发电机保护原理
发电机保护控制装置的功能和工作原理

发电机保护控制装置的功能和工作原理随着电力系统的不断发展和扩大,发电机作为重要的电力装置,起着至关重要的作用。
为了保证发电机的安全运行,发电机保护控制装置应运而生。
本文将对发电机保护控制装置的功能和工作原理进行详细介绍。
一、功能1. 过电流保护功能过电流保护是发电机保护控制装置的核心功能之一。
它能够监测和识别发电机系统中的过电流情况,并在超过设定值时发出相应的信号,触发断路器跳闸,以保护发电机系统不受损坏。
2. 过负荷保护功能发电机系统在工作过程中,可能会因负荷过大导致发电机温度升高,从而损坏设备。
过负荷保护功能能够监测发电机的负荷情况,并根据设定的负荷极限值判断是否过负荷,及时采取相应的控制措施,保护发电机免受损坏。
3. 绕组温度保护功能发电机的绕组温度是发电机运行安全的重要指标。
发电机保护控制装置能够监测发电机绕组的温度,并通过温度传感器实时获取温度数值。
一旦温度超过设定值,保护控制装置即会采取相应的控制措施,如发出警报信号、降低负荷等,以保护发电机不受高温的损害。
4. 低电压保护功能低电压是发电机系统中常见的故障之一,会导致设备的异常运行。
发电机保护控制装置能够监测发电机系统的电压情况,一旦发现电压过低,即会触发报警,避免设备因低电压运行而受损。
5. 欠频保护功能在电力系统运行过程中,频率的稳定性非常重要。
发电机保护控制装置能够监测发电机系统的频率情况,一旦发现频率过低(欠频)的情况,会采取相应的控制措施,如降低负荷、补偿电压等,以保持系统的平衡稳定。
6. 过电压保护功能过电压是发电机系统中常见的故障之一,可能会导致设备的损坏。
发电机保护控制装置能够监测发电机系统的电压情况,一旦发现电压过高,即会触发保护措施,如跳闸、断开电源等,保护系统不受过电压的影响。
二、工作原理发电机保护控制装置的工作原理包括信号采集、判据逻辑处理、动作输出等几个主要步骤。
1. 信号采集发电机保护控制装置通过传感器采集发电机系统的电流、电压、温度等关键参数的实时数据。
发电机保护原理范文

发电机保护原理范文发电机是一种将机械能转换成电能的设备,广泛应用于各个领域。
为了保证发电机的运行安全,减少故障发生,可以采取一系列的保护措施。
发电机保护通常包括电气保护和机械保护两个方面,其中电气保护是保护发电机绝缘的主要手段。
发电机电气保护主要涉及以下几个方面。
1.过电流保护过电流是指电流超过设定值。
发电机的过电流保护主要是考虑发电机的过载和短路问题。
过载是指输出功率超过发电机耐受能力的情况,而短路则是指电路中的电压直接接地或者两点之间电阻极低,导致电流激增。
过电流保护可以通过安装过电流继电器实现,继电器会在电流超过设定值时触发断路器或者切断电源,以避免发电机受损甚至引发火灾。
2.过压保护过压是指电压超过额定值。
发电机过压保护通常是为了避免绝缘击穿和设备损坏。
当电压超过额定值时,过压继电器会切断发电机的输出,保护发电机和其他设备的电气安全。
3.欠压保护欠压是指电压低于额定值。
发电机欠压保护是为了避免设备因电压不足而无法正常工作。
电压过低可能导致设备损坏,欠压继电器可以在检测到电压低于一定值时,切断电源,停止供电。
4.不平衡保护发电机的不平衡保护主要是为了检测三相电压之间的不平衡,以避免设备过热和损坏。
当发电机输出的三相电压之间不平衡时,不平衡保护继电器会触发,切断发电机的输出,以保证设备的安全运行。
5.欠频和过频保护发电机的频率是其稳定运行的重要指标之一、欠频保护和过频保护分别是为了检测发电机输出频率是否超过或者低于额定值。
当频率超出范围时,相应的保护继电器会触发,停止发电机的输出,以防止设备过载或者过热。
总之,发电机保护原理主要是通过检测电流和电压等参数,以及检测电气系统的工作状态,对发电机进行全面的保护。
通过安装相应的保护装置和继电器,可以及时切断电源,保证设备的安全运行,同时减少设备的损坏和维修成本。
发电机保护原理不仅可以提高发电机的可靠性和工作效率,还能保证电力系统的安全稳定运行。
发电机保护原理资料讲解

