牛顿迭代法解元方程组以及误差分析matlab实现

合集下载

用牛顿法求一元一次方程的最优值 matlab

用牛顿法求一元一次方程的最优值 matlab

牛顿法是一种迭代算法,用于求解一元函数的最小值或最大值。

对于一元函数f(x),其导数为f'(x),牛顿法的迭代公式为:
x_{n+1} = x_n - f(x_n) / f'(x_n)
在求解一元一次方程的最优值时,我们可以将一元一次方程转化为f(x) = 0 的形式,然后使用牛顿法求解。

下面是一个使用MATLAB 实现牛顿法的示例代码:
0, tol, max_iter)
# f: 一元函数的值
# df: 一元函数的导数
# x0: 初始值
# tol: 精度要求
# max_iter: 最大迭代次数
x = x0;
for i = 1:max_iter
fx = f(x);
dfx = df(x);
if abs(fx) < tol
root = x;
return;
end
x = x - fx / dfx;
end
error('达到最大迭代次数,未找到解。

');
end
按照以下步骤进行:
1.定义一元一次方程的函数和导数;
2.设定初始值、精度要求和最大迭代次数;
3.调用newton 函数进行迭代求解。

matlab牛顿迭代法求方程

matlab牛顿迭代法求方程

一、引言在数值计算中,求解非线性方程是一项常见的任务。

牛顿迭代法是一种常用且有效的方法,它通过不断逼近函数的零点来求解方程。

而在MATLAB中,我们可以利用其强大的数值计算功能来实现牛顿迭代法,快速求解各种非线性方程。

二、牛顿迭代法原理与公式推导1. 牛顿迭代法原理牛顿迭代法是一种利用函数的导数信息不断逼近零点的方法。

其核心思想是利用当前点的切线与x轴的交点来更新下一次迭代的值,直至逼近方程的根。

2. 公式推导与迭代过程假设要求解方程f(x)=0,在初始值x0附近进行迭代。

根据泰勒展开,对f(x)进行一阶泰勒展开可得:f(x) ≈ f(x0) + f'(x0)(x - x0)令f(x)≈0,则有:x = x0 - f(x0)/f'(x0)将x带入f(x)的表达式中,即得到下一次迭代的值x1:x1 = x0 - f(x0)/f'(x0)重复以上过程,直至达到精度要求或者迭代次数上限。

三、MATLAB中的牛顿迭代法实现1. 编写函数在MATLAB中,我们可以编写一个函数来实现牛顿迭代法。

需要定义原方程f(x)的表达式,然后计算其一阶导数f'(x)的表达式。

按照上述推导的迭代公式,编写循环语句进行迭代计算,直至满足精度要求或者达到最大迭代次数。

2. 调用函数求解方程在编写好牛顿迭代法的函数之后,可以通过在MATLAB命令窗口中调用该函数来求解具体的方程。

传入初始值、精度要求和最大迭代次数等参数,即可得到方程的近似根。

四、牛顿迭代法在工程实践中的应用1. 求解非线性方程在工程领域,很多问题都可以转化为非线性方程的求解问题,比如电路分析、控制系统设计等。

利用牛顿迭代法可以高效地求解这些复杂方程,为工程实践提供了重要的数值计算手段。

2. 优化问题的求解除了求解非线性方程外,牛顿迭代法还可以应用于优化问题的求解。

通过求解目标函数的导数等于0的方程,可以找到函数的极值点,从而解决各种优化问题。

MATLAB计算方法迭代法牛顿法二分法实验报告

MATLAB计算方法迭代法牛顿法二分法实验报告

MATLAB计算方法迭代法牛顿法二分法实验报告实验报告一、引言计算方法是数学的一门重要应用学科,它研究如何用计算机来解决数学问题。

其中,迭代法、牛顿法和二分法是计算方法中常用的数值计算方法。

本实验通过使用MATLAB软件,对这三种方法进行实验研究,比较它们的收敛速度、计算精度等指标,以及它们在不同类型的问题中的适用性。

二、实验方法1.迭代法迭代法是通过不断逼近解的过程来求得方程的根。

在本实验中,我们选择一个一元方程f(x)=0来测试迭代法的效果。

首先,我们对给定的初始近似解x0进行计算,得到新的近似解x1,然后再以x1为初始近似解进行计算,得到新的近似解x2,以此类推。

直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。

本实验将通过对复杂方程的迭代计算来评估迭代法的性能。

2.牛顿法牛顿法通过使用函数的一阶导数来逼近方程的根。

具体而言,对于给定的初始近似解x0,通过将f(x)在x0处展开成泰勒级数,并保留其中一阶导数的项,得到一个近似线性方程。

然后,通过求解这个近似线性方程的解x1,再以x1为初始近似解进行计算,得到新的近似解x2,以此类推,直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。

