C语言程序设计(汉诺塔问题)
C语言编程题题库(1)

1.编程输出显示汉诺塔问题中移动的过程。
2.从键盘任意输入一个4位数x,编程计算x的每一位数字相加之和(忽略整数前的正负号)。
例如,输入x为1234,则有1234分离出其千位1,百位2,十位3,个位4,然后计算1+2+3+4=10,并输出10。
3.利用递归的方法,求n!的结果.n从键盘输入。
4.编程计算1×2×3+3×4×5+...+99×100×101的值。
5.利用π/2=2/1×2/3×4/3×4/5×6/5×6/7×……的前100项之积计算π的值。
6.利用π/4=1-1/3+1/5-1/7+……计算π的值,直到最后一项的绝对值小于10的-4次方为止,要求统计总共累加了多少项。
7.编程计算 a+aa+aaa+...+aa...a(n个a)的值,n和a的值由键盘输入。
8.打印所有的"水仙花数"。
所谓"水仙花数"是指一个三位数,其各位数字的立方和等于该数本身。
例如,153是"水仙花数",因为1*1*1+5*5*5+3*3*3=153。
9.利用e=1+1/1!+1/2!+1/3!+……+1/n!,计算e的近似值,当最后一项的绝对值,小于10的-5次方,认为达到了精度要求。
要求统计总共累加了多少项。
10.2^0+2^1+…+2^63.11.九九乘法表上(下)三角。
12.杨辉三角。
13.从键盘按由小到大输入10个整数存于数组中,再从键盘任意输入一个整数x,将x有序的插入其中.要求在main函数进行输入和输出,插入的过程在自定义函数中完成。
14.从键盘10个整数存于数组中,再从键盘任意输入一个整数x,若存在则将x删除,若x不存在则输出"不存在!"的信息.要求在main函数进行输入和输出,删除的过程在自定义函数中完成。
汉诺塔游戏-----用C++编的

#ifndef HANIO_H_#define HANIO_Hclass Stack{private:enum{ MAX=50 };int m_node[MAX];int m_top;int m_size;int m_index;public:Stack();~Stack() { };bool Isfull() { return m_top==MAX-1 ;}; //堆栈满则返回TRUE bool Isempty() { return m_top==-1;}; //堆栈空则返回TRUE int Top() { return m_top; };int TopValue() { return m_node[m_top];};int GetDataFromIndex(int i) { return m_node[i]; };int GetIndex() { return m_index; } ;void SetIndex(int index) { m_index = index; };int Size() { return m_top+1; };bool Push(int data);bool Pop(int * pData);int MoveToNext();void OutPrint();};class Hanio{Stack m_stack[3];int m_num; //盘数int m_steps; //移动次数int m_times; //完成所用时间void print(char ch,int n);public:Hanio(int num=3);~Hanio() {};void GameStart();bool MoveFromTo(int x,int y); //从x号盘移动到y号盘void DrawPaletes(char ch='*'); //打印3个堆的盘子bool IsFinished() ; //结束返回TURE;int Solve(char from,char to,char auxiliary,int n); //求解其解法路径};#endif//hanio.cpp#include "hanio.h"#include <iostream>#include<cstdlib>#include<cstring>#include<cctype>#include<windows.h>Stack::Stack(){m_top=-1;m_index=m_top;for(int i=0;i<MAX;i++)m_node[i]=0;}bool Stack::Push(int data){if(Isfull())return false;m_top++;m_node[m_top]=data;m_index=m_top;return true;}bool Stack::Pop(int *pData){if(Isempty())return false;*pData=m_node[m_top];m_node[m_top]=0;m_top--;m_index=m_top;return true;}int Stack::MoveToNext(){int temp=m_index;m_index--;return m_node[temp];}void Stack::OutPrint(){if(m_top!