发电机保护原理发电机保护原理大型发电机的造价高昂,结构复杂,一旦发生故障遭到破坏,其检修难度大,检修时间长,要造成很大的经济损失。
例如,一台20万kW的汽轮发电机,因励磁回路两点接地使大轴和汽缸磁化,为退磁需停机1个月以上,姑且不论检修费用和对国民经济造成的间接损失,仅电能损失就近千万元。
大机组在电力系统中占有重要地位,特别是单机容量占系统容量较大比例的情况下,大机组的突然切除,会给电力系统造成较大的扰动。
因此,发电机的安全运行对电力系统的正常工作、用户的不间断供电、保证电能的质量等方面,都起着极其重要的作用。
1.发电机故障形式由于发电机是长期连续旋转的设备,它既要承受机身的振动,又要承受电流、电压的冲击,因而常常导致定子绕组和转子线圈的损坏。
因此,发电机在运行中,定子绕组和转子励磁回路都有可能产生危险的故障和不正常的运行情况。
一般说来,发电机的故障和不正常工作情况有以下几种:(1)定子绕组相间短路故障:定子绕组相间短路故障是对发电机危害最大的一种故障。
故障时,短路电流可能把发电机烧毁。
(2)定子绕组匝间短路:定子绕组匝间短路时,在匝间电压的作用下产生环流,可能使匝间短路发展为单相接地短路和相间短路。
(3)定子绕组接地故障:定子绕组的单相接地故障是发电机内较常见的一种故障,故障时,发电机电压系统的电容电流流过定子铁心,造成铁心烧伤,当此电流较大时将使铁心局部熔化。
(4)励磁回路接地故障:发电机励磁回路一点或两点接地时,一般说来,转子一点接地对发电机的危害并不严重,但一点接地后,如不及时处理,就有可能导致两点接地,而发生两点接地时,由于破坏了转子磁通的平衡,可能引起发电机的强烈振动,或将转子绕组烧损。
(5)定子绕组过负荷:超过发电机额定容量运行形成过负荷时,将引起发电机定子温度升高,加速绝缘老化,缩短发电机的寿命,长时间过负荷,可能导致发电机发生其他故障。
(6)定子绕组过电压:调速系统惯性较大的发电机,如水轮发电机或大容量的汽轮发电机,在突然甩负荷时,可能出现过电压,造成发电机绕组绝缘击穿。
第七章发电机保护讲解

大容量发电机采用反映零序电压的匝间短路保护。 发电机正常运行时,机端不出现基波零序电压。 相间短路时,也不会出现零序电压。单相接地故 障时,接地故障相对地电压为零,而中性点电压 上升为相电压,但是三相对中性点电压仍然对称, 不出现零序电压。当发电机定子绕组发生匝间短 路时,机端三相电压对发电机中性点不对称,出 现零序电压。
继电保护教学
横联差动保护的动作电流一般根据运行经验取值
Iop 0.2 ~ 0.3IGN
发电机额定电流
横联差动保护的TA变比一般为 nTA 0.25IGN / 5
继电保护教学
横差保护灵敏度很高,但是在切除故障时有一定 的死区: 1、单相分支匝间短路的α较小(短接的匝数较少) 时; 2、同相两分支匝间短路,且α1=α2,或者两者差 别较小时。
继电保护教学
转子绕组的接地可分为瞬时接地、永久接地和断 续接地。还可分为一点接地和两点接地。一点接 地时不用停止运行。在永久两点接地时,磁场不 平衡,中线中有不平衡电流,横差保护动作(不 是误动作)。但是瞬时两点接地(下一时刻会恢 复为一点接地)时,保护会误动作。
继电保护教学
为了躲过瞬时两点接地故障,需增设0.5~1s的动 作延时。切换片XS有两个位置,正常时投到1~2, 保护不带延时。如发现转子绕组一点接地时,XS 切至1~3,使保护经过KT延时,为转子永久性两 点接地故障做好准备。
重影响
转子故障
继电保护教学
定子绕组相间短路 装设纵联差动保护
定子绕组匝间短路 装设横联差动保护
定子绕组单相接地 100%定子绕组单相 接地保护 转子绕组一点或两点 接一地点或两点接地保 转护子失磁 装设失磁保护
7.1.2 发电机的不正常工作状态及其保护
发电机的保护原理的介绍

