35kv变电站课程设计
35KV变电站电气部分初步设计19页

35KV变电站电⽓部分初步设计19页专业课程设计报告题⽬:35kv变电站电⽓部分初步设计系别电⽓⼯程系专业班级学⽣姓名指导教师提交⽇期⽬录⼀、设计⽬的 (3)⼆、设计要求和设计指标 (3)三、设计内容 (3)3.1变电站主线路设计 (3)3.1.1主接线的设计原则 (4)3.1.2主接线的设计要求 (4)3.2变电站基本情况 (5)3.3主变压器选择 (5)3.4短路电流的计算 (6)3.4.1变压器等值电抗计算 (6)3.4.2短路点三相短路电流计算 (7)3.5隔离开关及断路器的选择 (7)3.6线路的选择 (8)3.6.1选择 (8)3.6.2校验 (8)3.7互感器的选择 (9)3.8关于接地短路电流的计算及接地要求..................... 错误!未定义书签。
3.8.1关于接地短路电流的计算..................................... 错误!未定义书签。
3.8.2⼟壤电阻率ρ的取值 (11)3.8.3接地电阻值要的求............................................ 错误!未定义书签。
3.9接地电⽹的布置 ........................................................................................... 错误!未定义书签。
3.10变电站⽆功补偿............................................ 错误!未定义书签。
3.10.1各级电压⽆功补偿应根据分层分区、就地平衡的原则 ........ 错误!未定义书签。
3.10.2接线般规定 ................................................. 错误!未定义书签。
3.10.3⽆功补偿装置的接线⽅式应满⾜下列要求.................... 错误!未定义书签。
35kV煤矿变电所课程设计

目录绪论 (1)第1章负荷计算与变压器选择 (3)1.1. 计算负荷定义 (3)1.1.1 计算负荷目的 (3)1.1.2 计算负荷方法 (3)1.2 矿井用电负荷计算 (3)1.3 功率因数的改变 (7)1.4 主变压器的选择 (8)1.4.1 变压器台数选定原则 (8)1.4.2 变压器容量选择原则 (8)1.4.3 6kV/380v变压器的选择 (9)1.5 全矿年电耗与吨煤电耗 (9)第2章供电系统的确定与短路计算 (10)2.1 主接线的设计原则和要求 (10)2.1.1 主接线 (11)2.1.2 桥形接线 (11)2.1.3 单母线分段接线 (12)2.2短路电流的分类与计算方法 (12)2.2.1 短路的原因 (12)2.2.2 短路的种类 (12)2.2.3 短路的危害 (13)2.2.4 短路电流计算的目的 (13)2.2.5 短路电流计算的标幺值法 (13)2.3短路电流计算 (13)2.3.1 计算各元件的电抗标幺值 (14)2.3.2 短路电流计算 (16)第3章电气设备的选择 (20)3.1 电气设备选择的一般条件 (20)3.1.1 电气设备选择的一般原则 (20)3.1.2 电气设备选择的技术条件 (20)3.1.3 环境条件 (21)3.2 各种电气设备的选择 (22)3.2.1 断路器的选择 (22)3.2.2 隔离开关的选择 (22)3.2.3 电流互感器的选择与校验 (22)3.2.4 电压互感器的选择 (23)3.2.5 配电所高压开关柜的选择 (23)3.3 母线的选择及校验 (23)3.3.1 35kv架空线、母线的选择 (23)3.3.2 6kV母线的选择 (23)3.3.3 下井电缆型号及截面的选择 (24)第4章变电所二次回路 (24)4.1 二次回路的定义和分类 (25)4.2 高压断路器的控制 (25)4.3 电测量仪表与绝缘监视装置 (26)4.3.1电测量仪表 (26)4.3.2绝缘监视装置 (27)4.4 供电系统的自动装置 (27)第5章继电保护方案及整定 (28)5.1 概述 (28)5.2 继电保护的优化配置及整定原则 (29)5.3 供电系统继电保护配置情况 (29)5.4 35kv进线保护 (30)5.4.1 电流速断保护的整定计算 (30)5.4.2 过流保护的整定计算 (30)5.4.3 35kv进线开关保护 (31)5.5主变器保护 (31)5.5.1 