=-1){for(int i=0;i<=m_top;i++)std::cout<<"["<<m_node[i]<<"]";}}///////////////////////////////////////Hanio::Hanio(int num){m_num=num;m_steps=0;m_times=0;for(int i=num;i>=1;i--)m_stack[0].Push(i);//m_stack[0].OutPrint();}void Hanio::print(char ch,int n){for(int i=1;i<=n;i++)std::cout<<ch;}void Hanio::DrawPaletes(char ch){int max;max=m_stack[0].Size()>m_stack[1].Size() ? m_stack[0].Size() : m_stack[1].Size();max=m_stack[2].Size()>max ? m_stack[2].Size() : max;//std::cout<<"Max:"<<max<<std::endl;m_stack[0].SetIndex(max-1);m_stack[1].SetIndex(max-1);m_stack[2].SetIndex(max-1);for(int i=1;i<=max;i++){int data1=m_stack[0].MoveToNext();int data2=m_stack[1].MoveToNext();int data3=m_stack[2].MoveToNext();if(data1==0)print(' ',20);else{print(' ',10-data1);print(ch,2*data1);print(' ',10-data1);}if(data2==0)print(' ',20);else{print(' ',10-data2);print(ch,2*data2);print(' ',10-data2);}if(data3==0)print(' ',20);else{print(' ',10-data3);print(ch,2*data3);print(' ',10-data1);}std::cout<<std::endl;}}bool Hanio::MoveFromTo(int x,int y){m_steps++; //计算所走的步数if(m_stack[x].Isempty()){std::cout<<x<<" pallete is empty ! continue !"<<std::endl; std::cin.get();return false;}if(m_stack[y].Isempty()){int data;m_stack[x].Pop(&data);m_stack[y].Push(data);return true;}else{if(m_stack[x].TopValue()>m_stack[y].TopValue()){std::cout<<"The board can't move from "<<x<<" plate to " <<y<<" plate!"<<std::endl;std::cin.get();return false;}else{int data;m_stack[x].Pop(&data);m_stack[y].Push(data);return true;}}}bool Hanio::IsFinished(){return m_stack[2].Top()==m_num-1;}void Hanio::GameStart(){using namespace std;UINT StartTime=::GetTickCount();UINT EndTime;while(1){system("cls");print('-',80);cout<<"steps: "<<m_steps; print(' ',20);cout<<"Used time: "<<m_times<<endl;print('-',80);cout<<endl; cout<<endl; print(' ',10); cout<<"A";print(' ',19); cout<<"B"; print(' ',19);cout<<"C"<<endl<<endl;Hanio::DrawPaletes();cout<<endl; cout<<endl;print('-',80);//测试游戏是否结束if(Hanio::IsFinished()){cout<<"你好强呀!从今天开始,维护世界和平的任务就交给你那!"<<endl;cin.get();break;}//输入命令并左相应的处理char szCommand[50];cout<<">>";cin.getline(szCommand,50);if(stricmp(szCommand,"QUIT")==0 || stricmp(szCommand,"Q")==0)break;if(stricmp(szCommand,"HELP")==0 || stricmp(szCommand,"H")==0){cout<<" 本游戏说明:"<<endl;cout<<" 该游戏由DAVID用C++编程,花费了一个多下午的时间呢!!!,由命令行来控制铁饼的移动:"<<endl;cout<<" QUIT / Q : 退出程序"<<endl;cout<<" HELP / H : 查看该说明"<<endl;cout<<" XY : X,Y的取值为A,B,C,意思时把X木桩最上面的铁饼移到Y 木桩"<<endl;cout<<" SOLVE / S : 显示求解该问题(移动铁饼)的最优路径..."