三角形中线与角平分线(经典例题)

合集下载

解三角形之三角形的角平分线和中线问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学

 解三角形之三角形的角平分线和中线问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学

【解答题抢分专题】备战2023年高考数学解答题典型例题+跟踪训练(新高考通用)专题05解三角形之三角形中线和角平分线问题目录一览一、梳理必备知识二、基础知识过关三、典型例题讲解四、解题技巧实战五、跟踪训练达标1.正弦定理R CcB b A a 2sin sin sin ===.(其中R 为ABC ∆外接圆的半径)2sin ,2sin ,sin ;a R A b R B c R C ⇔===(边化角)sin ,sin ,sin ;222a b c A B C R R R⇔===(角化边)2.余弦定理:222222222cos 2cos 2cos .2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩⇒2222222222cos ,2cos ,2cos .a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩3.三角形面积公式:B ac A bcC ab S ABC sin 21sin 21sin 21===∆=12++为三角形ABC 的内切圆半径4.三角形内角和定理:一、梳理必备知识在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 5.三角形中线问题如图在ABC ∆中,D 为CB 的中点,2AD AC AB =+,然后再两边平方,转化成数量关系求解!(常用)6.角平分线如图,在ABC ∆中,AD 平分BAC ∠,角A ,B ,C 所对的边分别为a ,b ,c ①等面积法ABC ABD ADC S S S ∆∆∆=+⇒111sin sin sin 22222A AAB AC A AB AD AC AD ⨯⨯=⨯⨯+⨯⨯(常用)②内角平分线定理:AB AC BD DC =或AB BDAC DC =③边与面积的比值:ABDADCS AB AC S =【常用结论】①在ABC ∆中,sin sin ;a b A B A B >⇔>⇔>②sin 2sin 2,.2A B A B A B π==+=则或③在三角函数....中,sin sin A B A B >⇔>不成立。

三角形的高、中线、角平分线的八种常见应用(解析版)

三角形的高、中线、角平分线的八种常见应用(解析版)