主变差动保护 (31)5.5.2 主变过流保护 (33)5.5.3 主变过负荷保护 (34)5.6 6kV母联保护 (34)5.7 6kV出线保护 (35)第6章变电所室内外布置 (37)6.1 电气总平面布置的特点 (37)6.2 变电站土建要求 (37)6.3 电气照明 (38)第7章变电所防雷保护及接地 (39)7.1 变电所的防雷 (39)7.1.1 变电所的防雷设计原则 (39)7.1.2 变电所的防雷措施 (39)7.1.3 变电所主要防雷设备 (40)7.2 变电所的接地设计 (42)7.2.1 设计原则 (42)7.2.2简单接地设计 (43)致谢 (44)附录 (46)附录A 外文资料 (46)附录B 变电所主接线图 (53)附录C 设备选型汇总表 (54)附录D 变电所平面布置图 (55)摘要本文详细介绍了某煤矿地面35kV变电所的设计。
35KV变电站继电保护课程设计

35KV变电站继电保护课程设计————————————————————————————————作者:————————————————————————————————日期:21 绪论1.1变电站继电保护的发展变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。
电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置,继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。
继电保护发展现状,电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断注入新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。
随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。
国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化。
1.2 继电保护装置的基本要求继电保护及自动装置属于二次部分,它对电力系统的安全稳定运行起着至关重要的作用。
对继电保护装置的基本要求有四点:即选择性、灵敏性、速动性、和可靠性。
1.3 继电保护的整定继电保护整定的基本任务就是要对各种继电保护给出整定值,而对电力系统中的全部继电保护来说,则需要编出一个整定方案。
整定方案通常可按电力系统的电压等级或者设备来编制,并且还可按继电保护的功能划分小方案进行。
本次课程设计的35kV变电站继电保护可分为:相见短路的电压、电流保护,单相接地零序电流保护,短线路纵联差动保护等。
整定计算一般包括动作值的整定、灵敏度的校验和动作时限的整定三部分。
并且分为:①无时限电流速断保护的整定。
②动作时限的整定。
③带时限电流速断保护的整定。
2. 设计概述:2.1设计依据:1.1.1继电保护设计任务书。
35KV变电站设计说明书

一、课程设计目的、要求和依据 (4)(一)课程设计的目的 (4)(二)对课程设计的要求 (4)(三)课程设计所依据的文件 (4)二、课程设计内容。
、 (5)三、短路电流计算 (5)四、电网继电保护配置设计 (5)(―)继电保护配置的一般原则 (6)(二)35千伏中性点不接地电网的继电保护配置原则..................... ( 7)1、................................................................. 相间短路保护 (7)2、................................................................. 单相接地保护 (8)3过负荷保护 (8)(三)配置方案的考虑 (8)五、整定计算方法 (9)(一)........................................................................................... 