本实验将通过对不同类型的方程进行牛顿法的求解,评估它的性能。

3.二分法二分法是通过将给定区间不断二分并判断根是否在区间内来求方程的根。

具体而言,对于给定的初始区间[a,b],首先计算区间[a,b]的中点c,并判断f(c)与0的大小关系。

如果f(c)大于0,说明解在区间[a,c]内,将新的区间定义为[a,c],再进行下一轮的计算。

如果f(c)小于0,说明解在区间[c,b]内,将新的区间定义为[c,b],再进行下一轮的计算。

直到新的区间的长度小于规定的误差阈值为止。

本实验将通过对复杂方程的二分计算来评估二分法的性能。

三、实验结果通过对一系列测试函数的计算,我们得到了迭代法、牛顿法和二分法的计算结果,并进行了比较。

牛顿法解方程组matlab

牛顿法解方程组matlab

牛顿法解方程组matlab
牛顿法是一种可以求解方程组的迭代算法。

特别适用于求解非线性系统方程,它的思想是利用抛物线的顶点的构造方程的特性来解决多元函数的极值问题。

在Matlab中,我们可以使用其牛顿法解决方程组问题。

牛顿法的算法思想是根据函数的极值点更新解的方向,以此来找到方程的解,主要步骤如下:
1. 首先,输入要求解的方程组;
2. 然后,使用命令"fzero"构造牛顿法求解器;
3. 随后,使用命令"fsolve"求解方程,输出求解结果;
4. 最后,使用控制台显示求解结果,可以得到我们要求的方程组解。

使用Matlab牛顿法来求解方程组,由于Matlab提供的求解函数算法速度快且求解精度高,加之方便的调节控制,使得它在多元函数迭代求不等式约束系统的解的过程中,能够快速有效地完成任务,节省时间,可以得到较好的效果,从而更好地解决复杂的方程组问题。

由此可以看出,Matlab中使用牛顿法解决方程组是一个非常有用的工具,对求解复杂的方程组来说,它能大大降低计算的难度,提高求解的效率,可以为工程的快速发展做出重要的贡献。

