北师大版初一数学下册期末考试试卷及答案
北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试卷一、单选题1.我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是( )A .B .C .D .2.下列计算中正确的是( ) A .235a b a +=B .44a a a ÷=C .248a a a ⋅=D .()326a a -=-3.如图,直线a ,b 被直线c 所截,a∥b ,若∥2=45°,则∥1等于( )A .125°B .130°C .135°D .145°4.以下列各组线段为边,能组成三角形的是( ) A .2cm 、2cm 、4cm B .2cm 、6cm 、3cm C .8cm 、6cm 、3cmD .11cm 、4cm 、6cm5.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y (米)与时间t (分钟)之间关系的大致图象是( )A .B .C .D .6.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12 C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 7.在下列运算中,正确的是( )A .222()x y x y -=-B .2(2)(3)6a a a +-=-C .222()2a b a ab b +=++D .22(2)(2)2x y x y x y -+=-8.如图,下列条件中能判定//AB CD 的是( )A .35∠=∠B .24∠∠=C .15180∠+∠=︒D .34∠=∠ 9.如图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( )A .两点之间线段最短B .矩形的对称性C .矩形的四个角都是直角D .三角形的稳定性10.如图,∥CAB =∥DBA ,再添加一个条件,不一定能判定∥ABC∥∥BAD 的是( )A .AC =BDB .∥1=∥2C .∥C =∥D D .AD =BC二、填空题11.一种花粉颗粒的直径约为0.0000058米,0.0000058用科学计数法表示为________. 12.计算:22(3)ab =_________.13.如图,DA∥CE 于点A ,CD∥AB ,∥1=30°,则∥D=_____.14.一个不透明的布袋中装有3个红球,5个黄球,2个白球,每个球除颜色外都相同,任意摸出一球,摸到黄球的概率为______.15.如果三角形底边上的高是6,底边长为x ,那么三角形的面积y 可以表示为________________;16.如图,四边形ABDC 的对称轴是AD 所在的直线,AC=5,DB=7,则四边形ABDC 的周长为_______17.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∥ABC=120°,∥BCD=80°,则∥CDE=__________度.三、解答题18.计算:022(3)2(1)π---+-;19.如图,已知∥1=∥2,∥D =60˚,求∥B 的度数.20.如图,已知线段AC ,BD 相交于点E ,A D ∠=∠,BE CE =,求证ABE DCE ∆≅∆.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,∥ABC 的顶点均在格点上,直线a 为对称轴,点A ,点C 在直线a 上. (1)作∥ABC 关于直线a 的轴对称图形∥ADC ; (2)若∥BAC =35°,则∥BDA = ; (3)∥ABD 的面积等于 .22.先化简,再求值:2(4)(2)---x x y x y ,其中x =﹣1,y =1.23.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 ;(请选择正确的一个)A 、()()22a b a b a b -=+- B 、2222a ab b a b C 、()2a ab a a b +=+(2)若22164x y x y -=+=,,求x y -的值;(3)计算:22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.24.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)表中的a=________;(2)“摸到白球”的概率的估计值是___________(精确到0.1); (3)试估算口袋中黑、白两种颜色的球各有多少个?25.如图所示,在一个边长为12cm 的正方形的四个角都剪去一个大小相等的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果小正方形的边长为xcm ,图中阴影部分的面积为ycm 2,请写出y 与x 的关系式; (3)当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积是怎样变化的?26.在∥ABC中,AB=AC,D是BC边的中点,E、F分别是AD、AC边上的点.(1)如图∥,连接BE、EF,若∥ABE=∥EFC,求证:BE=EF;(2)如图∥,若B、E、F在一条直线上,且∥ABE=∥BAC=45°,探究BD与AE的数量之间有何等量关系,并证明你的结论;(3)如图∥,若AB=13,BC=10,AD=12,连接EC、EF,直接写出EC+EF的最小值.