铸造缺陷-气孔的描述及分析
常见铸件缺陷

常见铸件缺陷铸件缺陷分析、铸件质量检测数据处理一、铸件缺陷分析的分类(在GB/T5611-1998《铸造名词术语》中归结为8类102种)。
二、铸件缺陷的分析。
1.气孔是气体聚集在铸件表面,皮下和内部而形成的空洞。
气孔的孔壁光滑,稍带氧化彩色,无一定形状,尺寸和位置。
⑴.侵入性,由于浇注过程中液态金属对铸型激烈的热作用,使型砂和芯砂中的发气物(水分、粘接剂和附加物)汽化、分解和燃烧,生存大量气体,以及型腔中原有的气体。
侵入液态金属内部不能逸出所产生的空洞。
(尺寸大)。
⑵.析出性,溶解在液态金属气体中,在冷却凝固过程中,由于溶解度降低而产生的。
(数量多、尺寸小)。
⑶.反应性:液态金属与铸型界面之间、液态金属与渣之间发生化学反应形成的孔洞。
2.夹砂结疤,沟槽、鼠尾(由于型砂腔表面受热膨胀引起的)。
3.粘砂(一般是厚壁部分)类别序号名称特征一、多肉类缺陷1-5冲砂砂型或砂芯表面局部型砂被金属液冲刷掉,在铸件表面的相应部位上形成粗糙、不规则的金属瘤状物。
其常位于浇口附近,被冲刷了的型砂往往在铸件的其它部位形成砂眼1-6 掉砂砂型或砂芯的局部砂块在机械力的作用下掉落,使铸件表面相应部位形成的块状金属突起物。
其外形与掉落的砂块很相识。
在铸件其它部位二、孔洞类缺陷2-1 气孔铸件内由气体形成的孔洞类缺陷。
其表面一般比较光滑,主要呈梨形、圆形和椭圆形。
一般不在铸件表面露出,大孔常孤立存在,小孔则成群出现2-2气缩孔指分散性气孔与缩孔和缩松合并而成的孔洞类铸造缺陷2-5皮下气孔位于铸件表皮下的分散性气孔。
为金属液与砂型之间发生化学反应产生的反应性气孔,形状有针状、蝌蚪状、球状、梨状等,大小不一,深度不等。
通常在机械加工或热处理后才发现2-7 缩孔铸件在凝固过程中,由于补缩不良二产生的孔洞。
形状极不规则,孔壁粗糙并带有枝状晶。
常出现在铸件最后凝固的部位2-8 缩松铸件断面上出现的分散而细小的缩孔。
借助高倍放大镜才能发现的缩松称为显微缩松。
铸造缺陷-气孔的描述及分析

铸造缺陷-----气孔的概述以及分析一、术语含义:金属液在凝固过程中陷入金属中的气泡,在铸件中形成的孔洞,称为气孔。
还有气眼、气泡、呛火、呛等非正规名称,是孔壁光滑的孔洞类铸造缺陷。
二、目视特征:是指肉眼看到的铸件缺陷的形态特征,是区分气孔、缩孔、砂眼、加渣及确定气孔种类性质的依据。
1、形状:一般为球形或近似于球形、泪滴形、梨形、蠕虫状、长针形等气孔孔洞。
2、表面面貌:在肉眼观察下,气孔孔壁是平滑的,表面颜色有的发亮,有的金属本色,有的发蓝,灰铸铁孔洞表面有的附着一层碳膜。
3、尺寸:由于形成气孔原因复杂,尺寸变动是无规律的,有的大到10至20几毫米,有的小到不到1毫米。
4、部位:是指孔洞在铸件截面中的位置,一般可分为表面气孔,一落砂就可发现,内部气孔只有在机加工后才能显示出来,有的皮下气孔在喷砂后或机加工去除表面硬皮后才能发现。
多出现在浇注位置的上面。
5、危害性:气孔是铸件常见和多发性缺陷,一般情况下,气孔使铸件报废数量约占铸件废品率的25%-80%。
6、气孔种类:从气孔形成原因、形成过程、形成机理来分类,气孔可分为5种,及侵入气孔、裹挟气孔、析出气孔和内外反应气孔。
下面先说一说最常见、发生最多的侵入型气孔。