专题01三角形的高、中线、角平分线的八种常见应用【解题策略】 三角形的高、中线和角平分线是三角形中三种重要的线段,它们提供了重要的线段或角的关系,对我们以后深入研究三角形的一些特征有很大帮助,因此,我们需要从不同的角度认识这三种线段.在三角形的两条边和这两条边上的高这四个量中,已知其中的三个量,可用等面积法求第四个量.题型01三角形的高在求线段长中的应用【典例分析】【例1-1】(23-24八年级上·云南文山·期末)如图,90,8,10,ACB AC AB CD ∠=°==是斜边的高,则CD =( )A .3B .4.2C .4.8D .5【答案】C 【分析】本题考查等积法求线段的长与勾股定理.先由勾股定理计算出BC ,再根据等面积法求解即可,掌握等积法,是解题的关键.【详解】解:∵90,8,10ACB AC AB ∠=°==,∴6BC ,∵CD 是斜边的高, ∴1122ABC S AC BC AB CD =⋅=⋅ , ∴8610CD ×=, ∴48 4.810CD ==; 故选C【例1-2】(23-24七年级下·辽宁鞍山·期中)如图,在ABC 中,90ACB ∠=°,5AB =,4AC =,3BC =,则点C 到AB 边距离为 .【答案】125/225/2.4 【分析】本题考查与三角形有关的线段,三角形的高,根据题意可得ABC 是直角三角形,设点C 到AB 边距离为h ,由三角形面积公式计算即可求解.【详解】解:在ABC 中,90ACB ∠=°, ∴ABC 是直角三角形,设点C 到AB 边距离为h ,1122ABC S AC BC AB h ∴=⋅=⋅ ,即345h ×=,125h ∴=, 故答案为:125. 【例1-3】(22-23八年级上·河南·阶段练习)如图,在ABC 中,8AC =,4BC =,高3BD =.(1)作出BC 边上的高AE ;(2)求AE 的长.【答案】(1)见解析(2)6AE =【分析】(1)过点A 作BC 边的垂线,交BC 延长线于E 即可;(2)利用等积法求得AE 的长度即可.【详解】(1)解:如图, 过点A 作BC 边的垂线,交BC 延长线于E ,∴线段AE 即为BC 边上的高,(2)解:∵11S 22ABC BC AE AC BD =⋅=⋅ ,8AC =,4BC =,3BD =, ∴1148322AE ×=××, ∴6AE =.【点睛】本题考查了作三角形的高及求高,熟记三角形的面积公式即可解题,属于基础题【变式演练】【变式1-1】(23-24八年级上·四川成都·期末)如图,在Rt ABC △中,90ACB ∠=°,6AC =,8BC =,CD 是斜边的高,则CD 的长为( )A .245B .125C .5D .10【答案】A【分析】本题主要考查了勾股定理,三角形面积的计算,解题的关键是熟练掌握勾股定理,在一个直角三角形中,两条直角边分别为a 、b ,斜边为c ,那么222+=a b c .先根据勾股定理求出10AB =,然后根据三角形面积进行计算即可.【详解】解:∵在Rt ABC △中,90ACB ∠=°,6AC =,8BC =,∴10AB =, ∵1122ABC S AC BC AB CD =⋅=⋅ , ∴6824105AC BC CD AB .故选:A【变式1-2】(23-24八年级上·四川泸州·阶段练习)如图,ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,6,5,4AB AD BC ===,则CE 的长为 .【答案】103/133【分析】本题考查了三角形的面积计算,根据1122ABC S AB CE BC AD =×=× ,即可求解. 【详解】解:∵AD BC ⊥,CE AB ⊥, ∴1122ABC S AB CE BC AD =×=× , ∵6,5,4AB AD BC ===, ∴1164522CE ××=××, ∴103CE =. 故答案为:103【变式1-3】(21-22七年级下·江苏无锡·期中)如图,在ABC 中,AD 为边BC 上的高,连接AE .(1)当AE 为边BC 上的中线时,若6AD =,ABC 的面积为24,求CE 的长;(2)当AE 为BAC ∠的平分线时,若66C ∠=°,36B ∠=°,求DAE ∠的度数.【答案】(1)4CE =(2)15DAE ∠=°【分析】本题考查三角形的面积,三角形的中线与高等知识,解题的关键是熟练掌握三角形的基本知识. (1)先根据三角形面积公式计算出8BC =,然后根据AE 为边BC 上的中线得到CE 的长;(2)先根据三角形内角和定理计算出78BAC ∠=°,再利用角平分线的定义得到39CAE ∠=°,接着计算出CAD ∠,然后计算CAE CAD ∠−∠即可.【详解】(1) AD 为边BC 上的高,ABC 的面积为24,1242BC AD ∴⋅=, 22486BC ×∴==, AE 为边BC 上的中线,142CE BC ∴==; (2) 66C ∠=°,36B ∠=°,∴180180663678BAC C B °−°°°°∠=∠−∠=−−=,∴AE 为BAC ∠的平分线, ∴1392CAE BAC ∠=∠=°,90ADC ∠=°,66C ∠=°, ∴906624CAD ∠°°=°=−,∴392415DAE CAE CAD ∠=∠−∠=°−°=°题型02三角形的高在求角的度数中的应用【典例分析】【例2-1】(23-24八年级上·湖北武汉·阶段练习)如图,在ABC 中,AD 是BC 边上的高,BE 平分ABC∠交AC 边于E ,60BAC ∠=°,22ABE ∠=°,则DAC ∠的大小是( )A .10°B .12°C .14°D .16°【答案】C 【分析】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.根据角平分线的定义可得2ABC ABE ∠=∠,再根据直角三角形两锐角互余求出BAD ∠,然后根据DAC BAC BAD ∠=∠−∠计算即可得解.【详解】解:BE 平分ABC ∠,222244ABC ABE ∴∠=∠=×°=°,AD 是BC 边上的高,90904446BAD ABC ∴∠=°−∠=°−°=°,604614DAC BAC BAD ∴∠=∠−∠=°−°=°.故选:C【例2-2】(23-24八年级上·黑龙江牡丹江·期末)已知ABC 中,50A ∠=°,AB ,AC 边上的高所在的直线交于H ,则BHC ∠=度. 【答案】130°或50°【分析】本题主要考查了三角形的内角和定理,三角形的高线,解题的关键是分ABC 是锐角三角形与钝角三角形两种情况进行讨论.分两种情况考虑:①ABC 是锐角三角形时,先根据高线的定义求出90ADB ∠=°,90BEC ∠=°,然后根据直角三角形两锐角互余求出ABD ∠的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;②ABC 是钝角三角形时,根据直角三角形两锐角互余求出BHC A ∠=∠即可.【详解】解:①如图1,ABC 是锐角三角形时,BD 、CE 是ABC 的高线,90ADB ∴∠=°,90BEC ∠=°, 在ABD △中,50A ∠=° ,905040ABD ∴∠=°−°=°,4090130BHC ABD BEC ∴∠=∠+∠=°+°=°;②ABC 是钝角三角形时,BD 、CE 是ABC 的高线,90A ACE ∴∠+∠=°,90BHC ∠+∠=°,ACE HCD ∠=∠ , 50BHC A ∴∠=∠=°,综上所述,BHC ∠的度数是130°或50°,故答案为:130°或50°【例2-3】(22-23七年级下·江苏常州·期中)如图,在ABC 中,50ABC ∠=°,CE 为AB 边上的高,AF 与CE 交于点G .若80∠=°AFC ,求AGC ∠的度数.