常用信号的MATLAB表示

合集下载

信号与信号实验

信号与信号实验

信号与信号实验MATLAB 部分实验一:基本信号在MATLAB 中的表示和运算 一、 实验目的;1、学会用MATLAB 表示常用连续信号的方法;2、学会用MATLAB 进行信号基本运算的方法;3、学会用MATLAB 实现连续时间信号的卷积的方法。

二、 实验内容:1、绘出下列信号的时域波形(1)f(t)=(2-e-2t)u(t) (2)f(t)=cos(πt)[u(t)-u(t-1)] (3)f(t)=u(-3t+2) (4)f(t)= -(1/2)tu(t+2) 解:t1=0:0.01:5; y1=(2-exp(-2*t1)).*(t1>0); subplot(221);plot(t1,y1);grid; title('f(t)=(2-e-2t)u(t)'); t2=0:0.01:5; y2=cos(pi*t2).*((t2>0)-(t2>1)); subplot(222);plot(t2,y2);grid; title('f(t)=cos(πt)[u(t)-u(t-1)]'); t3=-2:0.01:5; y3=(-3*t3+2>0); subplot(223);plot(t3,y3);grid; title('f(t)=u(-3t+2)'); t4=-3:0.01:5; y4=(-1/2)*t4.*(t4>-2); subplot(224);plot(t4,y4);grid; title('f(t)=-(1/2)tu(t+2)');00.511.52f(t)=(2-e-2t)u(t)图 1-1f(t)=cos(πt)[u(t)-u(t-1)]图1-200.51f(t)=u(-3t+2)图1-3f(t)=-(1/2)tu(t+2)图 1-42、用MATLAB 绘出下列信号的卷积积分f1(t)*f2(t)的时域波形(1) f1(t)=tu(t), f2(t)=u(t) (2) f1(t)=u(t)-u(t-4), f2(t)=sin(πt)u(t) (3) f1(t)= e-2t u(t), f2(t)= e-t u(t) (4) f1(t)= e-t u(t), f2(t)=u(t) 解:(1)fs=1000; t=-1:1/fs:4; x1=stepfun(t,0); x2=x1.*t; y=conv(x1,x2)/fs; n=length(y1); tt=(0:n-1)/fs-2; subplot(311),plot(t,x1),grid; title('f1(t)=tu(t)'); subplot(312),plot(t,x2),grid; title(' f2(t)=u(t)'); subplot(313),plot(tt,y),grid on; title('f1(t) * f2(t)');(2)fs=1000; t=-1:1/fs:4; x1=(t>0)-(t>4); x2=sin(pi*t).*(t>0); x=conv(x1,x2)/fs; n=length(x); tt=(0:n-1)/fs-2; subplot(311);plot(t,x1);grid; title('f1(t)=u(t)-u(t-4))'); subplot(312);plot(t,x2);grid; title('f2(t)=sin(πt)u(t)'); subplot(313);plot(tt,x);grid; title('f1(t) * f2');(3)t=0:1/fs:4; x1=exp(-2*t).*(t>0); x2=exp(-t).*(t>0); x=conv(x1,x2)/fs; n=length(x); tt=(0:n-1)/fs-0; subplot(311);plot(t,x1);grid; title('f1(t)= e-2t u(t)'); subplot(312);plot(t,x2);grid; title('f2(t)= e-t u(t)'); subplot(313);plot(tt,x);grid; title('f1(t) * f2(t)');(4)t=0:1/fs:2; x1=exp(-2*t).*(t>0); x2=(t>0); x=conv(x1,x2)/fs; n=length(x); tt=(0:n-1)/fs-0; subplot(311);plot(t,x1);grid; title(' f1(t)= e-t u(t))'); subplot(312);plot(t,x2);grid; title('f2(t)=u(t)'); subplot(313);plot(tt,x);grid; title('f1(t)*f2(t)');0.51 1.52 2.53 3.540.51 1.52 2.53 3.5412345678-1 -0.5 00.51 1.52 2.53 3.54? 2-1 -1 -0.5 00.51 1.52 2.53 3.54? 2-2 -2-112 3 4 5678? 2-3实验二:连续时间LTI 系统的时域分析一、实验目的:学会用MATLAB 求解连续系统的零状态响应、冲击响应和阶跃响应。