一、从浇注到铸件凝固成壳期间,砂型、砂芯发生的气体侵入金属液时产生的气孔称为侵入性气孔。
1、它的形状特征:团球形、梨形、泪滴形,小头所指是气体来源的方向。
2、表面面貌:孔壁平滑,铸件侵入气体主要成分是CO时,孔壁呈蓝色;是氢气时,孔壁是金属色,发亮;是水蒸气时,孔壁是氧化色,孔壁发暗,灰色。
3、一般尺寸较大,在几毫米以上。
4、部位:按浇注位置来说,常处于铸件上表面,去掉浇冒口或气针后可看到,有的粗加工后表现出来。
5、分布:大多情况下是单个或几个聚集的尺寸较大的气孔,很少成为弥散性气孔或针孔。
二、形成机理:1、砂型:砂型中的气体侵入金属液,分为两种:①不润湿型:组成砂型型砂粒度细、强度高、紧实度大(硬),如静压线造型。
铸件常见缺陷和处理

铸件常见缺陷和处理 The pony was revised in January 2021铸件常见缺陷、修补及检验一、常见缺陷1.缺陷的分类铸件常见缺陷分为孔眼、裂纹、表面缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格五大类。
(注:主要介绍铸钢件容易造成裂纹的缺陷)孔眼类缺陷孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、铁豆。
1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。
铸件气孔的特征是:一般是园形或不规则的孔眼,孔眼内表面光滑,颜色为白色或带一层旧暗色。
(如照片)气孔照片1产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型或泥芯透气性差等。
1.1.2缩孔缩孔别名缩眼,由收缩造成的孔洞。
缩孔的特征是:形状不规则,孔内粗糙不平、晶粒粗大。
产生的原因是:金属在液体及凝固期间产生收缩引起的,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。
浇注温度过高浇注速度过快等。
1.1.3缩松缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。
缩松的特征是:微小而不连贯的孔,晶粒粗大、各晶粒间存在明显的网状孔眼,水压试验时渗水。
(如照片2)缩松照片2产生的原因同以上缩孔。
1.1.4渣眼渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。
渣眼的特征是:孔眼形状不规则,不光滑、里面全部或局部充塞着渣。
(如照片3)渣眼照片3产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。
1.1.5砂眼砂眼是夹着砂子的砂眼。
砂眼的特征是:孔眼不规则,孔眼内充塞着型砂或芯砂。
产生的原因是:合箱时型砂损坏脱落,型腔内的散砂或砂块未清除干净、型砂紧实度差、浇注时冲坏型芯、浇注系统设计不当、型芯表面涂料不好等。
分析球墨铸铁气孔缺陷的成因及对策

分析球墨铸铁气孔缺陷的成因及对策球墨铸铁是一种重要的铸造材料,具有优异的力学性能和耐腐蚀性能。
然而,球墨铸铁在生产过程中常常会出现气孔缺陷,这给材料的性能和使用带来了一定的影响。
本文将分析球墨铸铁气孔缺陷的成因,并提出相应的对策。