<<endl; cin.get();}char ch1=toupper(szCommand[0]);char ch2=toupper(szCommand[1]);if( ch1=='A' && ch2=='B')Hanio::MoveFromTo(0,1);else if ( ch1=='A' && ch2=='C')MoveFromTo(0,2);else if ( ch1=='B' && ch2=='A')MoveFromTo(1,0);else if ( ch1=='B' && ch2=='C')MoveFromTo(1,2);else if ( ch1=='C' && ch2=='A')MoveFromTo(2,0);else if ( ch1=='C' && ch2=='B')MoveFromTo(2,1);else{cout<<"Bad command !"<<endl;cin.get();}//统计游戏所用时间EndTime=GetTickCount();m_times=(EndTime-StartTime)/1000;}}int Hanio::Solve(char from,char to,char auxiliary,int n) {if(n==1)return 0;}//main.cpp#include<iostream>#include"hanio.h"#include<cstdlib>using namespace std;int StartPicture();//返回选择的盘数int main(){int number;number=StartPicture();Hanio hanio(number);hanio.GameStart();return 0;}void print(char ch,int n){for(int i=1;i<=n;i++)std::cout<<ch;}int StartPicture(){using namespace std;int number;system("cls");system("color fc");print(' ',20);print('-',25);cout<<endl;print(' ',20);cout<<" Hanio(汉诺塔)"<<endl;print(' ',20);print('-',25);cout<<endl;print(' ',40);print('-',5);cout<<"By David"<<endl;print('=',80);cout<<" 相传在某一座古庙中有3根木桩,有24个铁盘由小到大放置在一根木柱上,庙中流传者一个传说:\"如果能把24个铁盘, 从一根木桩移动到另一个木桩,且必须遵守如下规则:"<<endl;cout<<endl;print(' ',5);cout<<"1. 每天只能动一个盘,而且只能从最上面的铁盘开始搬动."<<endl; print(' ',5);cout<<"2. 必须维持较小的铁盘在上方的原则"<<endl;cout<<endl;cout<<"这两个原则,则当24个铁盘完全般到另一个木桩时,世界就回永久和平!!"<<endl;cout<<"游戏的玩法可以在命令行中输入HELP查看"<<endl;cout<<endl;cout<<endl;cout<<endl;cout<<endl;cout<<endl;cout<<"再此输入你要搬的铁盘数(建议在1--10值间,太多回花费很长时间的)"<<endl;print('=',80);cout<<">>";cin>>number;cin.get();system("cls");return number;}。
汉诺塔问题实验报告

1.实验目的:通过本实验,掌握复杂性问题的分析方法,了解汉诺塔游戏的时间复杂性和空间复杂性。
2.问题描述:汉诺塔问题来自一个古老的传说:在世界刚被创建的时候有一座钻石宝塔(塔A),其上有64个金碟。
所有碟子按从大到小的次序从塔底堆放至塔顶。
紧挨着这座塔有另外两个钻石宝塔(塔B和塔C)。
从世界创始之日起,婆罗门的牧师们就一直在试图把塔A 上的碟子移动到塔C上去,其间借助于塔B的帮助。
每次只能移动一个碟子,任何时候都不能把一个碟子放在比它小的碟子上面。
当牧师们完成任务时,世界末日也就到了。
3.算法设计思想:对于汉诺塔问题的求解,可以通过以下三个步骤实现:(1)将塔A上的n-1个碟子借助塔C先移到塔B上。
(2)把塔A上剩下的一个碟子移到塔C上。
(3)将n-1个碟子从塔B借助于塔A移到塔C上。
4.实验步骤:1.用c++ 或c语言设计实现汉诺塔游戏;2.让盘子数从2 开始到7进行实验,记录程序运行时间和递归调用次数;3.画出盘子数n和运行时间t 、递归调用次数m的关系图,并进行分析。
5.代码设计:Hanio.cpp#include"stdafx.h"#include<stdlib.h>#include<stdio.h>#include<iostream>void hanoi(int n,char x,char y,char z){if(n==1){printf("从%c->搬到%c\n",x,z);}else{hanoi(n-1,x,z,y);printf("从%c->%c搬到\n",x,z);hanoi(n-1,y,x,z);}}void main(){int m ;printf("input the number of diskes:");scanf("%d",&m);printf("The step to moving %3d diskes:",m);hanoi(m,'a','b','c');}自定义头文件:#pragma once#include"targetver.h"#include<stdio.h>#include<tchar.h>结果如下:6.递归应用中的Hanoi塔问题分析1)Hanoi塔问题中函数调用时系统所做工作一个函数在运行期调用另一个函数时,在运行被调用函数之前,系统先完成3件事:①将所有的实参、返回地址等信息传递给被调用函数保存。