相间短路的电流电压保护 (9)1、瞬时电流速断保护的整定计算 (9)2、瞬时电流电压联锁速断保护的整定计算 (11)3、限时电流速断保护的整定计算 (12)一 1 一4、限时电流电压联锁速断保护的整定计算 ------------ (14)5、定时限时电流保护的整定计算-------------------- (17)6、低电压闭锁定时限过电流保护的整定计算 ---------- (18)(二)相间短路的距离保护---------------------------- (20)1、距离保护动作阻抗的整定计算--------------------- (20)2、阻抗继电器动作阻抗的计算---------------------- (22)(三)单相接地的零序保护---------------------------- (23)1、----------------------------------------------- 绝缘监视装置(23) 2、------------------------------------------------ 零序电流保护 (23)(四)----------------------------------------------------------------------- 过负荷保护-------------------------------------------------- (24)六、35千伏电网继电保护配置图的绘制 ------------------ (24)七、--------------------------------------------------- 35千伏线路继电保护回路设计 -------------------------------- (24)(一)继电保护回路设计的内容----------------------- (24)1、继电保护回路和整个二次回路的关系-------------- (24)2、继电保护回路的设计----------------------------- (25)(二)继电器及并联附加电阻的选择------------------- (26)1、电流、电压继电器的选择------------------------ (27)2、功率继电器的选择------------------------------ (28)3、接地继电器的选择----------------------------- (28)4、------------------------------------------------ 时间继电器的选择--------------------------------------------- (28)5、----------------------------------------------- 中间继电器的选择---------------------------------------------- (28)6、信号继电器及附加并联电阻---------------------- (29)(三)------------------------------------------------------------------------- 35千伏线路保护回路接线图的绘制 ---------------------------- (31)八设计说明书的编写 (32)九、附录 (32)附录一《水电站继电保护》课程设计任务书 (32)附录二《小型水力发电站设计规范》摘录 (35)附录三《火力发电厂、变电所二次接线设计技术规定(强电部分)》摘录 (35)附录四水轮发电机运算曲线数字表 (41)附录五继电保护及自动装置图形符号 (43)附录六电力系统回路上的回路编号 (47)附录七常用继电器技术数据 (48)十、符号说明及补充说明 (63)(一)............................................ 符号说明(63)(二)............................................ 补充说明(64)十一、附图 (64)35千伏金中线控制、测量回路接线图 (64)一、课程设计目的、要求和依据(一)课程设计的目的1. 在巩固《水电继电保护》课程所学理论知识的基础上,锻炼学生运用所学知识分析和解决生产实际问题的能力。
35kV变电站设计方案

35kV变电站设计方案一、设计背景和目标二、工程规模和布置1.变电站规模:设计容量为35kV,电流容量为1000A,设计变电容量为35MVA。
2.布置要求:变电站采用单回线制,主变压器、断路器、隔离开关等设备按照国家标准进行布置。
三、主要设备选型与分布1.主变压器:选择容量为35MVA的35kV/10kV主变压器。
布置在变电站的主变区域,与高压侧开关设备相连。
2.断路器:选择符合35kV电缆的断路器,用于开关变电站的高压侧电源,以及与低压配电网的连接处。
