增区间为 ⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8(k ∈Z ). 5.[2018·四川检测]已知函数f (x )=cos x ·sin ⎝⎛⎭⎪⎫x +π3-3cos 2x +34,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值和最小值. 解 (1)由已知,有f (x )=cos x ·⎝ ⎛⎭⎪⎫12sin x +32cos x -3cos 2x +34=12sin x ·cos x -32cos 2x +34=14sin2x -34(1+cos2x )+34=14sin2x -34cos2x =12sin ⎝⎛⎭⎪⎫2x -π3. 所以f (x )的最小正周期T =2π2=π. (2)由x ∈⎣⎢⎡⎦⎥⎤-π4,π4得2x -π3∈⎣⎢⎡⎦⎥⎤-5π6,π6, 则sin ⎝⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-1,12, 即函数f (x )=12sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-12,14. 所以函数f (x )在闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值为14,最小值为-12.。

2019版高考数学理培优增分一轮全国经典版增分练:第3

板块四 模拟演练·提能增分[A 级 基础达标]1.[2018·北京西城期末]已知△ABC 中,a =1,b =2,B = 45°,则A 等于( )A .150°B .90°C .60°D .30° 答案 D解析 由正弦定理,得1sin A =2sin45°,得sin A =12.又a <b ,∴A <B =45°.∴A =30°.故选D.2.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A .14B .6 C.14 D. 6 答案 D解析 b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,b = 6.故选D.3.[2018·甘肃张掖月考]在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若c =2a ,b sin B -a sin A =12a sin C ,则sin B 为( )A.74B.34C.73D.13 答案 A解析 由b sin B -a sin A =12a sin C ,且c =2a ,得b =2a ,∵cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34,∴sin B =1-⎝ ⎛⎭⎪⎫342=74. 4.设A 是△ABC 的一个内角,且sin A +cos A =23,则这个三角形是( )A .锐角三角形B .钝角三角形C .等边三角形D .等腰直角三角形答案 B解析 将sin A +cos A =23两边平方得sin 2A +2sin A ·cos A +cos 2A =49,又sin 2A +cos 2A =1,故sin A cos A =-518.因为0<A <π,所以sin A >0,则cos A <0,即A 是钝角.5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 所对的边,且cos2B +3cos(A +C )+2=0,b =3,则c ∶sin C 等于( )A .3∶1 B.3∶1 C.2∶1 D .2∶1 答案 D解析 由cos2B +3cos(A +C )+2=0,得2cos 2B -3cos B +1=0,解得cos B =1(舍去)或cos B =12,所以sin B =32,所以c ∶sin C =b ∶sin B =2∶1.6.[2017·浙江高考]我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年.“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6=________.答案332解析 作出单位圆的内接正六边形,如图,则OA =OB =AB =1. S 6=6S △OAB =6×12×1×32=332.7.在△ABC 中,已知AB =3,A =120°,且△ABC 的面积为1534,则BC =________.答案 7解析 由S △ABC =1534得12×3×AC ·sin120°=1534,所以AC =5,因此BC 2=AB 2+AC 2-2AB ·AC ·cos120°=9+25+2×3×5×12=49,解得BC =7.8.[2018·渭南模拟]在△ABC 中,若a 2-b 2=3bc 且sin (A +B )sin B =23,则A =________.答案 π6解析 因为sin (A +B )sin B =23,故sin Csin B =23,即c =23b ,则cos A =b 2+c 2-a 22bc =12b 2-3bc 43b 2=6b 243b 2=32,所以A =π6.9.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若tan A +tan C =3(tan A tan C -1).(1)求角B ;(2)如果b =2,求△ABC 面积的最大值. 解 (1)∵tan A +tan C =3(tan A tan C -1), ∴tan A +tan Ctan A tan C -1=3,即tan A +tan C 1-tan A tan C =-3,即tan(A +C )=- 3. 又∵A +B +C =π,∴tan B =-tan(A +C )=3,∴B =π3.(2)由余弦定理的推论得cos B =a 2+c 2-b 22ac =12,即4=a 2+c 2-ac ≥2ac -ac ,∴ac ≤4,当且仅当a =c =2时,等号成立. ∴S △ABC =12ac sin B ≤12×4×32= 3. 故△ABC 的面积的最大值为 3.10.[2018·长沙模拟]已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =1,2cos C +c =2b .(1)求A ;(2)若b =12,求sin C .解 (1)因为a =1,2cos C +c =2b ,由余弦定理得2×12+b 2-c 22b +c =2b ,即b 2+c 2-1=bc . 所以cos A =b 2+c 2-122bc =bc 2bc =12. 因为0°<A <180°,所以A =60°.(2)解法一:由b =12及b 2+c 2-1=bc ,得⎝ ⎛⎭⎪⎫122+c 2-1=12c ,即4c 2-2c -3=0,解得c =1+134或c =1-134(舍去). 由正弦定理得c sin C =asin A ,得sin C =1+134×sin60°=3+398. 解法二:由a =1,b =12及正弦定理b sin B =a sin A , 得sin B =12sin60°=34. 由于b <a ,则0°<B <A =60°, 则cos B =1-sin 2B =134.由于A +B +C =180°,则C =120°-B .所以sin C =sin(120°-B ) =sin120°cos B -cos120°sin B =32×134+12×34 =39+38. [B 级 知能提升]1.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5 答案 D解析 由23cos 2A +cos2A =0得23cos 2A +2cos 2A -1=0, 解得cos A =±15.∵A 是锐角,∴cos A =15. 又∵a 2=b 2+c 2-2bc cos A , ∴49=b 2+36-2×b ×6×15, ∴b =5或b =-135.又∵b >0,∴b =5.2.[2017·全国卷Ⅰ]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B.π6C.π4D.π3 答案 B解析 因为a =2,c =2, 所以由正弦定理可知,2sin A =2sin C , 故sin A =2sin C . 又B =π-(A +C ), 故sin B +sin A (sin C -cos C ) =sin(A +C )+sin A sin C -sin A cos C=sin A cos C +cos A sin C +sin A sin C -sin A cos C =(sin A +cos A )sin C =0.又C 为△ABC 的内角, 故sin C ≠0,则sin A +cos A =0,即tan A =-1. 又A ∈(0,π),所以A =3π4. 从而sin C =12sin A =22×22=12.由A =3π4知C 为锐角,故C =π6. 故选B.3.[2017·浙江高考]已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.答案152104解析 依题意作出图形,如图所示,则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2, 则sin ∠ABC =154,cos ∠ABC =14. 所以S △BDC =12BC ·BD ·sin ∠DBC=12×2×2×154=152.因为cos ∠DBC =-cos ∠ABC =-14=BD 2+BC 2-CD22BD ·BC=8-CD 28,所以CD =10. 由余弦定理,得cos ∠BDC =4+10-42×2×10=104.4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C ·(a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得, 2cos C (sin A cos B +sin B cos A )=sin C , 2cos C sin(A +B )=sin C . 故2sin C cos C =sin C . 可得cos C =12,所以C =π3. (2)由已知,得12ab sin C =332. 又C =π3,所以ab =6.由已知及余弦定理得,a 2+b 2-2ab cos C =7. 故a 2+b 2=13,从而(a +b )2=25. 所以△ABC 的周长为5+7.5.[2017·天津高考]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2).(1)求cos A 的值; (2)求sin(2B -A )的值.解 (1)由a sin A =4b sin B ,及a sin A =b sin B ,得a =2b .由ac =5(a 2-b 2-c 2)及余弦定理, 得cos A =b 2+c 2-a 22bc =-55ac ac =-55.(2)由(1),可得sin A =255,代入a sin A =4b sin B , 得sin B =a sin A 4b =55. 由(1)知,A 为钝角, 所以cos B =1-sin 2B =255. 于是sin2B =2sin B cos B =45, cos2B =1-2sin 2B =35,故sin(2B -A )=sin2B cos A -cos2B sin A =45×⎝ ⎛⎭⎪⎫-55-35×255=-255.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