【答案】120°【分析】由高的定义可得90BEC ∠=°,由三角形内角和可得BCE ∠的度数,再根据三角形内角和可得出CGF ∠的度数,由平角的定义可得出AGC ∠的度数.本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键【详解】解:CE 是AB 边上的高,90BEC ∴∠=°,在ABC 中,50ABC ∠=°, 18040BCE ABC BEC ∴∠=°−∠−∠=°,80AFC ∠=° ,18060CGF AFC BCE ∴∠=°−∠−∠=°,180120AGC CGF ∴∠=°−∠=°【变式演练】【变式2-1】(22-23八年级上·安徽安庆·期末)如图,在ABC 中,5525B C AD ∠=°∠=°,,是BC 边的高,AE 平分BAC ∠,则DAE ∠的度数为( )A .12.5°B .15°C .17.5°D .20°【答案】B 【分析】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.先根据三角形内角和定理求出BAC ∠的度数,再根据AE 平分BAC ∠求出BAE ∠的度数,根据AD BC ⊥求出BAD ∠的度数,由DAE BAE BAD ∠=∠−∠即可得出结论.【详解】在ABC 中,55B ∠=°,25C ∠=°,1805525100BAC ∴∠=°−°−°=°.AE 平分BAC ∠,1502BAE BAC ∴°∠=∠=. AD 是边BC 上的高,90ADB ∴∠=°,90905535BAD B ∴∠=°−∠=°−°=°,503515DAE BAE BAD ∴∠=∠−∠=°−°=°.故选:B【变式2-2】(22-23)八年级上·安徽马鞍山·期末)如图,AD 、AE 分别是ABC 的高和角平分线,且38B ∠=°,74C ∠=°,则DAE ∠= .【答案】18°【分析】本题主要考查了三角形内角和定理以及角平分线的性质定理,利用三角形内角和定理求出68BAC ∠=°,利用角平分线的性质得出34EAC ∠=°,再利用三角形内角和定理求出16DAC ∠=°,进一步即可求出DAE ∠.【详解】解:∵38B ∠=°,74C ∠=°∴18068BACB C ∠=°−∠−∠=°, ∵AE 是BAC ∠的平分线, ∴1342EAC BAC ∠=∠=°, ∵AD 是ABC 的高,∴90ADC ∠=°, ∴18016DAC C ADC ∠=°−∠−∠=°,∴341618DAE EAC DAC ∠=∠−∠=°−°=°,故答案为:18°【变式2-3】(23-24八年级上·海南省直辖县级单位·期中)如图所示,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC °∠=,70C ∠=°.(1)求EAD ∠的度数;(2)求BOA ∠的度数.【答案】(1)10°(2)125°【分析】本题考查了角平分线的定义、三角形的内角和性质,直角三角形的两个锐角互余,正确掌握相关性质内容是解题的关键.(1)先由角平分线的定义得30CAE BAE ∠=∠=°,结合直角三角形的两个锐角互余,得20CAD ∠=°,即可作答.(2)先由角平分线的定义得55OAB OBA +=°∠∠,再运用三角形的内角和性质进行列式计算,即可作答. 【详解】(1)解:∵AE 是BAC ∠的平分线,60BAC ∠=° ∴30CAE BAE ∠=∠=° ∵AD 是高,70C ∠=°∴在Rt ACD △中,20CAD ∠=° ∴302010EAD CAE CAD ∠=∠−∠=°−°=°(2)解:∵AE BF 、是角平分线 ∴11 110552()2OAB OBA CAB CBA ∠+∠=∠+∠=×°=° ∴180125()BOAOAB OBA ∠=°−∠+∠=° 题型03三角形的高在求相关线段的比值中的应用【典例分析】【例3-1】(23-24八年级上·四川绵阳·期末)如图,,AE CD 是ABC 的高,5,3AE CD ==,则AB BC=( )A .53B .45C .35D .25【答案】A【分析】本题考查与三角形的高有关的计算,利用等积法列出比例式,进行求解即可.【详解】解:∵,AE CD 是ABC 的高, ∴1122ABC AB B S CD C AE ⋅=⋅= ,∴53AB AE BC CD ==; 故选:A【例3-2】(23-24八年级上·山东德州·阶段练习)如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD 与CE 相交于点O ,连接BO 并延长交AC 于点F .若5AB =,4BC =,6AC =,则CE :AD :BF 的值为 .【答案】12:15:10【分析】本题主要考查三角形的高,由题意得:BF AC ⊥,再根据三角形的面积公式,可得5432ABCS AD CE BF === ,进而即可得到答案. 【详解】解: 在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为点D 和点E ,AD 与CE 交于点O , BF AC ∴⊥,5AB = ,4BC =,6AC =,∴1122ABC S BC AD AB CE BF =⋅=⋅=⋅ , ∴5432ABCS AD CE BF === , CE ∴:AD :BF =12:15:10,故答案是:12:15:10【例3-3】(23-24八年级上·广东东莞·阶段练习)如图,在ABC 中,AD 与CE 是ABC 的高.(1)若7cm,10cm,8cm AB BC CE ===,求AD ; (2)若2,3,AB BC ABC ==△的高AD 与CE 的比是多少?【答案】(1)28cm 5(2)12【分析】(1)利用三角形面积公式1122ABC S AB CE BC AD =⋅=⋅ ,即可求解; (2)利用三角形面积公式1122ABC S AB CE BC AD =⋅=⋅ 求解即可. 【详解】(1)解:∵1122ABC S AB CE BC AD =⋅=⋅ , ∴1178=1022AD ××××, ∴285AD cm =; (2)解:∵1122ABC S AB CE BC AD =⋅=⋅ , ∴112=422CE AD ××××, ∴12AD CE =. 【点睛】本题考查三角形的面积,利用同一个三角形的面积的两种表示列方程是解题的关键【变式演练】【变式3-1】(23-24八年级上·河北承德·期末)在ABC 中,高2,4AD CE ==.则边:AB BC 是( ) A .1:2 B .2:1 C .3:1 D .1:3【答案】A【分析】本题考查的是三角形的高、三角形的面积公式,熟记三角形的面积公式是解题的关键.利用三角形的面积公式可得答案. 【详解】解:∵1122ABC S AB CE BC AD =⋅=⋅ ,2,4AD CE ==, ∴42AB BC =, ∴:2:41:2AB BC==, 故选:A .【变式3-2】(23-24八年级上·福建厦门·期中)如图,在ABC 中,2AB =,4BC =,ABC 的高AD 与CE的比是 .【答案】1:2【分析】本题考查了三角形高的定义.根据三角形的面积公式可得11=22ABC S AB CE BC AD ×=×△,即可求解.【详解】解:∵11=22ABC S AB CE BC AD ×=×△ ∴2142AD AB CE BC ===, 故答案为:1:2【变式3-3】(22-23八年级上·全国·课后作业)如图,AD 是ABC 的中线,DE AC DF AB ⊥⊥,,E ,F 分别是垂足.已知2AB AC =,求DE 与DF 的长度之比.【答案】2:1【分析】根据三角形面积法进行求解即可. 