3.隔离开关:采用35kV隔离开关,用于切断输电线路与变电站的连接,以及变电站的维修工作。
4.低压开关设备:包括开关柜、电源柜、补偿柜等,用于将变电站提供的电力输送到低压用户。
5.控制与保护系统:包括采样装置、继电保护装置、自动控制装置等,用于对变电站进行监测和保护。
四、主要工程控制措施1.地基工程:根据实际情况,进行土质勘察和地基设计,确保变电站设备的稳定和安全。
2.雷电防护:根据国家有关规定,进行专业的雷电防护设计和施工,保护变电站及其设备不受雷击。
3.外部环境保护:考虑到变电站的环境保护问题,采取噪声降低、粉尘防治、污水处理等措施,减少对周围环境的影响。
4.安全防护:对主变压器、断路器等重要设备进行安全防护措施,包括防爆、过温、过流等保护装置的设置。
5.操作与维护:通过培训维修人员,建立健全的操作、维修和管理制度,确保变电站的正常运行。
五、经济性分析1.设备选型:根据实际需求,选择性价比高的设备,并考虑设备的寿命和维修成本。
2.施工成本:合理安排施工进度,避免工期延误,控制施工成本。
3.运维成本:建立可靠的运维体系,定期对设备进行检修和维护,提前预防故障,降低运维成本。
六、总结本设计方案对35kV变电站的设计进行了详细规划,包括设备选型、布置、工程控制措施等方面。
通过合理的设计和施工,可确保变电站的供电安全可靠,满足电力系统的需求。
同时,经济性分析也能使变电站的建设和运行成本控制在合理范围内。
35千伏变电站设计

35千伏变电站设计一、设计任务1.确定变电站的总装机容量,包括变压器容量、配电设备容量等;2.设计变电站的布置,包括主变压器、配电设备、开关设备等的布局;3.确定变电站的接地系统,保证安全可靠;4.确定变电站的保护与自动化系统,包括继电保护、监控系统等。
二、设计要点1.总装机容量确定:根据所需供电负荷计算得出所需总装机容量,考虑到负荷预测和可靠性要求,以及未来的发展规划,确定变压器的容量以及配电设备的容量。
2.变电站布置:根据场地条件和工程要求,合理布置主变压器、配电设备、开关设备等。
采用合理的布局可以提高变电站的运行可靠性,降低运行成本。
3.接地系统设计:接地系统是变电站设计中非常关键的一部分,其作用是保证变电站的安全可靠运行。
需要设计合理的接地网,确保接地电阻的合格和互连性。
4.保护与自动化系统设计:变电站的保护与自动化系统是变电站运行的核心部分,其作用是保障电网的安全可靠运行。
保护系统需要设计合理的继电保护方案,包括电流保护、电压保护、接地保护等。
自动化系统需要设计合理的监控系统,实现对变电站各个设备的监测和控制。
三、设计过程1.确定总装机容量:根据所需供电负荷,结合负荷预测和可靠性要求,确定所需总装机容量。
并按照变电站的规模确定相应的主变压器容量和配电设备容量。
2.变电站布置:根据场地情况和工程要求,进行变电站的布置设计。
考虑到扩容、维护和运行可靠性,布置主变压器、配电设备、开关设备等。
合理布局可以提高设备的运维效率,降低运行成本。
3.接地系统设计:根据变电站的容量大小和场地条件,设计适当的接地系统。
接地系统需要保证接地电阻的合格和互连性,通过合理布置接地电网、接地极、接地线等设施,确保变电站的安全可靠运行。
4.保护与自动化系统设计:设计合理的继电保护方案,包括电流保护、电压保护、接地保护等。
考虑到灵敏度、可靠性和速动性等要求。
设计监控系统,实现对变电站各个设备的监测和控制,提高运行效率和安全性。
继电保护课程设计--35kV降压变电所

继电保护课程设计35kV降压变电所继电保护配置与线路保护整定计算作者:所在单位:电气工程及自动化指导教师:目录1、课程设计概述 (2)1.1 课程设计主要任务1.2 课程设计基本资料1.3 设计依据2、保护配置方案概述 (3)2.1 继电保护基本知识2.2 故障分析2.3 变压器保护配置2.4 10KV侧电力电容器组保护配置2.5 10KV侧线路保护配置3、短路电流计算 (5)3.1 基准值的选取3.2 各元件阻抗标幺值计算3.3 短路电流的计算4、继电保护装置的整定计算及选型 (11)4.1 变压器保护装置的整定计算及选型4.2 10KV侧电力电容器保护装置的整定计算及选型4.3 10KV侧出线保护装置的整定计算及选型5、微机成套自动保护装置的选择 (24)6、课程设计总结 (27)7、参考文献 (27)CH1 课程设计概述1.1课程设计主要任务(1)本设计为35KV降压变电所。
