桩基大小应变检测

合集下载

桩基小应变检测方法

桩基小应变检测方法

桩基小应变检测方法目前,常见的桩基小应变检测方法有测斜仪法、应变计法、光纤传感器法、振弦测试法等。

测斜仪法是一种传统的桩身应变检测方法,通过在桩顶部安装一台测斜仪,测量桩身的变形角度来反推出应变值。

测斜仪法简单直观,测量精度较高,但需要进行高程校正,且适用于垂直较小的桩身。

应变计法是一种常用的小应变检测方法,通过在桩身上安装多个应变计,来测量桩身的应变变化。

应变计法可以实时监测桩身应变的变化情况,测量精度较高,但需要在桩身上布置多个应变计,且对桩体表面应力分布情况的要求较高。

光纤传感器法是一种新兴的桩基小应变检测方法,通过在桩身内部或外部套上光纤传感器,利用光纤的光学特性来测量桩身的应变变化。

光纤传感器法具有灵敏度高、无干扰、无腐蚀等特点,可以实现对整个桩身的连续监测,但需要专业技术人员进行安装和监测。

振弦测试法是一种对桩身应变进行动态检测的方法,利用振弦测量桩身的共振频率和频率响应特性来反推出应变值。

振弦测试法适用于长桩、大直径桩等情况下的应变检测,可以实现对桩身整体应变的快速测量,但需要专用的振弦仪进行测试,且对环境干扰较敏感。

随着科技的不断进步,桩基小应变检测方法也在不断创新和发展。

目前,一些新兴的技术,如无人机摄像监测、雷达测量、电阻式嵌段式传感器等,被应用于桩基小应变检测中,为工程师提供更全面、准确的数据,提高了监测的效率和精度。

总结来说,桩基小应变检测方法可以根据工程需要和实际情况选择合适的方法进行监测。

每种方法都有其独特的优势和适用范围,工程师应根据具体情况进行选择。

随着技术的发展,桩基小应变检测方法将会进一步完善和创新,为工程监测提供更多更好的解决方案。

高应变低应变桩基检测

高应变低应变桩基检测

高应变低应变桩基检测一、定义根据建筑基桩检测技术规范JGJ106-2003第2.1.6条,低应变:采用低能量瞬态或稳态激励方式在桩顶激励,实测桩顶速度时程曲线或速度导纳曲线,通过波动理论分析或频域分析,对桩身完整性进行判断的检测方法。

第2.1.7条,高应变:用重锤冲击桩顶,实测桩顶部的速度和力时程曲线,通过波动理论分析,对单桩竖向抗压承载力和桩身完整性进行判定的检测方法。

高大钊版的《土力学与地基基础》关于大小应变的定义大应变:指激励能量足以使桩土之间发生相对位移,使桩产生永久贯入度的动测法小应变:指在激励能量较小,只能激发桩土体系(甚至只有局部)的某种弹性变形,而不能使桩土之间产生相对位移的动测法。

桩达到极限承载力时,即为桩周土达到塑性破坏。

唯有大应变才能使桩产生一定的塑性沉降(贯入度),所测的土阻力才是土的极限阻力;小应变只能测得桩土体系的某些弹性特征值,而土的弹性变形与其强度之间并没有确定的关系。

因此从理论上讲,小应变不能提供确切的单桩极限承载力,只能用于检验桩身质量。

二、何种桩需要检测建筑基桩检测技术规范JGJ106-2003第3.3.3条,单桩承载力和桩身完整性验收抽样检测的受检桩选择宜符合下列规定:1 施工质量有疑问的桩;2 设计方认为重要的桩;3 局部地质条件出现异常的桩;4 施工工艺不同的桩;5 承载力验收检测时适量选择完整性检测中判定的Ⅲ类桩;6 除上述规定外,同类型桩宜均匀随机分布。