一、球墨铸铁气孔缺陷的成因1. 原材料质量不过关球墨铸铁的原材料包括铸造合金、铁水和融化剂等。
如果原材料质量不过关,其中可能含有一些气体或杂质,这些气体和杂质在铸造过程中会引起气孔的形成。
2. 熔炼过程控制不当球墨铸铁的熔炼过程非常重要,包括预处理炉熔化、调温、组织调整等环节。
如果熔炼过程控制不当,如温度过高或过低、保温时间不足等,都会影响铸件的质量,导致气孔的生成。
3. 浇注工艺不合理浇注工艺是影响球墨铸铁气孔缺陷的另一个重要因素。
如果浇注过程中温度不适宜、过急或过慢,浇注口设计不合理等,都会导致铸件内部无法顺利排出气体,从而产生气孔。
4. 冷却过程不当冷却过程是球墨铸铁形成细小球状石墨的关键环节。
如果冷却速度过快或过慢,都会导致气孔的形成。
此外,冷却过程中如果没有进行充分的冷镦处理,也会使气孔得不到有效修复。
二、对策1. 加强原材料质量检验提高球墨铸铁的质量,关键在于对原材料进行严格的质量检验。
选用质量好、经过认证的原材料,并充分进行化验和试样,确保原材料中没有含有气体或杂质。
2. 控制熔炼过程在熔炼过程中,需严格控制炉温和保温时间,确保炉内温度适宜,熔铁中的合金溶解均匀。
同时,需要合理添加融化剂和调节剂,以提高铁水的流动性和抗气化能力,减少气孔的形成。
3. 优化浇注工艺浇注工艺的优化可以通过优化浇注温度和速度,改进浇注系统和浇注口的设计,避免过度的温度梯度和急剧的温度变化。
此外,还可以采取减少浇注冲击力和加强细化剂的添加等措施,提高铁水的流动性和浇注质量。
4. 控制冷却过程在冷却过程中,需要控制铸件的冷却速度。
这可以通过适当调整冷却水的供应量和加强冷却设备的管理来实现。
铸造缺陷汇总

形状及重 变形 6 量差错类
铸件缺陷
铸件外形扭曲改变,与图纸不符。
错型(错箱) 铸件外形在分型面处错位,一侧多肉,另一侧缺肉;
错芯
铸件内腔沿分芯面错位,一侧多肉,一侧缺肉;
舂移
铸件外形在分型面附近局部突起,形成多肉,通常是单 侧多肉,另一侧不缺肉.
金属夹杂物 铸件中存在不同金属夹杂物
原料混料。
1、型腔内沙粒没清净。
1、浇铸前型腔内砂粒清理干净; 2、浇冒口处保持清洁; 3、加强砂型强度; 4、调整浇铸工艺,调整温度和浇铸速度; 5、合理选择浇冒口位置。
检查合模力或增压情况,调整压射增压机构,使压射增 压峰值降低。
1、改进铸件结构设计,壁厚力求均匀,平滑过渡,铸 件内腔圆角够大; 2、工艺设计合理,尽量减少铸件收缩阻力; 3、适当降低浇注温度; 4、提高模温; 5、缩短开模及抽芯时间; 6、严格控制有害杂质,锌合金降低铅,锡,镉,铁的含 量,铝合金降低锌,铜,铁的含量。
铸造缺陷汇总
序 缺陷类 号型
种类
特征
产生原因
易出现部位
避免措施
反应气孔
析出气孔 1、 气孔
侵入气孔
卷入气孔
飞翅(飞边,
披峰)
2
多肉类铸 件缺陷 毛刺
抬型(抬箱)
冷裂
热裂
白点(发裂) 裂纹,冷
3 隔类铸件
缺陷
冷隔
拉模
4 表面缺陷 流痕 皱皮 缩陷
1、反应气孔一般为针孔。有时反应气孔形成皮下气 孔,位于铸件表层,形状呈针头形或细长圆形。
属本色。
泡,在凝固 过程中气泡未能及时排出而形成气孔 。
3、侵入气孔多呈梨形或椭圆形,位于铸件表层或近 表层,比较集中,尺寸较大,孔壁光滑,表面常呈氧 化色或蓝色。
铸造缺陷总结汇报稿件模板