主变容量为8000KV A,电压等级为35/10KV;(2)搜集原始资料;(3)完成对本系统的故障分析;(4)对10KV线路电保护整定计算及继电器选择(5)对短路电流的整定与计算;(6)主变压器继电保护整定计算及继电器选择;(7)完成设计报告。
1.2、课程设计基本资料本设计为35KV降压变电所。
主变容量为8000KVA,电压等级为35+2*2.5% /10KV。
35KV供电系统图,如图1所示。
1)系统参数:电源I短路容量:= 200MVA;电源Ⅱ短路容量:=250MVA;最小短路容量为最大的80%;供电线路: L1=6km,L2=8km,线路阻=0.4Ω/km。
抗:XL2)35kv变电所主接线图,如图1所示:图1 35kv变电所主接线图3)10kv母线负荷情况,见下表:L5)B1、B2主变容量、型号为8000kVA之SF1-8000/35型双卷变压器,Y-Δ/11之常规接线方式,具有带负荷调压分接头,可进行有载调压。
其中Uk%=7.5。
220KV 110KV 35KV 变电站 系统设计 (电气专业可做课程设计)

220/110/35KV 变电所及综合自动化方案设计
不间断供电,两段母线同时故障的机率极小,可以不予考虑。 2.2.2 方案Ⅱ:(见图 2-2) 分析:考虑 220KV 本期只有两条进线及本所只有两台主变压器,所以方案Ⅱ在 220KV 高压侧采用“单母线分段接线”, 采用“单母线分段接线”虽然使用断路
供电可靠性是所用电的首要保证,在本供电系统中所用电应为 0 级用户。 结合其供电电压及其容量,可将一台所用变压器引接于 35KVⅠ段母线上,另一 台所用变压器引接于 35KVⅡ段母线上。两所用电源采用明备用方式,并且装设 备用电源自动投入装置来保证其可靠性。
9
220/110/35KV 变电所及综合自动化方案设计
2.1.4 调压方式:根据地区及负荷的要求,变压器选择有载调压方式。
根据以上原则,查阅有关资料,选择的主变压器技术数据如下:
型号 容量 容量比 额定电压
联结组标号
高压 中压 低压
SFPSZ7 -120000 / 220 120 MVA
120/120/120 220±8×1.25%
121 38.5 YN,yn0,d11
2
损耗 空载电流
阻抗电压
220/110/35KV 变电所及综合自动化方案设计
空载
144 KW
负载
480 KW
0.9 %
高-中
14 %
高-低
24 %
中-低
9%
2.2 电气主接线方案的拟定
2.2.1 方案Ⅰ:(见图 2-1)
图 2-1 分析:因本 220KV 变电所不仅供本地区的负荷,还降压到 110KV 向另一终端变 电所转供大量的负荷,所以方案Ⅰ在 220KV 高压侧采用“双母线带旁路接线”, 它具有供电可靠、检修方便、调度灵活及便于扩建等优点。110KV 侧采用“双母 线接线”。35KV 侧采用“单母线分段带旁路接线”,便于分段检修母线及各出线 断路器。当一段母线发生故障时,自动装置将分段断路器跳开,保证正常母线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录前言 (1)1 电气主接线设计 (2)1.1主接线的设计依据 (2)1.2 主接线的基本要求 (2)1.3 主接线的设计和论证 (2)2 主变压器台数、容量和型号的选择 (8)3 所用变的选择 (9)4 电气设备的选择 (10)4.1电气设备选择的一般条件 (10)4.2断路器、隔离开关的选择 (12)5 互感器的选择 (15)5.1电流互感器的选择 (15)5.2电压互感器的选择 (16)6 10KV母线截面的选择 (17)7 计算书 (18)8 参考文献 (21)前言变电所由主接线,主变压器,高、低压配电装置,继电保护和控制系统,所用电和直流系统,远动和通信系统,必要的无功功率补偿装置和主控制室等组成。
其中,主接线、主变压器、高低压配电装置等属于一次系统;继电保护和控制系统、直流系统、远动和通信系统等属二次系统。
主接线是变电所的最重要组成部分。
它决定着变电所的功能、建设投资、运行质量、维护条件和供电可靠性。
一般分为单母线、双母线、一个半断路器接线和环形接线等几种基本形式。
主变压器是变电所最重要的设备,它的性能与配置直接影响到变电所的先进性、经济性和可靠性。
一般变电所需装2~3台主变压器;330 千伏及以下时,主变压器通常采用三相变压器,其容量按投入5 ~10年的预期负荷选择。
此外,对变电所其他设备选择和所址选择以及总体布置也都有具体要求。
本次设计为35KV变电所的电气部分,包括任务书、说明书、计算书,以及1张电气主接线图。