【详解】解:∵AD 是ABC 的中线, ∴ABD ACD S S , ∵DE AC DF AB ⊥⊥,,∴1122ABD ACD S AB DF S AC DE =⋅=⋅△△,, ∴1122AB DF AC DE ⋅=⋅, ∵2AB AC =, ∴2:1DE ABDF AC==. 【点睛】本题主要考查了三角形中线的性质,三角形面积,熟知三角形中线平分三角形面积是解题的关键题型04三角形的高在求相关线段和的问题中的应用【典例分析】【例4-1】(2022八年级上·浙江·专题练习)如图,ABC ∆中,2ABAC ==,P 是BC 上任意一点,PE AB ⊥于点E ,PF AC ⊥于点F ,若1ABC S ∆=,则PE PF +值为( )A .1B .1.2C .1.5D .2【答案】A【分析】连接AP ,则ABC ACP ABP S S S ∆∆∆=+,依据Δ1=2ACP S AC PF ×,Δ1=2ABP S AB PE ×,代入计算即可得到1PE PF +=.【详解】解:如图所示,连接AP ,则ABCACP ABP S S S ∆∆∆=+,∵PE AB ⊥于点E ,PF AC ⊥于点F , ∴Δ1=2ACP S AC PF ×,Δ1=2ABP S AB PE ×,又∵1ABC S ∆=,2ABAC ==, ∴111=+22AC PF AB PE ××, 即111=2+222PF PE ××××,∴1PE PF +=, 故选:A .【点睛】本题主要考查了三角形的面积,解决问题的关键是作辅助线将等腰三角形分割成两个三角形,利用面积法进行计算【例4-2】(23-24八年级上·重庆北碚·期中)在等腰ABC 中,4ABAC ==,30BAC ∠=°,D 是BC 上任意一点,DE AB ⊥,DF AC ⊥,DE DF +=.【答案】2【分析】本题考查等腰三角形的性质,直角三角形30度的性质,三角形的面积等知识,解题的关键是学会利用面积法解决问题,属于中考常考题型.作BH AC ⊥于H ,利用含30度的直角三角形的性质得到122BH AB ==,根据ABCABD ACD S S S =+ ,DE AB ⊥,DF AC ⊥,列出等式,由此即可解决问题.【详解】解:过B 作BH AC ⊥于H ,30BAC ∠=° ,122BH AB ∴==, ∵DE AB ⊥,DF AC ⊥,ABCABD ACD S S S =+ , ∴111222AC BH AB DE AC DF ⋅=⋅+⋅, 则111444222BH DE DF ×⋅=×⋅+×⋅, 则2BH DE DF =+=, 故答案为:2【例4-3】(23-24八年级上·四川自贡·阶段练习)如图,在ABC 中,2ABAC ==,P 是BC 边上的任意一点,PE AB ⊥于点E ,PF AC ⊥于点F .若6ABC S = ,求PE PF +的长.【答案】6PE PF +=【分析】根据1122ABC ABP APC S S S AB PE AC PF =+=⋅+⋅ ,结合已知条件,即可求得PE PF +的值. 【详解】解:如图,连接AP ,PE AB ⊥于点E ,PF AC ⊥于点F ,1122ABC ABP APC S S S AB PE AC PF ∴=+=⋅+⋅ , 2AB AC == ,6ABC S = ,∴1122AB PE AC PF ⋅+⋅6PE PF =+=【变式演练】【变式4-1】(23-24八年级上·广东广州·期中)Rt ABC △中,90C ∠=°,D 是BC 上一点,连接AD ,过B 、C 两点分别作直线AD 的垂线,垂足为E 、F ,若8BC =,6AC =,9AD =,则BE CF +的值是( )A .6B .163C .8D .203【答案】B【分析】本题考查三角形的面积,根据两种不同三角形的面积:12ABCS AC BC =⋅ ,ABCABD ACD S S S =+ ,建立等式是解决问题的关键.【详解】解:∵90C ∠=°,8BC =,6AC =, ∴11682422ABC AC B S C ⋅=××==, 又∵BE AD ⊥,CF AD ⊥,9AD =,∴ABC ABD ACD S S S =+ 即:()111924222AD BE AD CF BE CF ⋅+⋅=××+= ∴163BE CF +=, 故选:B .【变式4-2】(23-24八年级上·黑龙江齐齐哈尔·期中)如图,在ABC 中,5ABAC ==,F 是BC 边上任意一点,过F 作FD AB ⊥于D ,FE AC ⊥于E ,若10ABC S =△,则FE FD +=.【答案】4【分析】连接AF ,根据ABC ABF ACF S S S =+ ,即可求解.熟练掌握等腰三角形的性质,正确理解题意,根据等面积法列出等式是解题的关键. 【详解】解:连接AF ,如图:则10ABF A ABC CF S S S =+= △△, 12ABFS AB FD =×△,12ACF S AC FE =×△, ∴111022AC FE AB FD ×+×=,∵5ABAC ==, ∴551022FE FD +=, ∴4FE FD += 故答案为:4题型05三角形的中线在求线段长中的应用【典例分析】【例5-1】(23-24八年级上·重庆·阶段练习)如图,ABC 中,159AB BC ==,,BD 是AC 边上的中线,若ABD △的周长为35,则BCD △的周长是( )A .20B .29C .26D .28【答案】B【分析】本题考查了中线的意义,根据BD 是AC 边上的中线,得到AD CD =,根据ABD △的周长为AB BD AD ++;BCD △的周长为BC BD CD ++,计算周长的差,得到()()1596AB BD AD BC BD CD BC ++−++=−=−=,结合ABD △的周长为35,计算35629−=即可. 【详解】∵BD 是AC 边上的中线, ∴AD CD =,∵ABD △的周长为AB BD AD ++;BCD △的周长为BC BD CD ++,∴()()1596AB BD AD BC BD CD AB BC ++−++=−=−=, ∵ABD △的周长为35, ∴BCD △的周长为35629−=, 故选B【例5-2】(23-24八年级上·全国·课后作业)如图,AD ,AE 分别是ABC 的高和中线,已知5cm AD =,6cm CE =,则ABC 的面积为 .【答案】230cm【分析】本题主要考查了求三角形面积,熟知三角形高和中线的定义是解题的关键. 先根据中线的定义求出212BC CE cm ==,再根据三角形面积公式求解即可. 【详解】解:AE 是ABC 的中线,6cm CE =,212cm BC CE ∴,AD 是ABC 的高,∴2130cm 2ABC S AD BC, 故答案为:230cm【例5-3】(23-24八年级上·陕西渭南·期中)已知ABC ,AD 是BC 边上的中线,且4AC =,若ABD △的周长比ACD 的周长大5,求AB 的长. 【答案】9AB =【分析】本题考查的是三角形的中线,掌握三角形的中线的概念是解题的关键.根据中线的性质得到BD CD =,根据三角形的周长公式计算得到答案.【详解】解:如图,∵AD 是BC 边上的中线, ∴BD CD =,∵ABD △的周长比ACD 的周长大5,∴()()5AB BD AD AC AD CD ++−++=, ∴5AB AC −=, ∵4AC =, ∴9AB =【变式演练】【变式5-1】(23-24八年级上·福建福州·期末)如图,在ABC 中,AD 是高,AE 是中线,若3AD =,6ABC S = ,则BE 的长为( )A .1B .2C .3D .4【答案】B【分析】本题考查了三角形的高线和中线的意义,根据高线求出4BC =,根据AE 是中线即可求解. 【详解】解:∵162ABC S BC AD =××=,3AD =, ∴4BC = ∵AE 是中线, ∴122BE BC == 故选:B【变式5-2】(23-24八年级上·重庆垫江·阶段练习)在ABC 中,AD 为BC 边的中线.