C语言程序设计课程设计报告---汉诺塔问题

XXXX大学计算机科学与技术学院课程设计报告2012 — 2013学年第一学期课程名称C/C++高级语言程序设计课程设计设计题目小游戏和图形处理汉诺塔问题学生姓名XXX学号XXXXXXX专业班级XXXXXXXXXXX指导教师XX2012 年X 月XX 日目录一、课程设计问题描述 (1)1、课程设计题目 (1)2、设计任务要求 (1)二、总体设计 (1)1、设计思路 (1)2、汉诺塔求解流程图 (2)三、详细设计 (2)1、汉诺塔问题描述 (2)2、算法分析 (3)3、实现递归的条件 (4)4、用C语言实现 (4)四、程序运行结果测试与分析 (4)1、打开Microsoft Visual C++ 6.0操作平台输入以下的源代码 (4)2、编译源代码 (5)3、组建 (5)4、执行 (5)5、运行结果 (6)6、按任意键结束程序 (7)五、结论与心得 (7)六、参考文献 (8)七、附录:程序源代码 (8)一、课程设计问题描述1、课程设计题目汉诺塔问题2、设计任务要求输入盘子数(2个以上有效),移动速度,开始演示汉诺塔移动的步骤,要求:盘子A,B,C柱需要自己绘制,初始时盘子在A柱上通过B柱最终移动到C 柱上,显示出盘子在几个柱之间的移动过程。
二、总体设计1、设计思路对于一个类似的这样的问题,任何一个人都不可能直接写出移动盘子的每一个具体步骤。
可以利用这样的统筹管理的办法求解:我们假设把该任务交给一个僧人,为了方便叙述,将他编号为64。
僧人自然会这样想:假如有另外一个僧人能有办法将63个盘子从一个座移到另一个座,那么问题就解决了,此时僧人A B C64只需这样做:(1).命令僧人63将63个盘子从A座移到C座(2).自己将最底下的最大的一个盘子从A座移到C座(3).再命令僧人63将63个盘子从B座移到C座为了解决将63个盘子从A座移到B座的问题,僧人63又想:如果能再有一个僧人62能将62个盘子移动到另一座,我就能将63个盘子从A座移动到B座。
c语言课程设计汉诺塔

c语言课程设计汉诺塔一、教学目标本节课的教学目标是让学生掌握汉诺塔问题的解法,理解其背后的算法思想,培养逻辑思维能力和编程能力。
具体分为以下三个部分:1.知识目标:使学生了解汉诺塔问题的定义、解法和算法思想,理解递归算法的原理及其在解决汉诺塔问题中的应用。
2.技能目标:培养学生运用C语言实现汉诺塔问题的解决方案,提高编程实践能力。
3.情感态度价值观目标:培养学生独立思考、合作交流的学习习惯,增强对计算机科学的兴趣和热情。
二、教学内容本节课的教学内容主要包括以下几个部分:1.汉诺塔问题的定义和解法:介绍汉诺塔问题的背景,讲解其解法及步骤。
2.递归算法的原理:讲解递归算法的基本概念、特点及其在解决汉诺塔问题中的应用。
3.C语言实现汉诺塔问题:引导学生运用C语言编写汉诺塔问题的解决方案,并进行调试和优化。
4.算法分析和改进:分析汉诺塔问题的算法复杂度,探讨如何优化算法性能。
三、教学方法为了达到本节课的教学目标,采用以下几种教学方法:1.讲授法:讲解汉诺塔问题的定义、解法和递归算法的原理。
2.案例分析法:分析实际案例,让学生了解递归算法在解决汉诺塔问题中的应用。
3.实验法:引导学生动手实践,用C语言实现汉诺塔问题的解决方案。
4.讨论法:学生进行小组讨论,分享算法优化思路,培养合作交流能力。
四、教学资源本节课的教学资源包括以下几个方面:1.教材:选用《C程序设计》等相关教材,为学生提供理论知识的学习参考。
2.参考书:推荐《算法导论》等参考书籍,帮助学生深入了解算法原理。
3.多媒体资料:制作PPT、教学视频等多媒体资料,辅助学生理解和记忆知识点。
4.实验设备:为学生提供计算机、编程环境等实验设备,方便学生动手实践。
五、教学评估本节课的教学评估主要包括以下几个方面:1.平时表现:评估学生在课堂上的参与度、提问回答等情况,占比20%。
2.作业:评估学生完成的汉诺塔问题相关练习,包括C语言代码编写和调试,占比30%。
c语言汉诺塔程序设计

c语言汉诺塔程序设计
下面是一个用C语言实现汉诺塔问题的程序:
```c
#include <stdio.h>
void hanoi(int n, char from, char to, char aux) {
if (n == 1) {
printf("Move disk 1 from %c to %c\n", from, to); return;
}
hanoi(n - 1, from, aux, to);
printf("Move disk %d from %c to %c\n", n, from, to); hanoi(n - 1, aux, to, from);
}
int main() {
int n;
printf("Enter the number of disks: ");
scanf("%d", &n);
printf("Steps to solve the Hanoi Tower problem:\n"); hanoi(n, 'A', 'C', 'B');
return 0;
}
```
这个程序使用递归的方式解决汉诺塔问题。
函数`hanoi`接受四个参数:盘子的数量`n`,起始柱子`from`,目标柱子`to`,辅助柱子`aux`。