实验- 基本信号在 MATLAB中的表示和运算

实验- 基本信号在 MATLAB中的表示和运算

实验一基本信号在 MATLAB中的表示和运算一、[实验目的]1.学会常用连续信号的MATLAB表示方法;2.学会用MATLAB进行信号的基本运算,为信号分析和滤波器设计奠定基础;3. 通过信号的求导,观察信号在跳变点处的导数;4. 通过卷积积分运算,观察两个时限信号的卷积积分结果所具有的特点;5. 掌握信号相关与卷积的关系;6. 通过实验熟悉自相关和互相关性质在周期信号识别、延迟信号检测等场合中的应用。

三、[实验内容]1.验证实验原理中所述的有关程序;2.绘出下列信号的时域波形及其导数波形(注意在绘制导数波形图时,为便于观察结果,可调整坐标轴,如t=-3:h:4;并合理利用坐标轴调整函数axis)3.绘制如图所示信号及其积分波形。

4. 求如图所示函数f1(t)和f2(t )的卷积积分,并给出卷积结果的图形。

5. 编写信号相关的函数%Rxy为相关估计,消除步长的影响%tao为相关估计Rxy的序号向量%x为参加相关的信号,xt为信号 x的序号向量%y为需反转的信号,yt为 y的序号向量%dt为xt 或yt的步长(xt,yt的步长要一致)%信号反转可利用:ytf=fliplr(-yt);yf=fliplr(y);6.已知两信号x=rectpuls(t-0.5,1); y=rectpuls(t+0.5,1) ;调用自编函数[Rxy,tao]=my_xcorr(x,xt,y,yt,dt)计算 x 与 y 的时延差,即Rxy 取得最大值的时刻。

7. 已知频率为10Hz的余弦信号,分别求:(1)不带噪声的余弦信号的自相关;(2)分别求带有白噪声干扰的频率为 10Hz 的余弦信号和白噪声信号的自相关函数并进行比较,得出相应的结论。

主要信号如下:N=1000;Fs=500; %数据长度和采样频率n=0:N-1; t=n/Fs; %时间序列x=cos(2*pi*10*t); %频率为10Hz的余弦信号xz=cos(2*pi*10*t)+0.6*randn(1,length(t)); %带有白噪声干扰的频率为10Hz 的余弦信号noise_sig=randn(1,length(x)); %产生一与 x长度一致的随y=cos(2*pi*20*t); %频率为20Hz的余弦信号xy=x+y; 频率为10Hz, 20Hz的余弦信号的叠加信号…..调用 MATLAB 提供的函数[Rxx,tao]=xcorr(x,Lags,'unbiased')完成三个自相关运算。

第4章 信号与系统的MATLAB仿真

第4章 信号与系统的MATLAB仿真

模型、传递函数模型和零-极点增益模型。其中sos表示二次分式,g为比
例系数,sos为L×6的矩阵,即
b01 b11 b21 1 a11 a21
sos
b0L b1L b2L 1 a1L a2L
(4-15)
1.ss2tf函数 格式:[num, den]=ss2tf(A,B,C,D,iu) 功能:将指定输入量iu的线性系统(A,B,C,D)转换为传递函数模型[num,den]。
生成上述三种信号
• t =-5:0.01:5; • subplot(2,2,1); • a=2 • y1=2.^t • plot(t, y1, 'r') • subplot(2,2,2); • a=2; • theat=pi/3; • y2=sin(2*pi*t+theat) • plot(t, y2) • subplot(2,1,2); • w=4; • y3=exp((a+j*w)*t); • plot(t, y3, ‘y')
3、sinc函数
产生sinc波形或sin(πt)/(πt)波形
sinc(t
)
1
sin(
t)
t
t 0 t0
例: t=linspace(-10,+10,200); x=sinc(t);
plot(t,x);
4.1.2 信号运算
1信号的相加与相乘 y(n)=x1(n)+x2(n) MATLAB实现:y=x1+x2
离散系统: 6.状态空间模型ss
连续系统:
H ( z)
g
L k 1
b0k b1k z1 b2k z2 1 a1k z1 a2k z2
x' Ax Bu