铸造缺陷总结汇报稿件模板铸造缺陷总结汇报稿件模板一、引言铸造是制造业中常用的一种生产工艺,然而由于铸造过程中涉及到多个工序和因素,常常会出现一些铸造缺陷。
本汇报将对铸造缺陷进行总结和分析,以期为相关行业提供经验和参考。
二、常见的铸造缺陷1.砂眼在铸造过程中,砂芯或砂模上形成的未被填充的孔洞称为砂眼。
砂眼通常是由于砂芯太大、挤压不足或砂芯回缩等原因导致的。
砂眼会降低铸件的密封性和强度。
2.气孔气孔是指在铸件内部形成的气体聚集的孔洞。
气孔通常是由于砂芯组织不合理、熔融金属中气体含量过高或浇注速度过快等原因导致的。
气孔会降低铸件的强度和牢固性。
3.砂洞砂洞是在铸件表面形成的凹陷或孔洞。
砂洞通常是由于砂芯或砂模颗粒细度不均匀、填充不充分或振动力度不够等原因导致的。
砂洞会影响铸件的外观质量。
4.缩松缩松是铸件内部形成的缺陷,表现为局部的收缩或挤压。
缩松通常是由于金属液体和砂芯组织之间的界面张力不平衡导致的。
缩松会降低铸件的强度和韧性。
5.冷隔冷隔是指铸件内部形成的冷却速度不均匀导致的缺陷。
冷隔通常是由于浇注温度过低、铸型材料导热性差或浇注速度过快等原因导致的。
冷隔会影响铸件的尺寸精度和内部组织均匀性。
三、分析铸造缺陷的原因1.工艺问题铸造过程中,如果工艺操作不当、温度控制不稳定或流变性能不合理等,都会导致铸造缺陷的产生。
因此,严格的工艺控制和操作规范是避免铸造缺陷的关键。
2.材料问题铸造材料的质量对于铸造缺陷的产生有着重要影响。
选择合适的材料、控制材料的成分和性能,并进行必要的熔炼和净化处理,可以有效地减少铸造缺陷的发生。
3.设备问题设备的性能和状态也会对铸造缺陷的产生产生影响。
维护设备的正常运行、检查设备的精度和稳定性,并及时修复或更换老化的设备,可以提高铸造质量。
四、预防铸造缺陷的方法1.优化设计在铸造件的设计阶段,应注意避免设计不合理的部位,如过于复杂的结构、太薄或太厚的壁厚等。
合理的设计可以减少铸造缺陷的发生。
铸件气孔案例分析报告

铸件气孔案例分析报告1. 引言铸造是一种常见的金属加工方法,用于生产各种复杂形状的金属零件。
然而,在铸造过程中,气体存在的问题是一个常见的挑战。
气孔是铸件中最常见的缺陷之一,它们对铸件的力学性能和表面质量都会造成负面影响。
因此,对铸件气孔现象进行分析,并采取相应的措施来减少气孔产生,是提高铸件质量和性能的关键。
2. 气孔的成因气孔的形成是由于铸造过程中存在的气体无法完全逸出,而被困在铸件内部形成的。
气体在金属液态状态下溶解度较低,在凝固过程中会析出。
以下是几种常见的气孔成因:a) 液态金属中溶解的气体:液态金属中可溶解的气体,在固化过程中会分解,产生气体泡沫形成气孔。
b) 铸型气体:在铸造过程中,砂型或其他铸型材料中的挥发物会被加热并释放出气体,形成气孔。
c) 内部形成的气体:在凝固过程中,疏松的金属结构或其他元素的分解反应会生成气体,形成气孔。
3. 气孔的影响气孔对铸件性能和表面质量产生以下负面影响:a) 降低强度和韧性:气孔导致铸件内部存在弱点和孔洞,会降低铸件的强度和韧性。
b) 引起裂纹和漏洞:气孔是裂纹和漏洞形成的起点,它们可能在应力作用下扩展,导致铸件的损坏和失效。
c) 影响铸件外观:气孔会在铸件表面形成小孔或凹陷,影响铸件的外观质量,降低其市场竞争力。