若ABD △与ADC △的周长差为3,8AB =,则AC = . 【答案】5或11AD 为BC 边上的中线,得BD CD =,根据题意,分类讨论进而即可求解,掌握中线的性质是解题的关键. 【详解】解:①当AB AC >时,∵ABD △与ADC △的周长差为3,∴()3AB BD AD AC CD AD ++−++=, ∵AD 为BC 边上的中线,∴BD CD =,∴()3AB BD AD AC CD AD AB AC ++−++=−=,∵8AB =,∴835AC =−=,②当AC AB >时,同理可得3AC AB −=,则8311AC =+= 故答案为:5或11【变式5-3】(21-22八年级上·湖北十堰·阶段练习)如图,在ABC 中()AB BC >,2AC BC =,BC 边上的中线AD 把ABC 的周长分成50和35两部分,求AC 和AB 的长.【答案】40AC =,25AB =【分析】本题主要考查了三角形中线的性质和三边的关系,先根据2AC BC =和三角形的中线列出方程求解,分类讨论①50AC CD +=,②35AC CD +=,注意答案是否满足条件,即是否满足题目给出的条件、是否满足三角形三边的关系.解题的关键是找到等量关系,列出方程.【详解】解:设BDCD x ==,则24AC BC x ==, BC 边上的中线AD 把ABC 的周长分成50和35两部分,AB BC >,①当50AC CD +=,35AB BD +=时, 450x x +=,解得:10x =,441040AC x ∴==×=,10BD CD ==,35351025AB BD ∴=−=−=,2520AB BC ∴=>=,满足条件;20254540BC AB AC +=+=>= ,满足三边关系,40AC ∴=,25AB =;②当35AC CD +=,50AB BD +=时, 435x x +=,解得:7x =,44728AC x ∴==×=,7BD CD ∴==,5050743AB BD =−=−=,28144243AC BC AB +=+=<= ,∴不满足三角形的三边关系,∴不合题意,舍去,综上:40AC =,25AB =题型06三角形的中线与高在证明线段相等中的应用【典例分析】【例6】如图,ABC ∆中,AD 为中线,D ,E 分别为BC ,AD 的中点,且40ABC S ∆=,CM AD ⊥于M .(1)ABD S ∆= ;(2)若5AE =,求CM 的长;(3)若BN AD ⊥交AD 的延长线于N ,求证:CM BN =.【分析】(1)根据三角形中线的性质得出面积即可;(2)根据三角形面积公式得出CM 即可;(3)根据三角形面积公式进行证明解答.【解答】(1)解:AD 为中线,且40ABC S ∆=,11402022ABD ABC S S ∆∆∴==×=, 故答案为:20;(2)解:AD 为中线,D ,E 分别为BC ,AD 的中点,40ABC S ∆=, ∴111024AEC ACD ABC S S S ∆∆===,12AECS AE CM ∆=⋅, ∴15102CM ×⋅=, 4CM ∴=;(3)证明:AD 为中线,D ,E 分别为BC ,AD 的中点, ∴12ABD ACD ABC S S S ∆∆∆==, 12ABDS AD BN ∆=⋅,12ACD S AD CM ∆=⋅, ∴1122AD BN AD CM ⋅=⋅, CM BN ∴=.【点评】此题是三角形综合题,考查三角形中线的性质和三角形面积公式,关键是根据三角形中线的性质解答.题型07三角形的角平分线在解与平行线相关问题中的应用【典例分析】【例7-1】(22-23八年级上·湖北随州·期中)如图,在ABC 中,DE BC ∥,ABC ∠和ACB ∠的平分线分别交ED 于点G 、F ,若36FG DE ==,,则EB DC +的值为( )A .6B .7C .9D .10【答案】C 【分析】本题考查了角平分线,平行线的性质,等角对等边等知识.熟练掌握角平分线,平行线的性质,等角对等边是解题的关键.由角平分线,平行线的性质可得EGB CBG ABG DFC BCF ACF ∠=∠=∠∠=∠=∠,,则BE EG DC DF ==,,根据EB DC EG DF EF FG DE EF +=+=++−,计算求解即可.【详解】解:∵BG CF 、是ABC ∠和ACB ∠的平分线,∴ABG CBG ACF BCF ∠=∠∠=∠,, ∵DE BC ∥,∴EGB CBG ABG DFC BCF ACF ∠=∠=∠∠=∠=∠,, ∴BE EGDC DF ==,, ∴9EB DC EG DF EF FG DE EF +=+=++−=,故选:C【例7-2】(23-24八年级上·重庆渝北·期中)如图,在ABC 中,ED BC ∥,ABC ∠和ACB ∠的角平分线分别交ED 于点G ,F ,若4BE =,6CD =,3FG =.则ED 的长为 .【答案】7【分析】本题考查了等腰三角形的判定与性质,平行线的性质,根据角平分线的定义和平行线的性质可证EBG 和DFC 是等腰三角形,从而可得4EB EG ==,6DC DF ==,然后利用线段的和差关系进行计算,即可解答.【详解】解:BG 平分ABC ∠,CF 平分ACB ∠,ABG CBG ∴∠=∠,ACF BCF ∠=∠,ED BC ∥,EGB CBG ∴∠=∠,DFC BCF ∠=∠,ABG EGB ∴∠=∠,ACF DFC ∠=∠,4EB EG ∴==,6DC DF ==,3FG = ,4637DE EG DF FG ∴=+−=+−=,故答案为:7【例7-3】(23-24八年级上·江苏徐州·期中)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证:DE BC ∥;(2)若65A ∠=°,45AED ∠=°,求EBC ∠的度数. 【答案】(1)见解析(2)35°【分析】本题考查了角平分线的定义、平行线的判定与性质、等边对等角、三角形内角和定理,熟练掌握以上知识点并灵活运用是解此题的关键.(1)由角平分线的定义可得ABE CBE ∠=∠,由等边对等角可得DBE DEB ∠=∠,从而得出CBE DEB ∠=∠,即可得证;(2)由平行线的性质可得45ACB AED ∠=∠=°,由三角形内角和定理得出70ABC ∠=°,最后由角平分线的定义计算即可得出答案.【详解】(1)证明:BE 平分ABC ∠,ABE CBE ∴∠=∠,DB DE = ,DBE DEB ∴∠=∠,CBE DEB ∴∠=∠,DE BC ∴∥;(2)解:DE BC ∥,45ACB AED ∴∠=∠=°,18070ABC ACB A ∴∠=°−∠−∠=°,BE 平分ABC ∠,11703522EBC ABC ∴∠=∠=×°=°.【变式演练】【变式7-1】(23-24八年级上·内蒙古呼和浩特·期中)如图,在ABC 中,ED BC ∥,ABC ∠和ACB ∠的平分线分别交ED 于点G 、F ,若37FG ED ==,,则EB DC +的值为( )A .9B .10C .11D .12【答案】B 【分析】本题考查了角平分线,平行线的性质,等角对等边等知识.熟练掌握角平分线,平行线的性质,等角对等边是解题的关键.由角平分线、平行线的性质可得EGB GBC ABG DFC BCF ACF ∠=∠=∠∠=∠=∠,,则EB EG DF DC ==,,根据EB CD ED FG +=+,计算求解即可.【详解】解:∵BG 平分ABC ∠,CF 平分ACB ∠,∴ABG GBC ACF BCF ∠=∠∠=∠,, ∵ED BC ∥,∴EGB GBC ABG DFC BCF ACF ∠=∠=∠∠=∠=∠,, ∴EB EGDF DC ==,, ∴10EB CD EG DF EG FG DG ED FG +=+=++=+=.