当盘子数量为1时,直接将盘子从起始柱子移动到目标柱子。
否则,先将n-1个盘子从起始柱子移动到辅助柱子,然后将最后一个盘子从起始柱子移动到目标柱子,最后将n-1个盘子从辅助柱子移动到目标柱子。
汉诺塔问题动态演示

H(n,A,B,C)
H ( 3, A, B, C )
H(n,A,B,C)
H ( 3, A, B, C )
Stack
Output 0 C B A 1 C A B 2 A C B 3 A B C A A C B
H(n-1,a,c,b)
H ( 2, A, C, B )
H(n-1,b,a,c) H ( 1, C, A, B )
H(n-1,a,c,b) H ( 0, C, B , A)
H ( 3, A, B, C )
Stack
Output 0 A C B 1 C A B 2 A C B 3 A B C A A C C B B
H(n-1,a,c,b)
H ( 2, A, C, B )
H(n-1,b,a,c)
H ( 1, C, A, B )
H(n-1,b,a,c) H ( 0, A, C , B )
n a b c
void hanoi ( int n, char a, char b, char c ) { if ( n >= 1 ) { hanoi ( n-1, a, c, b) ; printf(“%c -->%c\n“,a,c); hanoi (n-1, b, a, c) ; } }
H(n,A,B,C)
H ( 3, A, B, C )
Stack
Output A A 1 C A B 2 A C B 3 A B C C C B B
汉诺塔问题实验报告

游戏的时间复杂性和空间复杂性。 2.问题描述:
汉诺塔问题来自一个古老的传说:在世界刚被创建的时候有 一座钻石宝塔(塔 A),其上有 64 个金碟。所有碟子按从大到小的次 序从塔底堆放至塔顶。紧挨着这座塔有另外两个钻石宝塔(塔 B 和 塔 C)。从世界创始之日起,婆罗门的牧师们就一直在试图把塔 A 上的碟子移动到塔 C 上去,其间借助于塔 B 的帮助。每次只能移 动一个碟子,任何时候都不能把一个碟子放在比它小的碟子上面。 当牧师们完成任务时,世界末日也就到了。 3.算法设计思想:
8、总结
5
缓存大小
通过对汉诺塔算法的分析让我更清楚的认识到了不同的算法对 程序性能的影响,也让我明白掌握了算法将会有助于提高软件的开 发。
6
2)Hanoi 塔问题递归程序的复杂度分析
① 运行 hanoi 程序的时间
程序 hanoi.c 在硬件环境为赛扬 400MHz、内存 128M 的计算平台 (不同机器运行时间有一定差别)运行,可得出如下时间结果:
盘子数
时间结果
<=12 个
<=1 秒
14 个
2秒
16 个
13 秒
20 个
204 秒
② 时间复杂度
自定义头文件 :#pragma once
#include "targetver.h" #include <stdio.h> #include <tchar.h>
结果如下:
2
6.递归应用中的 Hanoi 塔问题分析 1)Hanoi 塔问题中函数调用时系统所做工作
一个函数在运行期调用另一个函数时,在运行被调用函数之前,系 统先完成 3 件事:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
printf("the step of move %d diskes :",m);
tian(m,'A','B','C');
} void tian(int n,int x,int y,int z)
66 67
{void move(int x,int y); if(n==1) move(x,z);
else {tian(n-1,x,z,y); move(x,y); tian(n-1,y,x,z);
C 语言程序设计(汉诺塔设计)
#include<stdio.h>
void main()
{void tian(int n,int x,int y,int z);
/*函数声明*/
int m;
printf("please enter the number of diskes:\n");
scanf("%d",&m);
/*当我选定这一行的时候 然后单击组间选择调试 run to_ 发现不管输入的 x 值是多少 ABC 的值都是 65
后来才发现原来是他们所代表的十进制的值*/
/*这里是递归函数的结束条件*/
}
}
void move(int x, int y)
/*
定义 move 函数用来显示移动的路线*/
{printf("%c——>%c\n",x,y);
3 个盘子 可以简化为。。。。*/
}
/*汉洛塔问题:如果有 N 个盘子 那么可以简化为 n-1 个盘子和一个盘子来处理,只要先把 上面的 n-1 个盘子从 A——>B 把第 n 个盘子由 A——>C 再把 n-1 个盘子由 B——>C
即可;
n-1 盘子 那么可以简化为 n-2 个盘子和一个盘子来处理 只要 把
上面的 n-2 个盘子从 A——>B 把第 n 个盘子由 A——>C 再把 n-1 个盘子由 B——>C
即可;
n-3 盘子 那么可以简化为 n-3 个盘子和一个盘子来处理 只要 把
上面的 n-4 个盘子从 A——>B 把第 n 个盘子由 A——>C 再把 n-1 个盘子由 B——>C 即可;
N-子 那么可以简化为 3 个盘子和一个盘子来处理 只要 把 上面的 3 个盘子有 a 到 b 把第 4 个盘子由 a 到 c 再把上面的三个盘子由 b 到 c;