4. 案例分析以下是一个关于铸件气孔案例的分析,以展示如何识别和解决气孔问题的过程:案例背景:一家汽车制造公司的铝合金发动机块铸件出现了气孔问题,导致部分铸件在测试中出现弯曲和断裂现象,严重影响了发动机的可靠性。
分析步骤:a) 气孔检测:使用X射线或CT扫描等非破坏性检测方法,对铸件进行全面的检测,确定气孔的位置和数量。
b) 气孔成因分析:通过对铸造工艺参数、金属合金成分和砂型材料等进行分析,确定气孔产生的可能原因。
c) 工艺优化:针对气孔成因,通过调整铸造温度、压力和保温时间等工艺参数,优化铸造过程,减少气孔的形成。
d) 砂型改进:对砂型材料进行优化,选择低挥发性和低含气量的材料,减少砂型气体的释放。
六种铸件常见缺陷的产生原因及防止方法

六种铸件常见缺陷的产⽣原因及防⽌⽅法⽓孔(⽓泡、呛孔、⽓窝)特征⽓孔是存在于铸件表⾯或内部的孔洞,呈圆形、椭圆形或不规则形,有时多个⽓孔组成⼀个⽓团,⽪下⼀般呈梨形。
呛孔形状不规则,且表⾯粗糙,⽓窝是铸件表⾯凹进去⼀块,表⾯较平滑。
明孔外观检查就能发现,⽪下⽓孔经机械加⼯后才能发现。
形成原因1、模具预热温度太低,液体⾦属经过浇注系统时冷却太快。
2、模具排⽓设计不良,⽓体不能通畅排出。
3、涂料不好,本⾝排⽓性不佳,甚⾄本⾝挥发或分解出⽓体。
4、模具型腔表⾯有孔洞、凹坑,液体⾦属注⼊后孔洞、凹坑处⽓体迅速膨胀压缩液体⾦属,形成呛孔。
5、模具型腔表⾯锈蚀,且未清理⼲净。
6、原材料(砂芯)存放不当,使⽤前未经预热。
7、脱氧剂不佳,或⽤量不够或操作不当等。
防⽌⽅法1、模具要充分预热,涂料(⽯墨)的粒度不宜太细,透⽓性要好。
2、使⽤倾斜浇注⽅式浇注。
3、原材料应存放在通风⼲燥处,使⽤时要预热。
4、选择脱氧效果较好的脱氧剂(镁)。
5、浇注温度不宜过⾼。
缩孔(缩松)特征缩孔是铸件表⾯或内部存在的⼀种表⾯粗糙的孔,轻微缩孔是许多分散的⼩缩孔,即缩松,缩孔或缩松处晶粒粗⼤。
常发⽣在铸件内浇道附近、冒⼝根部、厚⼤部位,壁的厚薄转接处及具有⼤平⾯的厚薄处。
形成原因1、模具⼯作温度控制未达到定向凝固要求。
2、涂料选择不当,不同部位涂料层厚度控制不好。
3、铸件在模具中的位置设计不当。
4、浇冒⼝设计未能达到起充分补缩的作⽤。
5、浇注温度过低或过⾼。
防⽌⽅法1、提⾼磨具温度。
2、调整涂料层厚度,涂料喷洒要均匀,涂料脱落⽽补涂时不可形成局部涂料堆积现象。
3、对模具进⾏局部加热或⽤绝热材料局部保温。
4、热节处镶铜块,对局部进⾏激冷。
5、模具上设计散热⽚,或通过⽔等加速局部地区冷却速度,或在模具外喷⽔,喷雾。
6、⽤可拆缷激冷块,轮流安放在型腔内,避免连续⽣产时激冷块本⾝冷却不充分。
7、模具冒⼝上设计加压装置。
8、浇注系统设计要准确,选择适宜的浇注温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铸造缺陷-----气孔的概述以及分析一、术语含义:金属液在凝固过程中陷入金属中的气泡,在铸件中形成的孔洞,称为气孔。
还有气眼、气泡、呛火、呛等非正规名称,是孔壁光滑的孔洞类铸造缺陷。
二、目视特征:是指肉眼看到的铸件缺陷的形态特征,是区分气孔、缩孔、砂眼、加渣及确定气孔种类性质的依据。
1、形状:一般为球形或近似于球形、泪滴形、梨形、蠕虫状、长针形等气孔孔洞。