故选:B【变式7-2】(23-24八年级上·河北沧州·期中)如图,在ABC 中,ABC ∠和ACB ∠的平分线交于点E ,过点E 作MN BC ∥交AB 于M ,交AC 于N ,若9BM CN +=,则线段MN 的长为 .【答案】9【分析】本题考查了角平分线的定义、平行线的性质、等角对等边,由角平分线的定义结合平行线的性质可得MBE MEB NEC ECN ∠=∠∠=∠,,由等角对等边得出BM ME EN CN ==,,再由MN BM CN =+,即可得解,熟练掌握角平分线的定义、平行线的性质、等角对等边,是解此题的关键.【详解】解:ABC ACB ∠∠ 、的平分线相交于点E ,MBE EBC ECN ECB ∴∠=∠∠=∠,,MN BC ,EBC MEB NEC ECB ∴∠=∠∠=∠,,MBE MEB NEC ECN ∴∠=∠∠=∠,,BM ME EN CN ∴==,,MN ME EN ∴=+,即MNBM CN =+, 9BM CN += ,9MN ∴=,故答案为:9【变式7-3】(23-24八年级上·河北保定·期末)如图,在ABC 中,46B ∠=°,54C ∠=°,AD 平分BAC ∠交BC 于点D ,点E 是边AC 上一点,若40ADE ∠=°,求证:DE AB ∥.【答案】见解析【分析】本题考查了三角形内角和定理、角平分线的定义、平行线的判定,由三角形内角和定理得出80BAC ∠=°,由角平分线的定义得出1402BAD BAC ∠=∠=°,从而得出40ADE BAD ∠=∠=°,即可得证. 【详解】证明:∵在ABC 中,46B ∠=°,54C ∠=°,∴180465480BAC ∠=°−°−°=°. ∵AD 平分BAC ∠, ∴1402BAD BAC ∠=∠=°. ∵40ADE BAD ∠=∠=°. ∴DE AB ∥题型08三角形的角平分线与高再求角的度数中的应用【典例分析】【例8-1】(22-23八年级上·新疆乌鲁木齐·期中)如图,ABC 中,AD BC ⊥,AE 平分BAC ∠,70B ∠=°,34C ∠=°,则DAE ∠=( )A .18°B .34°C .20°D .38°【答案】A 【分析】本题主要考查了与角平分线有关的三角形内角和问题.利用垂直求得9056DACC ∠=°−∠=°是正确解答本题的关键.在ABC 中,根据三角形内角和定理得到BAC ∠的度数,进而求出DAC ∠的度数,在直角ACD 中根据三角形内角和定理得到DAC ∠的度数,则DAE ∠的度数就可以求出.【详解】解:在ABC 中,70B ∠=°,34C ∠=°,∴18076BACB C ∠=°−∠−∠=°, 又∵AE 平分BAC ∠, ∴1382EAC BAC ∠=∠=°, 在直角ACD 中,9056DACC ∠=°−∠=°, ∴18DAE DAC EAC ∠=∠−∠=°.故选:A【例8-2】(23-24八年级上·浙江绍兴·阶段练习)如图,在ABC 中,AD 是高,AE 是角平分线,若60,16B DAE ∠=°∠=°,则C ∠= .【答案】28?/28度【分析】本题考查了三角形的高、角平分线、三角形内角和等知识,解题的关键从已知条件入手,逐步推得待求的结论.先由AD 是高与=60B ∠°求得BAD ∠,再求得BAE ∠,再由角平分线AE 推得BAC ∠,最后由三角形的内角和求得C ∠的度数.【详解】∵AD 是高,∴90ADB ∠=°, ∵=60B ∠°,∴9030BADB °∠=−∠=°. ∵16DAE ∠=°, ∴46BAE BAD DAE =+=°∠∠∠. ∵AE 是角平分线,∴46CAEBAE ==°∠∠, ∴92BAC BAE CAE =+=°∠∠∠, 在ABC 中,180180609228CB BAC =°−−=°−°−°=°∠∠∠. 故答案为:28°【例8-3】(23-24八年级上·云南怒江·阶段练习)如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,70C ∠=°,60ABC ∠=°,求DAE ∠的度数.【答案】5°【分析】本题考查了三角形的内角和定理、直角三角形的两个锐角互余、三角形的角平分线等知识,熟练掌握三角形的内角和定理是解题关键.先根据三角形的内角和定理求出50BAC ∠=°,再根据直角三角形的性质可得30BAD ∠=°,然后根据角平分线的定义可得1252BAE BAC ∠=∠=°,最后根据DAE BAD BAE ∠=∠−∠求解即可得.【详解】解:∵在ABC 中,70C ∠=°,60ABC ∠=°, ∴18050BACC ABC ∠=°−∠−∠=°, ∵在ABC 中,AD 是高,即AD BC ⊥,∴9030BADABC ∠=°−∠=°, ∵在ABC 中,AE 是角平分线,即AE 是BAC ∠的角平分线,∴1252BAE BAC ∠=∠=°, ∴5DAE BAD BAE ∠=∠−∠=°【变式演练】【变式8-1】(23-24八年级上·山东滨州·期末)如图,在ABC 中,AD 是高,AE 是角平分线.若60BAC ∠=°,70C ∠=°,则EAD ∠的大小为( )A .5°B .10°C .15°D .20°【答案】B 【分析】本题主要考查了三角形的内角和定理,角平分线,解答的关键是结合图形分析清楚角与角之间的数量关系.由AD 是高,70C ∠=°,可得20CAD ∠=°,再由AE 是BAC ∠的角平分线,60BAC ∠=°,从而得30CAE ∠=°,进而可求EAD ∠的度数. 【详解】解:AD 是ABC 的高,70C ∠=°,90ADC ∴∠=°,18020CAD ADC C ∴∠=°−∠−∠=°,AE 是BAC ∠的角平分线,60BAC ∠=°, 1302CAE BAC ∴∠=∠=°, 10EAD CAE CAD ∴∠=∠−∠=°.故选:B【变式8-2】(23-24八年级上·四川自贡·期末)如图,在ABC 中,AD 是高,角平分线AE ,BF 相交于点O ,30BAE ∠=°,20DAC ∠=°,则AOB ∠ 的度数是 .【答案】125°【分析】本题考查的是三角形的高的含义,角平分线的含义,先计算70C ∠=°,60BAC ∠=°,50ABC ∠=°,25ABO ∠=°,再利用三角形的内角和定理可得答案.【详解】解:AD 是ABC 的高,90ADC ∴∠= ,180ADC C CAD ∠+∠+∠=° ,20DAC ∠=°,180902070C ∴∠=°−°−°=°,∵AE 平分BAC ∠,30BAE ∠=°, ∴60BAC ∠=°, 180ABC C CAB ∠+∠+∠°= ,180706050ABC ∴∠=°−°−°=°,BF 分别平分ABC ∠, ∴1252ABO ABC ∠=∠=°, 180ABO BAO AOB ∠+∠+∠= ,1802530125AOB °°°°∴∠=−−=.故答案为:125°【变式8-3】(23-24八年级上·北京·期中)如图,AD 是ABC 的高,AE 是ABC 的角平分线,若38B ∠=°,70C ∠=°.求AEC ∠和DAE ∠的度数.【答案】74AEC ∠=°,16DAE ∠=° 【分析】本题考查三角形的内角和定理及角平分线的性质,高线的性质,由三角形内角和定理可求得BAC ∠的度数,根据角平分线定义求出EAC ∠的度数,在Rt ADC 中,可求得DAC ∠的度数,最后根据角的和差关系求解即可.【详解】∵38B ∠=°,70C ∠=°,∴18072BACB C ∠=°−∠−∠=°, ∵AE 是角平分线,∴1362EAC BAC ∠=∠=°. ∵AD 是高,70C ∠=°, ∴9020DAC C ∠=°−∠=°, ∴362016EAD EAC DAC ∠=∠−∠=°−°=°, 901674AEC ∠=°−°=°。