牛顿迭代法matlab软件

牛顿迭代法matlab软件

⽜顿迭代法matlab软件⽂件说明1、使⽤说明1)加载f.m⽂件⾄matlab2)⾸先在命令⾏使⽤solve函数解得⽅程x^5=-1在复平⾯上的5个根;>> solve('x^5=-1')-11/4 + (2^(1/2)*(5^(1/2) + 5)^(1/2)*i)/4 - 5^(1/2)/41/4 - (2^(1/2)*(5^(1/2) + 5)^(1/2)*i)/4 - 5^(1/2)/4(2^(1/2)*(5 - 5^(1/2))^(1/2)*i)/4 + 5^(1/2)/4 + 1/45^(1/2)/4 - (2^(1/2)*(5 - 5^(1/2))^(1/2)*i)/4 + 1/43)然后将这5个根代⼊f.m⽂件中函数f(A,B,C,D,E)中;>> f(1/4 + (2^(1/2)*(5^(1/2) + 5)^(1/2)*i)/4 - 5^(1/2)/4, 1/4 - (2^(1/2)*(5^(1/2) +5)^(1/2)*i)/4 - 5^(1/2)/4,(2^(1/2)*(5 - 5^(1/2))^(1/2)*i)/4 + 5^(1/2)/4 + 1/4, 5^(1/2)/4 -(2^(1/2)*(5 - 5^(1/2))^(1/2)*i)/4 + 1/4, -1)4)等待matlab运⾏完毕即可得到如下⽜顿初始点收敛图2、代码说明function f(A,B,C,D,E)%函数使⽤>>f(1/4 + (2^(1/2)*(5^(1/2) + 5)^(1/2)*i)/4 - 5^(1/2)/4,% 1/4 - (2^(1/2)*(5^(1/2) + 5)^(1/2)*i)/4 - 5^(1/2)/4,% (2^(1/2)*(5 - 5^(1/2))^(1/2)*i)/4 + 5^(1/2)/4 + 1/4,% 5^(1/2)/4 - (2^(1/2)*(5 - 5^(1/2))^(1/2)*i)/4 + 1/4,% -1)%在⽅程参数中带⼊求得的复平⾯的根step=0.01; %扫描步进值为0.01,总共扫描200×200个点for x=-1:step:1for y=-1:step:1z0=x+y*i; %扫描图像点阵z=newton(z0); %⽜顿迭代法计算if abs(z-A)<1.0e-6 %迭代后与根A距离绝对⼩plot(x,y,'r.'); %使⽤红⾊填充扫描的这⼀点hold onelseif abs(z-B)<1.0e-6 %迭代后与根B距离绝对⼩plot(x,y,'g.'); %使⽤绿⾊填充扫描的这⼀点hold onelseif abs(z-C)<1.0e-6 %迭代后与根C距离绝对⼩plot(x,y,'y.'); %使⽤黄⾊填充扫描的这⼀点hold onelseif abs(z-D)<1.0e-6 %迭代后与根D距离绝对⼩plot(x,y,'b.'); %使⽤蓝⾊填充扫描的这⼀点hold onelseif abs(z-E)<1.0e-6 %迭代后与根E距离绝对⼩plot(x,y,'m.'); %使⽤粉⾊填充扫描的这⼀点hold onendendendendfunction y=newton(z)if z==0 %防⽌z=0代⼊后⽆法运算y=0;return;endfor i=1:1:2000 %最多迭代2000次y=z-(z^5+1)/(5*z^4); %⽜顿迭代公式if abs(y-z)<1.0e-7 %迭代后与z根在距离绝对⼩break; %跳出循环endz=y; %递归endend3、研究领域数值分析应⽤经常使⽤polyfit将数据进⾏多项式拟合,将多项式公式通过代码写⼊计算机完成数据的映射和转换。

matlab牛顿法代码举例

matlab牛顿法代码举例

matlab牛顿法代码举例使用 MATLAB 实现牛顿法的示例代码。

牛顿法(也称为牛顿-拉弗森方法)是一种在实数和复数域上求解方程的数值方法。

该方法使用函数和其导数的值来寻找函数零点的近似值。

function [root, iter] = newtonMethod(func, dfunc, x0, tol, maxIter) "%"newtonMethod 使用牛顿法求解方程"%"输入:"%"func - 目标函数"%"dfunc - 目标函数的导数"%"x0 - 初始猜测值"%"tol - 容差,求解精度"%"maxIter - 最大迭代次数"%"输出:"%"root - 方程的根"%"iter - 迭代次数x = x0;for iter = 1:maxIterfx = func(x);dfx = dfunc(x);if abs(dfx) < epserror('导数太小,无法继续迭代');endxnew = x - fx/dfx;if abs(xnew - x) < tolroot = xnew;return;endx = xnew;enderror('超过最大迭代次数');end"%"示例: 求解 x^3 - x - 2 = 0func = @(x) x^3 - x - 2;dfunc = @(x) 3*x^2 - 1;x0 = 1; "%"初始猜测值tol = 1e-6; "%"容差maxIter = 1000; "%"最大迭代次数[root, iter] = newtonMethod(func, dfunc, x0, tol, maxIter);fprintf('根是: "%"f, 在 "%"d 次迭代后找到\n', root, iter);在这个代码中,newtonMethod 函数接收一个函数 func 及其导数 dfunc,一个初始猜测值,容差和最大迭代次数 maxIter。

MATLAB牛顿迭代法

MATLAB牛顿迭代法

1。

定义函数function y=f(x)y=f(x);%函数f(x)的表达式endfunction z=h(x)z=h(x);%函数h(x)的表达式end2.主程序x=X;%迭代初值i=0;%迭代次数计算while i〈= 100%迭代次数x0=X-f(X)/h(X);%牛顿迭代格式if abs(x0—X)>0。