2、表面面貌:在肉眼观察下,气孔孔壁是平滑的,表面颜色有的发亮,有的金属本色,有的发蓝,灰铸铁孔洞表面有的附着一层碳膜。
3、尺寸:由于形成气孔原因复杂,尺寸变动是无规律的,有的大到10至20几毫米,有的小到不到1毫米。
4、部位:是指孔洞在铸件截面中的位置,一般可分为表面气孔,一落砂就可发现,内部气孔只有在机加工后才能显示出来,有的皮下气孔在喷砂后或机加工去除表面硬皮后才能发现。
多出现在浇注位置的上面。
5、危害性:气孔是铸件常见和多发性缺陷,一般情况下,气孔使铸件报废数量约占铸件废品率的25%-80%。
6、气孔种类:从气孔形成原因、形成过程、形成机理来分类,气孔可分为5种,及侵入气孔、裹挟气孔、析出气孔和内外反应气孔。
下面先说一说最常见、发生最多的侵入型气孔。
一、从浇注到铸件凝固成壳期间,砂型、砂芯发生的气体侵入金属液时产生的气孔称为侵入性气孔。
1、它的形状特征:团球形、梨形、泪滴形,小头所指是气体来源的方向。
2、表面面貌:孔壁平滑,铸件侵入气体主要成分是CO时,孔壁呈蓝色;是氢气时,孔壁是金属色,发亮;是水蒸气时,孔壁是氧化色,孔壁发暗,灰色。
3、一般尺寸较大,在几毫米以上。
4、部位:按浇注位置来说,常处于铸件上表面,去掉浇冒口或气针后可看到,有的粗加工后表现出来。
5、分布:大多情况下是单个或几个聚集的尺寸较大的气孔,很少成为弥散性气孔或针孔。
二、形成机理:1、砂型:砂型中的气体侵入金属液,分为两种:①不润湿型:组成砂型型砂粒度细、强度高、紧实度大(硬),如静压线造型。
高温铁水遇到湿砂型,表面水分极度气化膨胀,在砂型毛细管内形成较高压力,一部分向外透过砂型排入大气,一部分因压力大,超过铁水静压力,克服表面张力,便进入铁水中,关系式为:P A>P o+P M+P N P A——表示气体侵入压力P o——型腔中气体压力,即标准大气压P M——金属液静压力P N——金属液表面阻力(表面张力和粘度)P A P A不润湿型润湿型P A>P o+P M+P N P A>P o+P M+P N②金属液润湿型壁时也就是型砂组成砂粒较粗、紧实度较低情况,砂粒间孔隙较大,有利于气体排出,但也使铁液容易渗入到砂粒孔隙中,形成机械粘砂,并堵死气体通道,并且湿砂型都有气体迁移问题,砂型表面水分100%气化,要比原水分体积大三倍,1300℃多度铁水能使水份离子化,就是分解成O与H,体积又要扩大几倍,并迅速向压力小、湿度低的深层转移,形成水份聚集区,还原成水,堵塞了气体通道,提高了气体压力,向四处扩散,同时一部分侵入到铁水中,当金属液充满型腔时,由于砂粒间隙大,铁水易侵入,不利于上型排气,型腔内气体会聚集在界面上形成气坑或皮下大气孔。
总之,金属液不润湿型壁时,有利于防止粘砂,但易使气体侵入形成气孔,润湿型壁时有利于防止侵入气孔,但易形成机械粘砂。
金属液不润湿型壁时侵入气体容易在型壁上形成气泡,从而增大了形成侵入气孔的倾向性,金属液润湿型壁时侵入气体不容易在型壁上形成气泡,从而减小了形成气孔的倾向性。
当侵入气体在型壁上形成气泡核或气泡,同时又发生凝固结壳,并且速度相匹配时,产生如下影响:⑴金属液不润湿型壁时,残留在型壁上的气泡核,可能形成气坑,或表面气孔,润湿时可能产生皮下气孔。
⑵金属铸型界面发生化学反应,使界面金属层富含氢或氮气时,能使铸件产生反应气孔,类似皮下气孔。
⑶气泡在金属液中排出或滞留,侵入金属液中的气泡,如果能从金属液中排出仍然不会形成气孔,反之则形成气孔。