解释:对于基桩的检测包括单桩承载力及桩身完整性两个部分,这两个部分要求检测的数量不同。

三、低应变与高应变适用范围低应变:适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。

低应变法的理论基础以一维线弹性杆件模型为依据。

因此受检桩的长细比、瞬态激励脉冲有效高频分量的波长与桩的横向尺寸之比均宜大于5,设计桩身截面宜基本规则。

另外,一维理论要求应力波在桩身中传播时平截面假设成立,所以,对薄壁钢管桩和类似于H型钢桩的异型桩,本方法不适用。

桩基小应变检测方法

桩基小应变检测方法

起因桩基工程中的应变检测是一项重要的任务。

传统的应变检测需要大量的人力物力,同时也容易出现误差。

为了提高效率和准确性,近年来开发了一些桩基小应变检测方法。

本文将介绍这些方法以及它们的优点和局限性。

方法1:高精度水准仪高精度水准仪是一种常用的应变检测工具。

它可以通过水准管观测桩基的高程变化,并计算出应变值。

这种方法的优点是精度高,适用于深基础或小直径桩的应变检测。

但是,它需要专业技术人员进行操作,且需要较长的时间。

方法2:MEMS应变传感器微机电系统(MEMS)应变传感器可以在桩身表面或附近安装,以测量应变变化。

它具有体积小、重量轻、易于操作等优点。

不过,由于它的不适应大气和水缸压力,所以需要采取一些保护措施。

方法3:光纤光栅传感器光纤光栅传感器可以使用可调谐激光光束进行细微的应变测量。

这种方法精度高,但设备成本较高,操作也比较繁琐。

此外,在安装过程中需要保护光纤光栅传感器,因为光纤光栅传感器的光缆是连续的。

方法4:电致伸缩测量这种方法使用的是电致伸缩变形测量(EDA)。

ECD利用晶体振荡剪切的特性,并通过对电压的变化来测量应变。

这种方法良好的线性性、敏感度和精度,而且方便易用。

但是,其测量范围有限,一旦达到上限,就无法进行应变测量。

方法5:数字图象相关技术数字图象相关技术(DIC)可以在桩基表面上涂覆标记,并使用数字影像处理技术来测量应变。

这种方法操作简单、实时性强、测量范围较广。

不过,它的测量精度受到光线、标记质量、光源等影响而有所不同。

因此,需要进行环境控制来保持测量的精度。

结论为提高桩基工程施工质量,一定要进行好应变检测工作。

本文介绍了几种小应变检测方法。

正是因为这些方法的优点和局限性,所以在实际应用中要融合不同的科技。

当前,数字化、智能化和科技化的测量和控制方式正在逐渐普及。

它们不仅提高了精度和效率,还为工程施工质量和安全提供了可靠的保障。

桩基小应变检测报告

桩基小应变检测报告

桩基小应变检测报告低应变检测法是建立在一维波动理论根底之上,在数学上模拟桩的一维应力波传播,计算反射、投射和博得叠加,根据波形的异常推断桩的完整性。

在桩质量检测过程中,把桩做如下鉴定:1)视桩为一维弹性直杆;2)假定桩为均匀材质构成,且截面积在受力时保持平面;3)忽略了桩的内外阻力表面摩擦力的影响,桩周土对桩的约束和支承作用,集中由桩底的一个弹簧替代。

当桩顶受到一定的冲击力作用,会产生一弹性脉冲波,经桩身向下传播,根据力的平衡条件和牛顿第二定律,得到一维波动方程。

低应变检测过程中需注意的事项1)现场测试准备。

准备工作的好坏直接影响测试结果的准确性可靠性。

在检测前务必注意以下几点:a.桩头处理严格符合铁路基桩检测技术规程;b.搜集必要的地质资料;C.传感器安装点需充分打磨平整。

2)传感器的选用安装。

在对基桩开展低应变反射波法测试时选用高灵敏度加速度传感器检测。

检测时,在将浮点工程动测仪、计算机、传感器和电源按要求连接好后,把传感器用粘贴剂粘在检测桩桩顶轴心平面处,传感器应尽可能平行于桩身轴线,位置一般在钢筋笼之内远离力棒的敲击点,传感器与桩头一定要粘贴牢固,因为不同的粘结方式对实测波形影响很大,安装不牢会使波形失真,给波形分析带来困难甚至造成误判,所以传感器与桩头应绝缘、密贴,不得有气泡。