参考答案1.B【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.D【解析】【分析】根据幂的运算法则即可依次判断.【详解】A.23+不能计算,故错误;a bB.34÷=,故错误;a a aC.246⋅=,故错误;a a aD.()326-=-,正确a a故选D.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.3.C【解析】【分析】根据两直线平行,同位角相等可得∥3=∥2,再根据邻补角的定义解答.【详解】如图,∥a∥b,∥2=45°,∥∥3=∥2=45°,∥∥1=180°−∥3=135°,故选:C.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.4.C【解析】【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∥2+2=4,∥ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∥2+3<6,∥2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∥3+6>8,∥8cm、6cm、3cm能组成三角形,故符合题意;D. ∥4+6<11,∥11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.5.B【解析】【详解】∥y轴表示当天爷爷离家的距离,X轴表示时间又∥爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,∥刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多∥选项B中的图形满足条件.故选B.6.A【解析】【详解】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B 错误; 概率很小的事件也可能发生,故C 错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D 错误; 故选A . 考点:随机事件. 7.C 【解析】 【分析】根据整式的运算法则即可判断. 【详解】A.222()2x y x xy y -=-+,故错误;B.2(2)(3)6a a a a +-=--,故错误;C.222()2a b a ab b +=++,正确D.22(2)(2)4x y x y x y -+=-,故错误; 故选C . 【点睛】此题主要考查整式的运算,解题的关键是熟知其运算法则. 8.D 【解析】 【分析】根据平行线的判定定理进行判断即可. 【详解】解:A 、根据同旁内角互补,两直线平行的判定定理可知35∠=∠不能判定//AB CD ; B 、2∠ 和4∠为对顶角,无法判定//AB CD ;C 、根据同位角相等,两直线平行的判定定理可知15180∠+∠=︒不能判定//AB CD ; D 、根据内错角相等,两直线平行的判定定理可知34∠=∠可得//AB CD . 故选:D . 【点睛】本题主要考查了平行线的判定定理,包括:∥同位角相等,两直线平行;∥内错角相等,两直线平行;∥同旁内角互补,两直线平行.9.D【解析】【分析】用木条EF固定矩形门框ABCD,即是组成∥AEF,故可用三角形的稳定性解释.【详解】解:加上EF后,原不稳定的四边形ABCD中具有了稳定的∥EAF,故这种做法根据的是三角形的稳定性.故选:D.【点睛】本题考查三角形稳定性的实际应用,熟悉相关性质是解题的关键.10.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.∥AC=BD,∥CAB=∥DBA,AB=AB,∥根据SAS能推出∥ABC∥∥BAD,故本选项错误;B.∥∥CAB=∥DBA,AB=AB,∥1=∥2,∥根据ASA能推出∥ABC∥∥BAD,故本选项错误;C.∥∥C=∥D,∥CAB=∥DBA,AB=AB,∥根据AAS能推出∥ABC∥∥BAD,故本选项错误;D.根据AD=BC和已知不能推出∥ABC∥∥BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.11.5.8 ×10-6【解析】【详解】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此可得,此题的a=5.8,10的指数为﹣6.故答案为:5.8×10-6.考点:科学记数法.12.249a b【解析】【分析】根据积的乘方:()n n n ab a b =和幂的乘方()nm mn a a =计算即可. 【详解】解:()22222422933ab a b a b ⨯==故答案为:249a b .【点睛】此题考查的是幂的运算性质,掌握积的乘方和幂的乘方是解决此题的关键.13.60°【解析】【分析】先根据垂直的定义,得出∥BAD=60°,再根据平行线的性质,即可得出∥D 的度数.【详解】∥DA∥CE ,∥∥DAE=90°,∥∥1=30°,∥∥BAD=60°,又∥AB∥CD ,∥∥D=∥BAD=60°,故答案为60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.14.1 2【解析】【分析】让黄球的个数除以球的总数即为摸到红球的概率.【详解】3个红球,5个黄球,2个白球,一共是10个搅拌均匀后从中任意摸出一个球,则摸出的球是黄球的概率是51 102=.故答案为:12.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.15.3y x=【解析】【分析】直接利用三角形面积求法得出答案即可.