01;%收敛判断X=x0;else breakendi=i+1;endfprintf(’\n%s%.4f\t%s%d’,'X=’,X,’i=’,i) %输出结果牛顿迭代法(matlab)来源:徐力的日志背景:牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton—Raphson m ethod),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f’(x0)(x—x0),求出L与x轴交点的横坐标x1 = x 0—f(x0)/f'(x0),称x1为r的一次近似值。

过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标x2 = x1—f(x1)/f'(x1),称x2为r的二次近似值。

重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f’(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式.现用牛顿迭代法(matlab)求方程x^3-2x-1=0的根(—1)。

主函数:function[x,k]=Newtondd(f,x0,e)%%牛顿迭代法,求f(x)=0在某个范围内的根。

%%f为f(x),x0为迭代初值,e为迭代精度。

k为迭代次数x_a=x0;x_b=x_a—subs(f,x_a)/subs(diff(f),x_a);k=1;while abs(x_a-x_b)〉e,k=k+1;x_a=x_b;x_b=x_a-subs(f,x_a)/subs(diff(f),x_a); endx=x_b;运行:>〉syms x;>> f=(x^3-2*x—1)。

牛顿迭代法解元方程组以及误差分析matlab实现

牛顿迭代法解元方程组以及误差分析matlab实现

举例,给定方程组为:先用matlab 自带函数solve 解此方程组,确定牛顿迭代时的初值范围,得到根为:⎩⎨⎧==8493476.0848937.108y x 作图验证: 此组值确为方程的根。

通过观察我们可以发现y 的取值必须大于0。

这在程序中必须说明,如果迭代过程中y 小于0,则此迭代法发散。

误差分析:因为范数等价的原因,我们选择2范数。

将两次相邻迭代差差范数的比值,即相对误的与,2x x n n 1+n x 的2范数作为误差,存储与一个向量或矩阵中,并作出曲线图,观察迭代过程中误差的变化情况。

如选初值为(12,0.3),得到误差图形为:选初值为(12,1.2),误差图为:我们可以发现误差在前3-5次迭代的时候迅速下降,但是中间会有上升的过程,直至最后误差达到我们设定的误差值。

由此猜想迭代过程可能漏掉了一些根,利用作图,得到曲线如下:可以发现还有两组根,用牛顿迭代法只能得到一组值,可能是因为所给方程比较特殊,它的定义域中x,y 均不能为0,导致函数不连续。

另外,也可能因为函数不连续,导致初值只能在根的附件变化时才能得到收敛的结果。

因此我们不妨将初值选的稍微小一些,如:[1,2],得到根为选初值为[-1,4],得到根为综上所述,此方程组有三组根,不同的初值,会得到不同的解的情况,也会有不同的误差情况。