根据实测经验认为,在桩头平整的条件下,采用橡皮泥安装传感器可获得理想的桩身完整性实测曲线。

3)激振方式的选择。

在实际检测中,要根据不同条件,采用不同的激振方式,合理调整激振,能量要适中,以取得满意的测试效果,敲击时要垂直于桩顶,防止连击。

检测结果及分析检测结果的分析也是检测过程中至关重要的一个环节,它对检测人员要求很高。

需要有扎实的理论知识和丰富的现场经验。

分析时一些方面需特别注意:1)当基桩在施工过程中浅部有特别明显的“大头”现象时,其波的传播即不满足该行波理论,或波在界面处能量反射太过强烈,致使透射能量衰弱,或该处形成了“面波”反射,即曲线不能真实的反映基桩的下部情况,需要对大头开展凿挖后重新检测;2)要特别留意扩径的奇数次反射与入射波反相位,偶数次反射与入射波同相位的特征,以免造成误判——将扩径的偶数次反射当作缺陷判定;3)要注意低应变检测结果的多解性,注意与施工情况、地层情况等结合开展判定。

桩基低应变高应变简介

桩基低应变高应变简介

桩基低应变及高应变检测一、定义根据建筑基桩检测技术规范JGJ106-2003第2.1.6条,低应变:采用低能量瞬态或稳态激励方式在桩顶激励,实测桩顶速度时程曲线或速度导纳曲线,通过波动理论分析或频域分析,对桩身完整性进行判断的检测方法。

第2.1.7条,高应变:用重锤冲击桩顶,实测桩顶部的速度和力时程曲线,通过波动理论分析,对单桩竖向抗压承载力和桩身完整性进行判定的检测方法。

二、何种桩需要检测建筑基桩检测技术规范JGJ106-2003第3.3.3条,单桩承载力和桩身完整性验收抽样检测的受检桩选择宜符合下列规定:1 施工质量有疑问的桩;2 设计方认为重要的桩;3 局部地质条件出现异常的桩;4 施工工艺不同的桩;5 承载力验收检测时适量选择完整性检测中判定的Ⅲ类桩;6 除上述规定外,同类型桩宜均匀随机分布。

解释:对于基桩的检测包括单桩承载力及桩身完整性两个部分,这两个部分要求检测的数量不同。

三、低应变与高应变适用范围低应变:适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。

低应变法的理论基础以一维线弹性杆件模型为依据。

因此受检桩的长细比、瞬态激励脉冲有效高频分量的波长与桩的横向尺寸之比均宜大于5,设计桩身截面宜基本规则。

另外,一维理论要求应力波在桩身中传播时平截面假设成立,所以,对薄壁钢管桩和类似于H型钢桩的异型桩,本方法不适用。

本方法对桩身缺陷程度只做定性判定,尽管利用实测曲线拟合法分析能给出定量的结果,但由于桩的尺寸效应、测试系统的幅频相频响应、高频波的弥散、滤波等造成的实测波形畸变,以及桩侧土阻尼、土阻力和桩身阻尼的耦合影响,曲线拟合法还不能达到精确定量的程度。

对于桩身不同类型的缺陷,低应变测试信号中主要反映出桩身阻抗减小的信息,缺陷性质往往较难区分。

例如,混凝土灌注桩出现的缩颈与局部松散、夹泥、空洞等,只凭测试信号就很难区分。

因此,对缺陷类型进行判定,应结合地质、施工情况综合分析,或采取钻芯、声波透射等其他方法。

桩基检测方案(低应变、超声波、钻芯及高应变法)

桩基检测方案(低应变、超声波、钻芯及高应变法)

桩基检测方案工程名称:建设单位:检测方法:低应变法、声波透射法、钻芯法及高应变法编制单位:编制人:审批人:编制日期:一、工程概况本项目位于广东省,采用冲孔灌注桩基础,桩径为φ1200~φ1800mm,设计混凝土强度为C35,总桩数为72根。

二、检测目的和依据2.1 检测依据根据国家行业标准《建筑基桩检测技术规范》JGJ106-2003,现提供基桩检测的详细施测方案。

2.2 检测目的根据相关规范、规程要求及本项目的特点,确定采用以下检测方法进行检测:(1)低应变法检测:目的是检测桩身结构完整性,并为高应变和钻芯检测桩确定桩位提供依据。