三角形中线高角平分线的30题(有答案)ok

三角形中线高角平分线的30题(有答案)ok

三角形中线高角平分线的30题(有答案)ok1.在三角形ABC中,角A为30°,角B为70°,CE为角ACB的平分线,CD垂直于AB于点D,DF垂直于CE于点F。

1) 证明角BCD等于角ECD。

2) 找出所有与角B相等的角。

2.在三角形ABC中,AD为中线,BE为三角形ABD的中线。

1) 已知角ABE为15°,角BAD为35°,求角BED的度数。

2) 在三角形BED中,作BD边上的高。

3) 若三角形ABC的面积为60,BD为5,求点E到BC边的距离。

3.在三角形ABC中,AD是BC边上的中线,已知三角形ABD和三角形ADC的周长之差为4(其中AB>AC),AB与AC的和为14,求AB和AC的长度。

4.在三角形ABC中,角A为20°,CD为角BCA的平分线,DE为CA边上的高,已知角EDA等于角CDB,求角B的度数。

5.在三角形ABC中,AD⊥BC,AE为角BAC的平分线,已知角B为30°,角C为70°。

1) 求角EAD的度数。

2) 若角B小于角C,是否有2倍角EAD等于角C减去角B?请说明理由。

6.在三角形ABC中,AD为高,AE为角平分线,已知角B为20°,角C为60°,求角CAD和角DAE的度数。

7.在三角形ABC中。

1) 若角A为60°,AB和AC边上的高CE和BD交于点O,求角BOC的度数。

2) 若角A为钝角,AB和AC边上的高CE和BD所在直线交于点O,画出图形,并用量角器量一量角BAC加上角BOC的度数,再用已学过的数学知识加以说明。

3) 由(1)和(2)可以得到,无论角A为锐角还是钝角,总有角BAC加上角BOC等于180°。

8.在三角形ABC中,已知角ABC为60°,角ACB为50°,BE为AC上的高,CF为AB上的高,H为BE和CF的交点,求角ABE、角ACF和角BHC的度数。

11.1.2三角形的角平分线和中线

11.1.2三角形的角平分线和中线

新知探究 △ABC的三条中线相交于一点,这个焦点叫做三角形的重心.
A F O B D C E
新知探究 如图,线段AD是△ABC的中线, △ABD和△ACD面积有什么关 系?
A
B
D
C
中线的性质:中线AD将△ABC分成面积相等的两部分.
典型问题 例题1.如图,点D是BC的中点,若S△ABD=8,则S△ACD=______.
(1)若AB=5,AC=4,则△ABD与△ACD的周长差为
A
.
(2)若AE⊥BC,垂足为E,BC=10,AE=6,求△ACD的面积.
B
D
C
课堂练习 3.如图,AD,AE分别是△ABC的中线和高,AB=13,AC=5, (1)△ABD与△ACD的周长的差是______; (2)若E恰好是CD的中点,那么△ABE和△ACE的面积有什么样的 数量关系?请说明理由.
A
B
D
E
C
课堂练习 4.如图,AD是△ABC中∠BAC的平分线,DE∥AC,DE交AB于点E, DF∥AB,DF交AC于点F,图中∠1与∠2有什么关系?为什么?
解:∠1=∠2,理由如下: ∵AD平分∠BAC ∴∠EAD=∠FAD ∵DE∥AC ∴∠1=∠FAD ∵DF∥AB ∴∠2=∠EAD ∴∠1=∠2.
C
D A B
课堂练习 1. 如图,点D,E分别是BC,AD的中点,若S△ABD=8,则 S△ACE=______.
C
D E A B
课堂练习 2.如图,在△ABC中,D是边BC中点,E,F分别为线段AD,CE的 中点,且S△ABC=8,则△BFE的面积为____.
A E
F C
B
D
典型问题 例题2.如图,AD是△ABC的中线.

三角形角平分线、中线、高线证明题

三角形角平分线、中线、高线证明题

2.证题的思路:性质 1、全等三角形的对应角相等、对应边相等。

2、全等三角形的对应边上的高对应相等。

3、全等三角形的对应角平分线相等。

4、全等三角形的对应中线相等。

5、全等三角形面积相等。

6、全等三角形周长相等。

(以上可以简称:全等三角形的对应元素相等) 7、三边对应相等的两个三角形全等。

(SSS)8、两边和它们的夹角对应相等的两个三角形全等。

(SAS) 9、两角和它们的夹边对应相等的两个三角形全等。

(ASA) 10、两个角和其中一个角的对边对应相等的两个三角形全等。

(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。

(HL)全等三角形问题中常见的辅助线的作法常见辅助线的作法有以下几种:1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SASD CBAED F CB A常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.三角形辅助线做法图中有角平分线,可向两边作垂线。

初中-数学-人教版-三角形的角平分线、中线和高专题练习

初中-数学-人教版-三角形的角平分线、中线和高专题练习
又∵AB=5cm,AC=3cm,
∴AB-AC=2(cm).
即△ABD与△ACD的周长之差为2cm.
19、【答案】115
【分析】直接根据角平分线平分对应角,三角形内角和为180度进行计算.
【解答】 BP平分∠ABC,CP平分∠ACB,
故答案为115.
20、【答案】③④
【分析】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.
③写出α与β的数量关系,并说明理由;
(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出α与β的数量关系.
参考答案
1、【答案】C
【分析】根据三角形的高的特点对选项进行一一分析,即可得出答案.
【解答】A、锐角三角形,三条高线交点在三角形内,故错误;
B、钝角三角形,三条高线不会交于一个顶点,故错误;
【解答】①根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法不正确;
②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;
③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;
④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.
∴△ABC的面积=2×△BDC的面积=16,
选C.
11、【答案】C
【分析】根据三角形的高线、中线、角平分线的性质逐一判断即可.
【解答】解:A、正确,锐角三角形的三条高线、三条中线、三条角平分线分别交于一点;
B、正确,钝角三角形有两条高线在三角形的外部;
C、错误,直角三角形也有三条高线;

三角形的高中线与角平分线练习题

三角形的高中线与角平分线练习题

4321EDCBA1CDBA三角形的高、中线与角平分线11 如图,已知△ABC 中,AQ=PQ 、PR=PS 、PR ⊥AB 于R ,PS ⊥AC 于S ,有以下三个结论:①AS=AR ;②QP ∥AR ; ③△BRP ≌△CSP ,其中( ).(A)全部正确 (B)仅①正确 (C)仅①、②正确 (D)仅①、③正确 2、 如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是( )A. ∠3=∠4B.∠B=∠DCEC.∠1=∠2.D.∠D+∠DAB=180° 3.如图,ΔACB 中,∠ACB=900,∠1=∠B.(1)试说明 CD 是ΔABC 的高;(2)如果AC=8,BC=6,AB=10,求CD 的长。