Ⅰ、电气主接线设计把变电站、断路器等按预期生产流程连成的电路,称为电气主接线。
电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。
主接线代表了变电站电气部分主体结构,是电力系统接线的主要组成部分,是变电站电气设计的首要部分。
它表明了变压器,线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。
1.1主接线的设计依据1.负荷大小和重要性(1)对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证对全部一级负荷不间断供电。
(2)对于二级负荷一般要有两个独立电源供电,且任何一个失去后,能保证全部或大部分二级负荷的供电。
(3)对于三级负荷一般只需一个电源供电。
2. 系统备用容量大小(1)运行备用容量不宜少于8-10%,以适应负荷突增,机组检修和事故停运三种情况。
(2)装有两台及以上的变压器的变电所,当其中一台事故断开时,其余主变压器的容量应保证该变电所60%~70%的全部负荷,在计及过负荷能力后的允许时间内,应保证车间的一、二级负荷供电。
1.2 主接线的基本要求电气主接线设计应满足可靠性、灵活性、经济性三项基本要求,其具体要求如下:1、可靠性研究可靠性应该重视国内外长期运行的实践经验和定性分析,要考虑发电厂或变电站在电力系统中的地位和作用、所采用的设备的可靠性以及结合一次设备和相应的二次部分在运行中的可靠性进行综合分析。
其具体要求如下:(1)断路器检修时不应影响供电。
系统有重要负荷,应能保证安全、可靠的供电。
(2)断路器或母线故障以及母线检修时,尽量减少停运出线回数及停电时间,并且要保证全部一级负荷和部分二级负荷的供电。
(3)尽量避免发电厂、变电所全部停运的可能性。
防止系统因为某设备出现故障而导致系统解裂。
(4)大机组超高压电气主接线应满足可靠性的特殊要求。
2、灵活性主接线应满足在调度、检修及扩建时的灵活要求。
从系统的长远规划来设计,应满足灵活性要求。
(1)调度时应该可以灵活地投入和切除发电机、变压器和线路,调配电源和负荷,满足系统在事故运行方式,检修运行方式以及特殊运行方式以及特殊运行方式下的系统调度要求。
(2)检修时可以方便地停运断路器、母线及其继电保护设备,进行安全检修而不致影响电力网的运行和对车间的供电。
(3)扩建时可以容易地从初期接线过渡到最终接线。
在不影响连续供电或停运时间最短的情况下,投入新装机组,变压器或线路而不互相干扰,并且对一次和二次部分的改建工作最少。
3、经济性主接线满足可靠性,灵活性要求的前提下做到经济合理。
(1)主接线应力求简单,经节省断路器、隔离开关、电流和电压互感器、避雷器等一次设备。
(2)要能使继电保护和二次回路不过于复杂,以节省二次设备和控制电缆。
(3)要能限制短路电流,以便于选择价廉的电气设备或轻型电器。
(4)如能满足系统的安全运行及继电保护要求,35kV及其以下终端或分支变电所可采用简易电器。
(5)占地面积少:主接线设计要为配电装置布置创造条件,尽量使占地面积减少。
(6)电能损失少:经济合理地选择主变压器的种类(双绕组、三绕组或自耦变压器)、容量、数量,要避免因两次变压而增加的电能损失。
1.3 主接线的设计和论证依据变电站的性质可选择单母线接线、单母线分段接线、双母线接线、外桥型接线、内桥型接线、五种主接线方案,下面逐一论证其接线的利弊。
一、单母线接线单母线接线的特点是每一回线路均经过一台断路器和隔离开关接于一组母线上。
优点:(1)、接线简单清晰、设备少、操作方便。
(2)、投资少,便于扩建和采用成套配电装置缺点:(1)、可靠性和灵活性较差。
任一元件(母线及母线隔离开关等)故障或检修均需使整个配电装置停电。
(2)、单母线可用隔离开关分段,但当一段母线故障时,全部回路仍需停电,在用隔离开关将故障的母线分开后才能恢复非故障段的供电。
适用范围:单母线接线不能满足对不允许停电的重要用户的供电要求,一般用于6-220kV 系统中,出线回路较少,对供电可靠性要求不高的中、小型发电厂与变电站中。
二、单母线分段接线2.1、用隔离开关分段的单母线接线这种界限实际上仍属不分段的单母线接线,只是将单母线截成两个分段,其间用分段隔离开关连接起来。
这样做的好处是两段母线可以轮流检修,缩小了检修母线时的停电范围,即检修任一段母线时,只需断开与该段母线连接的引出线和电源回路拉开分段隔离开关,另一段母线仍可继续运行。