• •
•
低电压元件的作用在于区别是过负荷还是由于故障引起 的过电流。 B 复合电压启动的过电流保护。 复合电压启动是指负序电压和单元件相间电压共同启动 过电流保护。 发电机复合电压过流保护的整定 2. 发电机定子接地保护
• •
• •
• •
Байду номын сангаас
发电机定子接地的危害 当发电机定子绕组与铁芯间的绝缘损坏将引起定子绕组的单相接地短 路。如果发电机的中性点是绝缘不接地的,此时接地点的接地电流是发电 机电压系统的电容电流。 该电流较大时非但会烧伤定子绕组的绝缘还会烧损铁芯,甚至会将多 层铁芯叠片烧接在一起在故障点形成涡流,使铁芯进一步加速熔化,导致 铁芯严重损伤 。
/
•
其电流取自发电机中性点或机端的电流互感器,电压取 自机端电压互感器的相间电压,在发电机并网前发生故障时, 保护装置也能动作。 在发电机发生过负荷时,过电流元件可能动作,但因这 时低电压元件不动作,保护被闭锁。 发电机的后备保护方式
•
•
•
发电机的后备保护主要有低阻抗保护、低电压启动的过 电流保护、复合电压启动的过电流保护等。 A 低电压启动的过电流保护。 发电机低压启动的过流保护的电流继电器,接在发电机 中性点侧三相星形连接的电流互感器上,电压继电器接在发 电机出口端电压互感器的相间电压上,在发电机投入前发生 故障时,保护也能动作。
•
•
为确保发电机的安全,不应使发电机的单相接地短路发展成相间短路 或匝间短路,因此应该使单相接地故障处不产生电弧或者使接地电弧瞬间 熄灭。这个不产生电弧的最大接地电流被定义为发电机单相接地的安全电 流,该电流与发电机的额定电压有关。 当单相接地电流小于安全电流时,定子接地保护动作后只发信号而不 跳闸。调度人员应转移负荷、平稳停机,以免再发生另一点接地形成很大 的短路电流而烧坏发电机。当单相接地电流大于安全电流时,定子接地保 护应动作于跳闸。
电厂发电机保护的原理是

电厂发电机保护的原理是
电厂发电机保护的原理主要是通过监测和保护装置,对发电机进行实时监测和故障检测,并在出现故障时采取相应的保护措施,以保证发电机的安全运行。
具体原理包括以下几个方面:
1. 电压保护:通过监测发电机的电压,判断是否存在欠电压、过电压等异常情况,若超出预设范围,则及时采取保护措施,避免损坏发电机。
2. 频率保护:监测发电机输出电力的频率,当频率超出正常范围时,表明发电机运行存在故障,保护装置将采取断电等措施,保护发电机免受进一步损坏。
3. 过载保护:通过监测发电机的输出功率,判断是否存在过载情况,当输出功率超过额定值时,保护装置会采取相应的措施,例如断电、降低输出负荷等,以防止发电机过载。
4. 短路保护:监测发电机输出电路是否存在短路,当发现短路时,保护装置将立即切断电路,并采取补偿措施,以保护发电机免受短路电流的损坏。
5. 过温保护:通过监测发电机的温度,当发电机过热时,保护装置将采取措施,例如降低负载、增加冷却设备的运行等,以防止发电机因过热而损坏。
以上是常见的发电机保护原理,不同电厂可能还会根据具体情况增加其他的保护装置和原理。
发电机保护简介