4如图,直线DE 交△ABC 的边AB 、AC 于D 、E , 交BC 延长线于F ,若∠B =67°,∠ACB =74°, ∠AED =48°,求∠BDF 的度数5、如图:∠1=∠2=∠3,完成说理过程并注明理由: 因为 ∠1=∠2所以 ____∥____ ( ) 因为 ∠1=∠3所以 ____∥____ ( )6.以下列各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .5cm ,6cm ,10cm C .1cm ,1cm ,3cm D .3cm ,4cm ,9cm7.等腰三角形的一边长等于4,一边长等于9,则它的周长是( ) A .17 B .22 C .17或22 D .138.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形9.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105°D.30°或75°10.一个多边形的角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.811.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定12.三角形的三边长分别为5,1+2x,8,则x的取值围是________.13.如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.初一三角形的高、中线与角平分线21 如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)∠5的度数是多少?(3)求四边形ABCD各角的度数.2.△ABC中,∠A=50°,∠B=60°,则∠A+∠C=________.3 .已知三角形的三个角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定4.△ABC中,∠A=∠B+∠C,则∠A=______度.5.如图∠1+∠2+∠3+∠4=______度.6.如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,•∠C=45°,求∠DAE与∠AEC的度数.7.以下说法错误的是()6题A.三角形的三条高一定在三角形部交于一点B.三角形的三条中线一定在三角形部交于一点C.三角形的三条角平分线一定在三角形部交于一点D.三角形的三条高可能相交于外部一点8.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,•那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.如图,BD=1BC,则BC边上的中线为______,△ABD的面积=_____的面积.2(9)10.如图,△ABC中,高CD、BE、AF相交于点O,则△BOC•的三条高分别为线段________.(10)初一三角形的高、中线与角平分线31.下列图形中具有稳定性的是()A.梯形B.菱形C.三角形D.正方形2.如图3,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,求△ABD•与△ACD的周长之差.3.如图,∠BAD=∠CAD,AD⊥BC,垂足为点D,且BD=CD.•可知哪些线段是哪个三角形的角平分线、中线或高?4.如图5,在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分为15和6两部分,求该等腰三角形的腰长及底边长.5.有一块三角形优良品种试验基地,如图所示,•由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).6.如图,在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm2,求S△ABE.7.如图,在锐角△ABC中,CD、BE分别是AB、AC上的高,•且CD、BE交于一点P,若∠A=50°,则∠BPC的度数是()8如图7-1-2-9,AD是△ABC的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△DEF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.初一三角形的高、中线与角平分线41.若三角形的外角中有一个是锐角,则这个三角形是________三角形.2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”).3.如图1,x=______.(1) (2) (3) 4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________.5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数.7.如图所示,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC=______.8.一个零件的形状如图7-2-2-6所示,按规定∠A应等于90°,∠B、∠D应分别是30°和20°,叔叔量得∠BCD=142°,就断定这个零件不合格,你能说出道理吗?9.(1)如图(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.11.如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,试探索∠D与∠A之间的数量关系.12 如图,BD为△ABC的角平分线,CD为△ABC的外角∠ACE的平分线,它们相交于点D,试探索∠BDC与∠A之间的数量关系.7.3 多边形及其角和基础过关作业1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80°B.90°C.170°D.20°2.一个多边形的角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.角和等于外角和2倍的多边形是()A.五边形B.六边形C.七边形D.八边形4.六边形的角和等于_______度.5.正十边形的每一个角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,)已知一个多边形的角和为540°,则这个多边形为()A.三角形B.四边形C.五边形D.六边形(2)(2005年,)五边形的角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A.1个B.2个C.3个D.4个培优作业14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的角和增加多少度?若将n边形的边数增加1倍,则它的角和增加多少度?数学世界攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°点拨:正十边形每一个角的度数为:(102)18010-⨯︒=144°,每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的角和为360°,如果四个角都是锐角或都是钝角,•则角和小于360°或大于360°,与四边形的角和为360°矛盾.•所以四个角不可以都是锐角或都是钝角.若四个角都是直角,则四个角的和等于360°,与角和定理相符,所以四个角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n (n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的角和.12.(1)C 点拨:设这个多边形的边数为n ,依题意,得(n-2)×180°=540°,解得n=5,故选C .(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;……n 边形有(3)2n n -条对角线. (2)当n 边形的边数增加1时,对角线增加(n-1)条.点拨:从n 边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n 个顶点共可引n (n-3)条,但这些对角线每一条都重复了一次,故n 边形的对角线条数为(3)2n n -. 15.180°,n ·180°.数学世界答案:是最短的路程.可用纸板做一个模型,沿AB 剪开便可看出结论.。

三角形角平分线、中线、高线证明题

三角形角平分线、中线、高线证明题

三角形角平分线、中线、高线证明题(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2.证题的思路:性质 1、全等三角形的对应角相等、对应边相等。

2、全等三角形的对应边上的高对应相等。

3、全等三角形的对应角平分线相等。

4、全等三角形的对应中线相等。

5、全等三角形面积相等。

6、全等三角形周长相等。

(以上可以简称:全等三角形的对应元素相等) 7、三边对应相等的两个三角形全等。

(SSS)8、两边和它们的夹角对应相等的两个三角形全等。

(SAS) 9、两角和它们的夹边对应相等的两个三角形全等。

(ASA) 10、两个角和其中一个角的对边对应相等的两个三角形全等。

(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。

(HL)全等三角形问题中常见的辅助线的作法常见辅助线的作法有以下几种:1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SASD CB AE D FC B A特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.三角形辅助线做法图中有角平分线,可向两边作垂线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年高考新课标2全国卷数学解三角形题目思考
1、中ABC ∆,D 是BC 上的点,AD 平分BAC ∠,.2倍面积的的面积是ADC ABD ∆∆.
重点结论:角平分线性质:(1)平分角;(2)到角两边距离相等;(3)线段成比例
中点性质与结论:(1)平分线段;(2)向量结论;(3)两个小三角形面积相等
解法评价:好想,但计算较多,且最终无法取舍两根,需要依靠图片的准确性舍弃一解
在ABC

2
2
2
2
2
2
31cos 2AB BC AC B AB BC +-+===
⋅在ABD

中2
22
2732316AD =+-⨯=
⎝⎭
4
AD ∴=
解法评价:
突出余弦定理两大运用,
两边及夹角,
利用余弦定理求第三边和三边求角,训练在同一个角在不同三角形中求解
ABC ABD ADC S S S ∆∆∆=+,有正弦定理的面积公式可得
111
sin sin sin 222
AB AC BAC AB AD BAD AC AD CAD ⋅∠=⋅∠+⋅∠。

相关文档
最新文档