信号与系统MATLAB常见信号的表示及运算

信号与系统MATLAB常见信号的表示及运算

信号与系统——实验指导实验一 常见信号的表示及运算一、实验目的1.熟悉常见信号的意义、特性及波形2. 掌握用matlab软件产生基本信号的方法.3. 应用matlab软件实现信号的加、减、乘、反褶、移位、尺度变换及卷积运算。

二、实验原理1. 信号的表示方法● 常用信号:连续函数()θω+=t t f sin )(, at Ae t f =)(,ttt Sa sin )(= 离散信号()n n f 0sin )(ω=,njw e n f 0)(=,)()(n u a n f n =● 奇异信号:连续函数:冲激函数)(t δ,阶跃函数)(t u ,斜坡函数)(t R 离散信号:冲激函数)(n δ,阶跃函数)(n u ,斜坡函数)(n R2.卷积连续函数的卷积:⎰∞∞--=τττd t f f t g )()()(21离散函数的卷积:∑∞-∞=-=m m n fm f n g )()()(21三、实验要求1.预习实验原理;2.对实验内容编写程序(M文件),上机运行;3.绘出运算或变换后信号的波形.四.实验内容1. 熟悉matlab 工作环境(1) 运行matlab.exe ,进入matlab 工作环境,如图(1)所示。

图1 matlab工作环境(2) matlab工作环境由Command Window(命令窗口)、Current Direcroty(当前目录)、workspace(工作空间)、command History(历史命令)和Editor(文件编辑器)5部分组成。

其中所有文件的编辑和调试、运行在Editor编辑窗口下进行。

程序的运行也可以在命令窗口进行。

程序调试的信息显示在命令窗口。

(3) 程序文件的产生:点击菜单file下的New下的M_files,进入编辑器界面,如图2。

图2 M文件编辑器(4) 在m文件编辑器下键入程序代码,保存程序文件(命名规则同C语言)。

如果所定义的是函数文件,则要求函数名为M文件名。

MATLAB 的可视化绘图和常用信号的MATLAB表示

MATLAB 的可视化绘图和常用信号的MATLAB表示

备注:(1)、按照要求独立完成实验项目内容,报告中要有程序代码和程序运行结果和波形图等原始截图。

(2)、实验结束后,把电子版实验报告按要求格式改名(例:09号-张三-实验一)后,交至学习委员那里汇总后再交给老师,并由实验教师批阅记录后;实验室统一刻盘留档。

实验二 MATLAB 的可视化绘图和常用信号的MATLAB表示一、实验目的1、掌握MATLAB的可视化绘图技术;2、结合《信号与系统》的特点,编程实现常用信号及其运算。

二、实验原理对于以t为自变量的连续信号,在绘图时统一用plot函数;而对n为自变量的离散序列,在绘图时统一用stem函数。

三、程序示例见课本P48~53四、实验内容1、熟悉示例中给出的常用信号的表示。

2、完成课本 P59 M2-1 (1)、(2)、(4)P60 M2-6 (2)、(4)、(5);写实验报告(程序及波形)。

t = 0:0.01:10;y1 = (t>=0);figure;subplot(221);plot(t, y1, 'b');xlabel('图1');ylabel('u(t)');y2 = (t>=0);f=y2.*t;subplot(222);plot(t, f, 'b');xlabel('图2');ylabel('r(t)');grid on;t2 = 0:0.0001:0.2;y3 =cos(100*t2)+cos(3000*t2); subplot(223);plot(t2, y3, 'b');xlabel('图3');k = 0:1:5;y = (k==1);y=y*2;figure;subplot(221);stem(k, y, 'r');xlabel('图1 2δ(k-1)');y1 = (k>=-2);y2=(k>=5);f=y1-y2;subplot(222);stem(k, f, 'r');xlabel('图2 u[k+2]-u[k-5]'); y3 = (k>=0);y=k.*y3;subplot(223);stem(k, y3, 'r');xlabel('图3 ku[k]');grid on;五、实验总结应注意以下几点:①在向量与向量相乘时要用点乘(.*),数字与向量、数字与数字之间用普通乘法(*)。