(2)声波透射法检测:目的是检测桩身结构完整性。

(3)钻芯法检测:目的是检验桩身砼质量、桩身砼强度是否满足设计要求;桩底沉渣是否符合设计及施工验收规范要求;桩底持力层是否符合设计要求;施工记录桩长是否属实。

(4)高应变法检测:目的是检测单桩竖向抗压承载力是否满足设计要求。

三、检测项目和具体内容3.1 低应变检测3.1.1 检测数量根据本项目的要求,确定抽检数量为37根。

检测桩号由相关单位确定3.1.2 检测设备检测仪器采用岩海公司出产的RS-1616K(p)基桩动测仪。

3.1.3 检测原理基桩反射波法检测桩身结构完整性的基本原理是:通过在桩顶施加激振信号产生应力波,该应力波沿桩身传播过程中,遇到不连续界面(如蜂窝、夹泥、断裂、孔洞等缺陷)和桩底面时,将产生反射波,检测分析反射波的到时、幅值和波形特征,就能判断桩的完整性。

假设桩为一维线性弹性杆,其长度为L,横截面积为A,弹性模量为E,质量密度为ρ,弹性波速为C(C2 = E/ρ),广义波阻抗为Z=AρC,推导可得桩的一维波动方程:∂2u/∂t2=C2∂2u/∂x2-R/ρA假设桩中某处阻抗发生变化,当应力波从介质I(阻抗为Z1)进入介质II(阻抗为Z2)时,将产生速度反射波Vr和速度透射波Vt。

令桩身质量完好系数β=Z2/Z1,则有Vr=Vi×(1-β) /(1+β)Vt=Vi×2/(1+β)缺陷的程度根据缺陷反射的幅值定性确定,缺陷位置根据反射波的时间tx由下式确定Lx=C×tx/23.1.4 技术要求1、检测桩头处理(由施工单位完成)(1)凿去桩顶浮浆、松散或破损部分,露出坚硬的混凝土表面,使桩顶表面平整干净无且无水。

大应变检测小应变检测

大应变检测小应变检测

大应变检测小应变检测定义:用重锤冲击桩顶,实测桩顶部的速度和力时程曲线,通过波动大应变检测理论分析,对单桩竖向抗压承载力和桩身完整性进行判定的检测方法。

为建筑业构造物下部结构桩基类质量检测术语。

系地基检测规范GB50202-2002-5.1.5条规定工程桩应进行承载力检验。

5.1.6、5.1.8规定应做那些试验的依据。

编辑本段作用与原理:在建筑工程中,对各种不同方式成桩且承载上部荷载的桩基础的桩所进行的质量检测方法;大应变检测(也叫高应变检测,)的目的与作用是测出桩的桩身完整性和承载力。

大应变检测试桩的基本原理:用重锤冲击壮顶(见右图),使桩-土产生足够的相对位移,悬落重锺冲击试验以充分激发桩周土阻力和桩端支承力,通过安装在桩顶以下桩身两侧的加速度传感器和安装在重锤上的加速度传感器接收桩和锤的应力波信号,应用应力波理论分析处理力和速度时程曲线,从而判定桩的承载力和评价桩身质量完整性。

大应变检测相对而言有小应变检测,小应变检测桩身结构完整性的基本原理是:通过在桩顶施加激振信号产生应力波,该应力波沿桩身传播过程中,遇到不连续界面(如蜂窝、夹泥、断裂、孔洞等缺陷)和桩底面时,将产生反射波,检测分析反射波的传播时间、幅值和波形特征,就能判断桩的完整性。

桩基其他的检测方法还有:单桩竖向抗压静载试验,单桩竖向抗拔静载试验,单桩水平静载试验,钻芯法,声波透射法。

有关用例:"大应变"和"小应变"两者的区别:1.试验的方法不同。

大应变需用吊车吊重锤配合(一般我们在现场看见搭个棚子,检测24小时左右,那就是大应变);小应变用仪器配合手锤敲击即可(弄个仪器在桩头处敲一下那是小应变).PAX 大应变打桩分析仪2.检测时间性:大应变需待砼达到设计强度时方可做,小应变则砼达7天强度时便可做.2.两者得出的检测数据不同:大应变测出桩的桩身完整性和承载力.,而小应变(也叫低应变)则能测桩身完整性。

大小应变实验方法

大小应变实验方法

大应变就是弹性屈服超过极限,小应变就是在塑性变形范围之内的大、小应变检测——桩基质量检测方法2007年10月16日星期二 19:09“大应变”和“小应变”两者的区别:一是试验可以得出的参考数据不同:大应变(也叫高应变)可以测出工程桩的桩身完整性和承载力,而小应变(也叫低应变)只能测桩身完整性。