初值选得越接近真值,误差变化程度越小,迭代次数也越少。

程序在另三个附件中。

同理,对于n元函数方程组,我们有:.n .)('.)],...,(),...,,...,,([)(.n 1n )(')(.,...,,0],...,;......;,...,,[),...,,()(...)()(........),...,,()(...)()()()()(1)()(2)(11)()()1()()()()1(21112111)1(1012200201n 0202)1(2101)1(1002011102102)1(21101)1(1有限时的解编程,依然可以得到类似二元方程组,那么利用牛顿迭代法,为系数矩阵是一行向量为值迭代得到的各自变量的次是第的值,次迭代得到的各自变量是第牛顿迭代序列依二元方程组,可得到的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.0],;,[0
),()(),()(),(0),()(),()(),(,.**,0],;,[),()()(),()()(,0),(),(),(])()
[(),(),(),(),(),(])()[(),(),(2,),(])()[(21),(])()[(),(),()(2
)(''))((')()(:
1n 1n 11010101010000000000000000000000000020000000000000
000fg g f y y g f g f g f fg x x g g f f y x g y y y x g x x y x g y x f y y y x f x x y x f y x y x y x g f g f fg g f y y g f g f g f fg x x g f g f fg g f y y g f g f g f fg x x g g f f y x g y x g y y y x g x x y x f y x f y y y x f x x y x g y x f y x g y y y x x x y x g y x g y x f y x g y x f y y y x x x y x f y x f y x y x f y y y x x x y x f y y y x x x y x f y x f x x f x x x f x f x f x
x n n x y y x y y y x y x n n y n n n x n n n n n y n n n x n n n n n x y y x x
x x y y x y y x y y x x x x y y x y y y x y x y x y x y y x x y y x x y x y y x x ,则其解可记为:
的行列式不为若系数矩阵:
附近的线性化方程组为在一元方程牛顿迭代法,类似
,的新近似值于是就得到了根,则可得解:
的行列式不为若系数矩阵),(),(
),(),(
则两式构成方程组:
令可得:构成二元方程组,同样与若另有一方程:
阶小项,得到线性方程忽略在方程根附近取值时,当二元函数的展开为:
开类似一元函数的泰勒展⎪⎪⎪⎨⎧+-+=-+-+=⎪⎩⎪⎨⎧=-+-+=-+-+⎪⎪⎩
⎪⎪⎨⎧-+-+=-+-+=⇒⎪⎪⎩⎪⎪⎨⎧-+-=--+-=-⎪⎩⎪⎨⎧-=-+--=-+-==∂∂-+∂∂-+=∂∂-+∂∂-+=∂∂-+∂∂-+∂∂-+∂∂-+=-+
-+=++========η
ξξ
举例,给定方程组为:
4)exp(),(1
)4arctan(),(22
2331-+=--+=--y x y x g y x y x f
先用matlab 自带函数solve 解此方程组,确定牛顿迭代时的初值范围,得到根为:

⎨⎧==8493476.0848937.108y x 作图验证:
此组值确为方程的根。

通过观察我们可以发现y 的取值必须大于0。

这在程序中必须说明,如果迭代过程中y 小于0,则此迭代法发散。

误差分析:因为范数等价的原因,我们选择2范数。

将两次相邻迭代差差范数的比值,即相对误的与,2x x n n 1+n x 的2范数作为误差,存储与一个向量或矩阵中,并作出曲线图,观察迭代过程中误差的变化情况。

如选初值为(12,0.3),得到误差图形为:
选初值为(12,1.2),误差图为:
我们可以发现误差在前3-5次迭代的时候迅速下降,但是中间会有上升的过程,直至最后误差达到我们设定的误差值。

由此猜想迭代过程可能漏掉了一些根,利用作图,得到曲线如下:
可以发现还有两组根,用牛顿迭代法只能得到一组值,可能是因为所给方程比较特殊,它的定义域中x,y 均不能为0,导致函数不连续。

另外,也可能因为函数不连续,导致初值只能在根的附件变化时才能得到收敛的结果。

因此我们不妨将初值选的稍微小一些,如:[1,2],得到根为

⎨⎧==2.7637 y 0.8925x 选初值为[-1,4],得到根为

⎨⎧==3.4880y -0.8757x 综上所述,此方程组有三组根,不同的初值,会得到不同的解的情况,也会有不同的误差情况。

初值选得越接近真值,误差变化程度越小,迭代次数也越少。

程序在另三个附件中。

同理,对于n 元函数方程组,我们有:
.n .)('.
)],...,(),...,,...,,([)(.
n 1n )(')(.,...,,0],...,;......;,...,,[),...,,()(...)()(....
....),...,,()(...)()()()
()(1)()(2)(11)()()1()()()()1(21112111)
1(1012200201n 0202)1(2101)1(1
002011102102)1(21101)1(1有限时的解编程,依然可以得到类似二元方程组,那么利用牛顿迭代法,为系数矩阵是一行向量为值迭代得到的各自变量的次
是第的值,次迭代得到的各自变量是第牛顿迭代序列依二元方程组,可得到的值。

同样可解出,
的行列式不为若系数矩阵,以此类推。

知数第一次迭代后的值的初始值,第一个未
分别表示第一个未知数,求导,
个方程对第二个未知数表示,第式中,如)()()()()()()()()()()()()(matlab X F x x fn x x x f X F X X X F X F X X x x x f f f f f x x x n f x x x f f x x f x x f x x x x x f f x x f x x f x x n n n n n n n n n n n n n n n n nxn nx xn x x nx n nxn n n nx nx n xn n n x x +-=⎪⎪⎩⎪⎪⎨⎧-=-++-+--=-++-+-++
误差分析类似二元函数方程组。

相关文档
最新文档