信号与系统matlab实验习题3 绘制典型信号及其频谱图

信号与系统matlab实验习题3  绘制典型信号及其频谱图

绘制典型信号及其频谱图答案在下面四个常用信号及其傅里叶变换式如表1所示。

(1)绘制单边指数信号及其频谱图的MATLAB程序如下:close all;E=1;a=1;t=0:0.01:4;w=-30:0.01:30;f=E*exp(-a*t);F=1./(a+j*w);plot(t,f);xlabel('t');ylabel('f(t)');figure;plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|');figure;max_logF=max(abs(F));plot(w,20*log10(abs(F)/max_logF));xlabel('\omega');ylabel('|F(\omega)| indB');figure;plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega)');请更改参数,调试此程序,绘制单边指数信号的波形图和频谱图。

观察参数a 对信号波形及其频谱的影响。

注:题目中阴影部分是幅频特性的对数表示形式,单位是(dB),请查阅相关资料,了解这种表示方法的意义及其典型数值对应的线性增益大小。

(2)绘制矩形脉冲信号、升余弦脉冲信号和三角脉冲信号的波形图和频谱图,观察并对比各信号的频带宽度和旁瓣的大小。

(3)更改参数,调试程序,绘制单边指数信号的波形图和频谱图。

观察参数a对信号波形及其频谱的影响。

答案附上程序代码:close all;E=1;a=1;t=0:0.01:4;w=-30:0.01:30;f=E*exp(-a*t);F=1./(a+j*w);plot(t,f);xlabel('t');ylabel('f(t)');figure;plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|';E=1,a=1,波形图 频谱图更改参数E=2,a=1;更改参数a ,对信号波形及其频谱的影响。

信号分析实验一内容

信号分析实验一内容

实验一连续时间信号的时域和频域分析一. 实验目的:1. 熟悉MATLAB 软件平台。

2. 掌握MATLAB 编程方法、常用语句和可视化绘图技术。

3. 编程实现常用信号及其运算MATLAB 实现方法。

4. 编程实现常用信号的频域分析。

二. 实验原理:1、连续时间信号的描述:(1)向量表示法连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点之外,信号都有确定的值与之对应。

严格来说,MATLAB 并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。

当取样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。

矩阵是MATLAB 进行数据处理的基本单元,矩阵运算是MATLAB 最重要的运算。

通常意义上的数量(也称为标量)在MATLAB 系统中是作为1×1 的矩阵来处理的,而向量实际上是仅有一行或者一列的矩阵。

通常用向量表示信号的时间取值范围,如t = -5:5,但信号x(t)、向量t 本身的下标都是从1 开始的,因此必须用一个与向量x 等长的定位时间变量t,以及向量x,才能完整地表示序列x(t)。

在MATLAB 可视化绘图中,对于以t 为自变量的连续信号,在绘图时统一用plot 函数;而对n 为自变量的离散序列,在绘图时统一用stem 函数。

(2)符号运算表示法符号对象(Symbolic Objects 不同于普通的数值计算)是Matlab 中的一种特殊数据类型,它可以用来表示符号变量、表达式以及矩阵,利用符号对象能够在不考虑符号所对应的具体数值的情况下能够进行代数分析和符号计算(symbolic math operations),例如解代数方程、微分方程、进行矩阵运算等。

符号对象需要通过sym 或syms 函数来指定, 普通的数字转换成符号类型后也可以被作为符号对象来处理.我们可以用一个简单的例子来表明数值计算和符号计算的区别: 2/5+1/3 的结果为0.7333(double 类型数值运算), 而sym(2)/sym(5)+sym(1)/sym(3)的结果为11/15, 且这里11/15 仍然是属于sym 类型, 是符号数。

用MATLAB实现常用的连续时间信号及其时域运算

用MATLAB实现常用的连续时间信号及其时域运算

用MATLAB实现常用的连续时间信号及其时域运算信息与通信工程学院通信133班卢承慧一.引言1.要求:1.1用MATLAB语言产生连续时间信号1.2对连续时间信号进行时域运算2.任务:①绘制用于产生以下信号的通用程序,要求对于任意给定的参数都能实现所要求的信号。

调试并运行这些程序,具体产生由指导教师制定的信号并绘制信号波形。

t );a. f(t)=δ(t-t )。

b. f (t) = Au(t-②已知信号波形如图7.6所示,使用MATLAB语言求出下列信号的表达式并绘制出各信号波形。

a.f(-t);b.f(t-2);c.f(1-2t)。

图7.6任务②中的f (t )3.思考题编制一通用程序用于产生信号)()cos()(0t t u t Ae t f at -=-ω,要求对于任意给定的参数都能实现所要求的信号。