二是试验的方法不同。

大应变试桩的基本原理:用重锤冲击壮顶,使桩-土产生足够的相对位移,以充分激发桩周土阻力和桩端支承力,通过安装在桩顶以下桩身两侧的加速度传感器和安装在重锤上的加速度传感器接收桩和锤的应力波信号,应用应力波理论分析处理力和速度时程曲线,从而判定桩的承载力和评价桩身质量完整性。

而小应变测桩身结构完整性的基本原理是:通过在桩顶施加激振信号产生应力波,该应力波沿桩身传播过程中,遇到不连续界面(如蜂窝、夹泥、断裂、孔洞等缺陷)和桩底面时,将产生反射波,检测分析反射波的传播时间、幅值和波形特征,就能判断桩的完整性。

大应变不是最可靠的检测竖向承载力方法,要准的话还是要静载;一个大应变有适用范围,二是要有地区经验,如果你这个大应变试验符合这两个条件,那就补桩吧。

不符合的话,桩基检测规范里提到对大应变结果有疑虑或需要验证其结果时时宜进行静载试验12000Kn极限承载力一般是大直径嵌岩桩,大直径扩底桩或Q-S曲线具缓变性特征的大直径桩都不宜采用高应变法检测竖向承载力。

桩基低应变动力检测是什么?桩基低应变动力检测主要以低应变要测量桩身的刚度,然后再根据刚度换算桩身的强度。

主要目的还是检测桩身砼强度,再根据桩身砼强度换算桩本身的承载力什么是桩基静载试验一、前言桩基静载试验是一项方法成立,理论上无可争议的桩基检测技术。

在确定单桩极限承载力方面,它是目前最为准确、可靠的检验方法,判定某种动载检验方法是否成熟,均以静载试验成果的对比误差大小为依据。

因此,每种地基基础设计处理规范都把单桩静载试验列入首要位置。

一般情况下,桩基静载试验的成果数据,如单桩承载力、沉降量等均认为是准确、可靠的,这已为无数的工程实例证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

桩基大小应变检测
小应变检测也称为低应变动力检测,它是相对对大应变动力检测而言的。

大应变检测是用重锤冲击桩顶,实测桩顶部的速度和力时程曲线,通过波动理论分析,对单桩竖向抗压承载力和桩身完整性进行判定的检测方法,可用于断桩检测,为建筑业构造物下部结构桩基类质量检测术语
一是试验可以得出的参考数据不同:大应变(也叫高应变)可以测出工程桩的桩身完整性和承载力,而小应变(也叫低应变)只能测桩身完整性。

二是试验的方法不同。

大应变试桩的基本原理:用重锤冲击壮顶,使桩-土产生足够的相对位移,以充分激发桩周土阻力和桩端支承力,通过安装在桩顶以下桩身两侧的加速度传感器和安装在重锤上的加速度传感器接收桩和锤的应力波信号,应用应力波理论分析处理力和速度时程曲线,从而判定桩的承载力和评价桩身质量完整性。

而小应变测桩身结构完整性的基本原理是:通过在桩顶施加激振信号产生应力波,该应力波沿桩身传播过程中,遇到不连续界面(如蜂窝、夹泥、断裂、孔洞等缺陷)和桩底面时,将产生反射波,检测分析反射波的传播时间、幅值和波形特征,就能判断桩的完整性。

三是检测数量不同。

一般低应变检测要检测全部工程桩,高应变检测的范围是全部工程量的10%随机抽检。

四是概念不同。

低应变法(Low strain integrity testing)采用低能量瞬态或稳态激振方式在桩顶激振,实测桩顶部的速度时程曲线或速度导纳曲线,通过波动理论分析或频域分析,对桩身完整性进行判定的检测方法。

高应变法(High strain dynamic testing )用重锤冲击桩顶,实测桩顶部的速度和力时程曲线,通过波动理论分析,对单桩竖向抗压承载力和桩身完整性进行判定的检测方法。

通过小编的总结,相信桩基大小应变两者之前的区别都有一定的了解,希望可以帮助相关人士。

相关文档
最新文档