1.发电机失磁保护失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。
由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。
励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。
静稳阻抗判据在失磁后静稳边界时动作。
TV断线判据在满足以下两个条件中任一条件:│Ua+Ub+Uc-3U0│≥Uset(电压门坎)或三相电压均低于8V,且0.1A<Ia<Iset(电流门坎)时判为TV二次回路断线,将失磁保护闭锁。
│Ua+Ub+Uc-3U0│≥Uset用于判别TV单相或两相断线,低压判据判断三相失压。
在电力系统短路或短路切除等非失磁因素引起系统振荡时,保护采取措施闭锁Ufd(P),可防止保护误出口。
励磁低电压Ufd(P)判据动作后经t1(2s)发出失磁信号。
励磁低电压Ufd(P)判据、静稳阻抗判据均满足且无TV二次回路断线时经t2(6s)发出跳闸指令。
励磁低电压Ufd(P)判据、静稳阻抗、系统低电压判据均满足且无TV二次回路断线时经t3(1s)发出跳闸指令。
2.发电机过激磁保护过激磁保护是反应发电机因频率降低或者电压过高引起铁芯工作磁密过高的保护。
过激磁保护分高、低两段定值,低定值经固定延时5s发出信号和降低励磁电压(降低励磁电压、励磁电流的功能暂未用),高定值经反时限动作于解列灭磁。
反时限延时上限为5秒,下限为200秒。
3.发电机定子接地保护发电机定子接地保护作为发电机定子单相接地故障保护,由基波零序电压部分和三次谐波电压两部分组成,基波零序电压保护机端至机尾95%区域的定子绕组单相接地故障,由反映发电机机端零序电压原理构成,经时限t1(3s)动作于解列灭磁;三次谐波电压保护机尾至机端30%区域的定子绕组单相接地故障,由发电机中性点和机端三次谐波原理构成,经时限t2(5s)动作于信号。
发电机的过流保护原理

发电机的过流保护原理
在电力系统中,发电机扮演着重要的角色。
一旦发电机内部发生过流情况,可能导致电力系统的故障和损害,如发电机损坏或线路设备损坏。
因此,需要设置发电机的过流保护来保护电力系统的安全稳定运行。
发电机的过流保护原理主要涉及到三个方面:测量、比较和动作。
首先是测量,发电机的电流和电压在发电机结束器中被测量。
这个过程是通过一台电流互感器和电压互感器实现的。
发电机的电流和电压信息被信号电缆或光缆传递到发电机保护装置中。
这些设备可以通过处理这些信号来判断发电机内部的电流情况。
其次是比较,测量结果被传输到保护装置中后,将其与设置的动作计算值进行比较,以确定是否需要动作保护。
根据不同类型的发电机(如同步发电机和异步发电机)和所需的保护类型(如过载保护、短路保护等),可以设置不同的保护装置和不同的动作计算值。
根据比较的结果,保护装置可以执行相应的保护措施。
最后是动作,如果测量结果和设定的动作计算值不匹配,保护装置将会输出动作信号。
这个信号将会使保护装置输出一个或多个的保护措施,以保护发电机和整个电力系统的设备。
动作通常包括以下措施:分断电源、打开断路器、关闭电磁铁、关闭电源继电器、
使相关的单元(如远动装置)进入紧急状态等。
这些措施的目的是保护电力系统的设备和人员的安全。
总的来说,发电机的过流保护包括测量、比较和动作三个方面。
通过这个保护方案,可以在发电机内部出现过流现象时,及时采取行动,防止可能对电力系统造成的损害。
通过科学的保护措施,能够更好地保障电力系统的安全可靠运行。