二.基本原理1.1连续时间信号如果在所讨论的时间间隔内,除若干个不连续点之外,对于任意时间值都可以给出确定的函数值,此信号就称为连续信号。

从严格意义上来讲,MATLAB 不能处理连续时间信号。

在MATLAB 中,使用连续时间信号在等时间间隔点的样值来近似表示连续时间信号的。

当取样时间间隔足够小时,这些离散的样值就能较好的近似出连续时间信号。

由于在MATLAB 中,矩阵的元素个数是有限的,因此MATLAB 无法表示无限序列。

MATLAB 的绘图命令有很多种,其中比较常用的绘制连续时间信号的绘图命令有“plot ”,“stairs ”,“ezplot ”等。

“plot ”适用于绘制平滑的曲线,而“stairs ”适合于绘制具有阶跃形式的图形,“ezplot ”只能用于符号函数的绘图。

1.2单位阶跃信号单位阶跃信号的波形图如图1所示,通常以符号u (t )表示⎩⎨⎧><=)0( 1)0(0)(t t t u在跳变点t=0处,函数未定义,或在t=0处规定函数值u (0)=21。

图1用MATLAB 实现单位阶跃信号%t1:起始时刻;t2:终止时刻;t0:跳变时刻 function u(t1,t0,t2)t=t1:0.01:t2; %步长值越小,图形越精确n=length(t); tt=t0:0.01:t2; n1=length(tt);x=[zeros(1,n-n1),ones(1,n1)]; %产生单位阶跃信号 stairs(t,x),grid on title('单位阶跃信号')axis([t1 t2 -0.2 1.1]) %为方便波形顶部避开图 框,改变图框坐标1.3单位冲激信号单位冲激信号是持续时间无穷小、瞬间幅度无穷大、涵盖面积恒1的理想信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5 常用信号的MATLAB表示5.1单位冲激函数、单位冲激序列
示例7:
t = -5:0.01:5;
y = (t==0);
subplot(121);
plot(t, y, 'r');
n = -5:5;
x = (n==0);
subplot(122);
stem(n, x);
图5
运行结果如图5所示。

程序说明:
(1)由n = -5:5得到一个1×11数组n;而在x = (n==0)中,n==0是一个向量运算,即向量n中的每一个元素与0比较是否相等,其比较结果0或1放在x中。

这样得到的向量x也是1×11数组,且正好就是单位冲激序列。

(2)在MATLAB中,任何向量x的下标是从1开始的,不能取零或负值,而x(n)中的时间变量n则不此受限制。

因此向量x的下标与时间变量n是两个概念,如本例中向量x(n)的下标是从1到11,而时间变量n是从-5到5。

所以必须用一个与向量x等长的定位时间变量n,以及向量x,才能完整地表示序列x(n)。

在信号的表示和运算中,这一点请务必注意;只有当序列x(n)的时间变量正好是从1开始时,才能省去时间变量n,因为此时向量的下标与时间变量相同。

(3)单位冲激函数的实现方法实际上与单位冲激序列是完全相同的,都是用序列表示。

只不过表示连续时间信号的序列中两相邻元素所对应的时间间隔更小,如本例中t的间隔为0.01,而表示离散时间信号的序列中两相邻元素所对应的时间间隔一般为1。

由于单位冲激序列在信号与系统中经常使用,我们专门编制一个函数文件delta.m,在后面的实验部分直接调用该函数即可产生需要的波形。

% delta.m
function [x, n] = delta(n1,n2,k)
% 产生冲激序列δ(n-k),其中n1<=n<=n 2, n1<=k<=n2
disp('输入不正确,输入参数要有三个!');
return;
elseif ((k<n1)|(k>n2)|(n1>n2))
error('输入不正确,输入参数要应满足n1<=k<=n2!')
end
n = n1:n2;
x = ((n-k)==0);
5.2单位阶跃函数、单位阶跃序列
只要将前面冲激函数(示例7)中的关系运算“==”改为“>=”,就可得到单位阶跃函数、单位冲激序列,如图6所示。