涉及到铁水的几种典型情况:⑴铁液浮力和粘度决定气泡上浮速度和大小,气泡上浮过程中还有大气泡兼并小气泡,气体元素扩散到气泡中,使之变大,如果固体壳内铁液仍有上升,更增大了气泡排出可能。
⑵如铁液温度降低有枝晶析出,粘度增大,会阻碍气泡上浮,增大气泡滞留可能性。
(缸盖浇温低出气孔)⑶凝固范围大合金结壳快的薄壁铸件,气体一旦侵入,气泡无法排出,极易形成气孔。
⑷如果铁液表面存在氧化膜或凝固结壳,也会阻碍气体排出。
⑸如果采用顶注式或上雨淋浇注系统,金属液自上而下充满铸型,液面受液流冲激,上面温度高,并且不平静,气泡就容易排出,浇口上注式优于底注式。
⑹型腔充满时,金属液不润湿型壁气体在金属液向上的压力下,只要砂型毛细管不堵塞,浮到铁水面上的气体就容易排出,不形成气孔,如果金属液润湿型壁铁液渗入砂粒间毛细管而将其堵塞,上浮至型面上的气泡不能排出,会形成单个或多个气孔。
砂芯条件比较恶劣,粘结剂等发气量较大,气体四下扩散。
三、防止和消除侵入气孔的对策和措施1、降低砂粒间毛细管中的气体压力,主要措施是控制型砂湿透气性和湿型表面硬度,湿透气性要有一个范围,透气性过高超过了上限,意味着砂粒间孔隙过大,铁液易渗入形成机械粘砂或表面粗糙,如果湿透气过低,低于下下限,铸件易产生侵入气孔。
湿透气性的上下限值应根据具体生产情况而定,高压造型,上限一般在140左右,下限为70-100,一般铸件上限在100,下限在50左右,如果手工造型,只要保证混砂质量,紧实均匀甚至可定为30。
表面硬度:一般145造型机65-70,148造型机80-90,高压造型90以上,湿透性高,表面硬度可高些,反之表面硬度也应低些。
2、人工增强砂型通气能力,最常用方法是扎通气孔,扎通气孔深度有讲究,一般为不扎通。
气孔顶端与型壁工作表面4-5mm扎透了,效果不好,甚至不起作用,扎的太浅是无效的,为什么呢?前面已说过,浇注后型壁被金属液加热,从界面到型壁达到100℃等温面这一区域,水分成为大量水蒸气,向内有侵入铁液倾向,向外扩散到温度低于100℃区域中,水蒸气遇冷又重新凝结成水分,此区域中水分可达原始水分的2-3倍,水分堵塞了砂粒间的孔隙,阻碍了水分的溢出,从而提高了发气区的气体压力,增加了气体侵入金属液的危险性,这种危险直到金属形成足够厚的固体壳后才能排除。
下型发气区中的水汽上升是自然趋势,因此下型更应该多扎出气孔,松软的下型垫层应划出通气道。
3、砂芯的排气浇注的砂芯被金属液包围,并被剧烈加热,粘结剂分解产生大量气体,并且砂芯只有芯头同砂型芯座相连通,排气系统变的狭窄,形成瓶颈似的通道关隘,因此保持排气系统的通畅极为重要。
浇注时砂芯排气示意图:12 3如果砂芯涂料有破损,要及时修复,因为金属液淹没砂芯时,砂芯涂料破损处成为过滤气流,流动气流路程最短出口处气体最易在这些部位侵入金属液中,形成气孔。
浇注时在气体出口处点燃气体,可增加对气体的抽力,增大排出速度,并可防止气体爆炸振坏砂芯,并防止产生爆炸气孔(呛火)。
4、型砂水分控制水的临界发气温度最低,型砂发气区域最厚,因此水的发气量最大,所以应严格控制型砂水分含量,造型方法不同,水分含量有不同范围,一般高压造型控制在3-4%,手工或小造型机控制在4.5-6%。
混砂也很重要,湿型砂中不能有小粘土团、铁豆、绣铁丁、死昆虫等杂物,这些混入型砂中会形成分布杂乱的表面气孔。