但是,若两个电源取并列运行方式,则当某段母线故障时,所有电源开关都将自动跳闸,全部装置仍需短时停电,需待用分段隔离开关将故障的母线段分开后才能恢复非故障母线段的供电。
可见,采用隔离开关分段的单母线接线较之不分段的单母线,可以缩小母线检修或故障时的停电范围。
2.2、用断路器分段的单母线接线用隔离开关奋斗的单母线接线,虽然可以缩小母线检修或故障时的停电范围,但当母线故障时,仍会短时全停电,需待分段隔离开关拉开后,才能恢复非故障母线段的运行,这对于重要用户而言是不允许的。
如采用断路器分段的单母线接线,并将重要用户采用分别接于不同母线段的双回路供电,足可以克服上诉缺点。
对用断路器分段的单母线的评价为:优点:A.具有单母线接线简单、清晰、方便、经济、安全等优点。
B.较之不分段的单母线供电可靠性高,母线或母线隔离开关检修或故障时的停电范围缩小了一半。
与用隔离开关分段的单母线接线相比,母线或母线隔离开关短路时,非故障母线段可以实现完全不停电,而后者则需短时停电。
C.运行比较灵活。
分段断路器可以接通运行,也可断开运行。
D.可采用双回线路对重要用户供电。
方法是将双回路分别接引在不同分段母线上。
缺点:A.任一分段母线或母线隔离开关检修或故障时,连接在该分段母线上的所有进出回路都要停止工作,这对于容量大、出线回路数较多的配电装置仍是严重的缺点。
B.检修任一电源或出线断路器时,该回路必须停电。
这对于电压等级高的配电装置也是严要缺点。
因为电压等级高的断路器检修时间较长,对用户影响甚大。
单母线分段接线与单母线接线相比提高了供电可靠性和灵活性。
但是,当电源容量较大、出线数目较多时,其缺点更加明显。
因此,单母线分段接线用于:(1)电压为6~10KV时,出线回路数为6回及以上,每段母线容量不超过25MW;否则,回路数过多时,影响供电可靠性。
(2)电压为35~63KV时,出线回路数为4~8回为宜。
(3)电压为110~220KV时,出线回路数为3~4回为宜。
2.3、单母线分段带旁路母线的接线为克服出线断路器检修时该回路必须停电的缺点,可采用增设旁路母线的方法。
当母线回路数不多时,旁路断路器利用率不高,可与分段断路器合用,并有以下两种接线形式。
(1)分段断路器兼作旁路断路器接线。
(2)旁路断路器兼作分段断路器接线。
优点:单母分段带旁路接线与单母分段相比,带来的唯一好处就是出线断路器故障或检修时可以用旁路断路器代路送电,使线路不停电。
单母线分段带旁路接线,主要用于电压为6~10KV出线较多而且对重要负荷供电的装置中;35KV及以上有重要联络线路或较多重要用户时也采用。
单母线分段接线,虽然缩小了母线或母线隔离开关检修或故障时的停电范围,在一定程度上提高了供电可靠性,但在母线或母线隔离开关检修期间,连接在该段母线上的所有回路都将长时间停电,这一缺点,对于重要的变电站和用户是不允许的。
三、双母线接线优缺点分析:(1)可靠性高。
可轮流检修母线而不影响正常供电。
当采用一组母线工作、一组母线备用方式运行时,需要检修工作母线,可将工作母线转换为备用状态后,便可进行母线停电检修工作;检修任一母线侧隔离开关时,只影响该回路供电;工作母线发生故障后,所有回路短时停电并能迅速恢复供电;可利用母联断路器代替引出线断路器工作,使引出线断路器检修期间能继续向负荷供电。
(2)灵活性好。
为了克服上述单母线分段接线的缺点,发展了双母线接线。
按每一回路所连接的断路器数目不同,双母线接线有单断路器双母线接线、双断路器双母线接线、一台半断路器接线(因两个回路共用三台断路器,又称二分之三接线)三种基本形式。
后两种又称双重连接的接线,意即一个回路与两台断路器相连接,在超高压配电装置中被日益广泛地采用。
3.1、单断路器双母线接线:单断路器双母线接线器是双母线接线中最基本的接线形式。
它具有两组结构相同的母线,每一回路都经一台断路器、两组隔离开关分别连接到两组母线上,两组母线之间通过母联断路器来实现联络。
双母线接线有两种运行方式,一种运行方式是一组母线工作,一组母线备用,母联断路器在正常运行时是断开的;另一种运行方式是两组母线同时工作,母联断路器在正常运行时是接通的,这时每一回路都固定连接于某一组母线上运行,故亦称固定连接运行方式。
这两种运行方式在供电可靠性方面有所差异,当母线短路时,前者将短时全部停电;后者母线继电保护动作,只断开故障母线上电源回路的断路器和母联断路器,并不会使另一组母线中断工作。
3.2、双断路器双母线接线双断路器双母线这种接线,每回路内接有两台断路器,采取双母线同时运行的方式。
双断路器双母线接线的优点是:A.任何一组母线或母线隔离开关发生故障或进行检修时都不会造成停电。