板块四模拟演练·提能增分
[级基础达标]
.要得到函数=的图象,只需将函数=的图象( )
.向左平移个单位.向右平移个单位
.向左平移个单位.向右平移个单位
答案
解析∵==,∴要得到=的图象,只需将=的图象向左平移个
单位即可..[·沧州模拟]若ω>,函数=的图象向右平移
个单位长度后与原图象重合,则ω的最小值为( )
..
答案
解析将=的图象向右平移个单位后为==,所以有=π,即ω
=,∈,又ω>,所以≥,故ω=≥.故选..[·临沂模拟]已知函数()=(ω+θ)的图象如图所示,=-,则
=( )
.-.-
答案解析由题干图知,函数()的周期==,所以===-.
.将函数=(+φ)的图象沿轴向左平移
个单位长度后,得到一个偶函数的图象,则φ的一个可能取值为(
)
.-
答案
解析=(+φ)==,则由+φ=+π(∈),根据选项检验可知φ的
一个可能取值为.故选.
.[·广东茂名一模]如图,函数()=(+φ)
的图象过点(,),则()的图象的一个对称中心是( )
答案
解析由题中函数图象可知:=,
由于函数图象过点(,),
所以φ=,即φ=,由于φ<,
所以φ=,
则有()=.
由+=π,∈可解得=-,∈,
故()的图象的对称中心是,∈,
则()的图象的一个对称中心是.故选..某城市一年中个月的平均气温与月份的关系可近似地用三角
函数=+
(=,…,)来表示,已知月份的月平均气温最高,为℃,月份的月
平均气温最低,为℃,则月份的平均气温值为℃.
答案
解析依题意知,==,==,
∴=+,
当=时,=+=.
.[·南宁模拟]函数()=(ω+φ)(ω>≤φ≤π)的图象如图,则()=.。

相关文档
最新文档