混砂操作,应先干混,即旧砂、新砂、粘土、煤粉混均后,再加水湿混,如果先加水,干粉料易吸水,形成小粘土团,造成局部呛孔。
5、浇注温度与浇注速度与侵入气孔关系每一种产品都有一个合适的浇注速度,浇注速度过快,静压力增长过于迅速,易形成机械粘砂,同时铸型上部气体来不及排走,憋住在上型孤立的袋形空腔处,阻碍铁水充填产生呛火(气孔),同时抬箱力也大,易造成跑火。
对于形状复杂,体积细薄,难以设置排气系统的砂芯,浇速应慢些,这样可以是砂芯中过滤气体非定向流态时间长,气体大部分从芯的自由表面逸走,砂芯一旦被金属液淹没,气体压力就小,减小了气体侵入的危险性。
6、浇注温度对气孔影响提高铁液浇注温度,降低铁液粘度,使气体易从铁液中排走,是防止气孔的有效措施,但容易带来缩孔、缩松,粘砂和析出气孔缺陷,如缸盖这种复杂薄壁件,砂芯复杂,细薄窄小,排气不通畅,浇温在1320-1350℃以下时就容易出现气孔,但浇温高时超过1420℃时就易出现断芯、脉纹、飞翅等缺陷,在铁液含硫高时,硫以FeS、MnS化合物形态存在于铁液中,会增加铁液粘度,气泡便难以排出,含硫量不应超过0.08%。
7、浇冒口设置提高直浇道高度,增加静压力,设置溢流冒口排出冷而脏含气泡的铁液,可防止明通气孔根部出现气孔,机器造型,特别是高压造型,紧实度大,硬度高,水分偏高时易产生水爆炸,能使铸件产生呛孔或表面粗糙、粘砂,水分突发性的气化现象称为水爆炸。
8、特殊类型的侵入气孔、脱壳与皮片。
浇注时气体强烈阻碍金属液流动,侵占了型腔表面空间,形成铸件表面缺陷,称为特殊类型气孔,形成原因:上升金属液面,把型腔气体憋住,在顶部袋形空腔中,形成气封,在气封中气体压力超过铁液静压力和动压力,液面停止上升,当气体透过型壁被迫排走,压力下降,铁液又开始流动,进入气封所占空间,所以周围脱壳是由再流动的金属液弧形流头形成的。
(如493缸体底部齐子与边沿,加气针后若好转,说明就是此原因)皮片:浇注时型腔中气体被憋住,形成气封或气层,它能使铁液停止流动,后又发生进入气封的铁液再流动,再流动的铁液不能同原停止流动的铁液相溶接,形成可剥落的金属片,即皮片。
解决以上缺陷措施是:排走袋形空腔内气体,不容易形成气封,就不产生脱壳皮片缺陷,最简单的办法就是设置出气针或出气孔。
张部长:王微负责根据本次培训内容出试题并存档。
一分厂开式线生产493缸体,7月份气孔占总废品的40%,静压线气孔缺陷较少,在1%左右,分析两条线的差异,变化点在哪?总之,减少发气加强排气,就不会形成气孔。
铸造问题的解决与分析,关键在于钻、学,以及现场经验。
江铃工程师提到,铸造是一门经验科学。
年轻人一定要多动脑,多看多沟通多问,再做出判断,衡量问题原因。
问题的起因是综合性的,同样的铸造质量问题具有反复性。
杨刚:浇速不同;静压线砂芯的发气方式要畅通。
浇注温度高于开式线浇温,末浇温度在1380℃-1390℃,末浇温度如果较低,铁水结壳早,堵塞排气道,气体不能逸出,形成气孔。
张部长:缸体主体芯和盖芯是冷芯,优点是不变形。
水套芯主排气道,浇注时,受热气体上升,通道堵塞后,铁水包围砂芯,气体不能逸出,形成气孔。
缸盖水套芯排气较差,与江铃比较没有主排气道,更容易形成气孔。
北区的测温枪可能有问题,测量首浇温度是1420℃,但是铁水颜色偏红。
于师傅:排气阻力比较大,不易逸出气体。