图6
我们编制了函数文件stepseq.m来生成单位阶跃序列。

function [x, n] = stepseq(n1,n2,n0)
% 产生序列u(n-n0),其中n1<=n<=n 2, n1<=n0<=n2
disp('输入不正确,输入参数要有三个!'); return;
elseif ((n0<n1)|(n0>n2)|(n1>n2))
error('输入不正确,输入参数要应满足n1<=k<=n2!') end
n = n1:n2;
x = ((n-n0)>=0);
示例8:绘图表示
(1) 门函数;
(2) 序列。

t = -3 :0.05: 3;
z1 = ((t+1) >= 0);
z2 = ((t-1) >= 0);
g = z1 - z2; % 门函数
figure;
subplot(221)
plot(t,g,'r');
axis([-3 3 0 1.1])
x1 = stepseq(-5,10,-3); % 调用函数stepseq
x2 = stepseq(-5,10,5); % 调用函数stepseq
x = x1 - x2;
n = -5:10;
subplot(222)
stem(n,x);
axis([-5,10,0,1.1])
运行结果如图7所示。

图7
5.3其他典型的信号
1.实指数信号
其MATLAB实现为:n = n1: n2; x = a.^n;
1.复指数信号
其MATLAB实现为:n = n1: n2; x = exp(sigma+jw)*n;
1.正(余)弦信号
其MATLAB实现为:n = n1: n2; x = cos(w*n+sita)
5.4工具箱中的信号产生函数
利用MATLAB信号处理工具箱提供的一些函数,可以很方便地产生三角波、方波等函数波形。

1.周期性三角波或锯齿波函数sawtooth
调用格式为:x =sawtooth(t, width)
功能:产生一个周期为2π、幅度在-1到+1之间的周期性三角波信号。

其中width 表示最大幅度出现的位置:即在一个周期内,信号从t=0到width×2π时函数值从-1到+1线性增加,而从width×2π到2π又是从+1到-1线性下降。

width取值在0 ~ 1之间。

若x =sawtooth(Ωt, width),则对应的周期为2π/Ω。

示例9:产生周期为0.2的三角波,width取值分别为0、1、0.5。

td = 1/100000; % td为时间间隔
t = 0 : td : 1;
x1 = sawtooth(2*pi*5*t,0);
x2 = sawtooth(2*pi*5*t,1);
x3 = sawtooth(2*pi*5*t,0.5);
subplot(311); plot(t,x1);
subplot(312); plot(t,x2);
subplot(313); plot(t,x3);
运行结果如图8所示。

图8
1.周期性方波信号square
调用格式为:x =square (t, duty)
功能:产生一个周期为2π、幅度为±1的周期性方波信号。

其中duty表示占空比,即在信号的一个周期中正值所占的百分比。

例如产生频率为40Hz、占空比为75%的周期性方波所调用的语句为
x =square (2*pi*40*t, 75);
1.(非周期)三角波脉冲信号tripuls
调用格式为:x =tripuls (t, width, skew)
功能:产生一个最大幅度为1、宽度为width、斜率为skew的三角脉冲信号。

该函数横坐标范围由向量t决定,其三角波形是以t=0为中心向左右各展开
width/2的范围;斜率skew在-1到+1之间取值,它决定了最大幅度1所对应的横坐标位置:width/2×skew。

示例10:仔细观察由下面代码产生的图9中3个三角波信号之间的区别,自己对tripuls函数的使用做一个总结。

t = -3:0.001:3;
x1 = tripuls(t,4,0);
subplot(131);
plot(t,x1);
axis([-4 4 0 1]);
grid
t = -6:0.001:6;
x2 = tripuls(t,4,0.5);
subplot(132);
plot(t,x2);
axis([-4 4 0 1]);
grid
x3 = tripuls(t+2,4,0.5);
subplot(133);
plot(t,x3);
axis([-4 4 0 1]);
grid
图9
1.(非周期)矩形脉冲信号rectpuls
调用格式为:x =rectpuls (t, width)
功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。

该函数横坐标范围由向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。

width的默认值为1。

示例11:生成幅度为2,宽度T = 4、中心在t = 0的矩形波x(t)以及x(t-T/2).
t = -4 : 0.0001 : 4;
T = 4;
x1 = 2*rectpuls(t, T);
subplot(121);
plot(t, x1);
axis([-4 6 0 2.2])
grid;
x2 = 2*rectpuls(t-T/2,T);
subplot(122);
plot(t, x2);
axis([-4 6 0 2.2])
grid;
运行结果如图10所示。

图10
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档