【详解】∥三角形的底边长为xcm,底边上的高为6cm,∥三角形的面积y(cm2)可以表示为:y=3x.故答案为y=3x.【点睛】此题主要考查了函数关系式以及三角形面积求法,正确记忆三角形面积公式是解题关键.16.24【解析】【详解】∥四边形ABDC的对称轴是AD所在的直线,AC=5,DB=7,∥AB=AC=5,CD=BD=7,∥四边形ABDC的周长=AC+CD+BD+AB=5+7+7+5=24.故答案为24.17.20【解析】由已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,得AB∥DE ,过点C 作CF∥AB ,则CF∥DE ,由平行线的性质可得,∥BCF+∥ABC=180°,所以能求出∥BCF ,继而求出∥DCF ,又由CF∥DE ,所以∥CDE=∥DCF .【详解】解:过点C 作CF∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∥AB∥DE ,∥CF∥DE ,∥∥BCF+∥ABC=180°,∥∥BCF=60°,∥∥DCF=20°,∥∥CDE=∥DCF=20°.故答案为:20.【点睛】此题考查的知识点是平行线的性质,关键是过C 点先作AB 的平行线,由平行线的性质求解.18.314【解析】【分析】根据实数的性质进行化简即可求解.【详解】解:022(3)2(1)π-----1114=-+ 314=.此题主要考查实数的运算,解题的关键是熟知负指数幂的运算法则.19.120B ∠=︒;【解析】【分析】首先证出∥1=∥3,从而得出AB∥CD ,然后推出∥D+∥B=180°,代入求出即可.【详解】解:如图:∥∥1=∥2,∥2=∥3,∥∥1=∥3,∥AB∥CD ,∥∥D+∥B=180°,∥∥D=60°,∥∥B=120°.【点睛】本题考查平行线的判定与性质,难度不大,掌握平行线的判定定理和性质定理是解题关键.20.见解析【解析】【分析】根据AAS 即可证明ABE DCE ∆≅∆.【详解】证明:在∥ABE 和∥DCE 中A D AEB DEC BE CE ∠∠⎧⎪∠=∠⎨⎪=⎩=∥∥ABE∥∥DCE(AAS).【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.21.(1)如图见解析;(2)∥BDA=55°;(3)∥ABD的面积等于28.【解析】【分析】(1)根据网格结构找出点B关于直线a的对称点D的位置,然后与A、C顺次连接即可;(2)根据轴对称的性质解答即可;(3)根据三角形的面积公式列式计算即可得解.【详解】解:(1)∥ADC如图所示;(2)∥BAD=2∥BAC=2×35°=70°,∥AB=AD,∥∥BDA=1(180°-∥BAD)=55°;2故答案为55°;×8×7=28,(3)∥ABD的面积=12故答案为28.【点睛】本题考查了利用轴对称变换作图以及三角形面积的计算,熟练掌握网格结构准确找出对应点的位置.22.﹣4y 2,-4【解析】【分析】根据单项式乘多项式和完全平方公式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】解:x (x ﹣4y )﹣(x ﹣2y )2=x 2﹣4xy ﹣x 2+4xy ﹣4y 2=﹣4y 2,当y =1时,原式=﹣4×12=﹣4.【点睛】本题考查单项式乘多项式和完全平方公式的计算,掌握计算法则和公式结构正确计算是本题的解题关键.23.(1)A ;(2)4;(3)20214040 【解析】【分析】(1)观察图1与图2,根据图1中阴影部分面积22a b =-,图2中长方形面积()()a b a b =+-,得到验证平方差公式;(2)已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可; (3)先利用平方差公式变形,再约分即可得到结果.【详解】解:(1)根据图形得:图1中阴影部分面积22a b =-,图2中长方形面积()()a b a b =+-, ∴上述操作能验证的等式是22()()a b a b a b -=+-,故答案为: A ;(2)22()()16x y x y x y -=+-=,4x y +=,4x y ∴-=;(3)22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111(1)(1)(1)(1)(1)(1)223320202020=-+-+⋯-+20213243201920212233402020=⨯⨯⨯⨯⨯⋯⨯⨯ 1202122020=⨯ 20214040=. 【点睛】此题考查了平方差公式的几何背景以及因式分解法的运用,熟练掌握平方差公式的结构特征是解本题的关键,注意此类题目每一步都为后续解题提供了解题条件或方法.24.(1)0.58;(2)0.6;(3)白球的个数约为20×0.6=12个,黑球有20-12=8个【解析】【分析】(1)根据表中的数据,计算得出摸到白球的频率.(2)由表中数据即可得;(3)根据摸到白球的频率和球的总数求得两种球的数量即可.(1)a=290÷500=0.58,故答案为:0.58;(2)由表可知,当n 很大时,摸到白球的频率将会接近0.6,所以“摸到白球”的概率的估计值是0.6;故答案为:0.6;(3)因为当n 很大时,摸到白球的频率将会接近0.6;所以白球的个数约为20×0.6=12个,黑球有20-12=8个.【点睛】本题主要考查了如何利用频率估计概率,在解题时要注意频率和概率之间的关系,属于中考常考题型.25.(1)小正方形的边长是自变量,阴影部分的面积为因变量;(2)21444y x =-;(3)阴影部分的面积由140cm 2变到44cm 2【解析】【分析】(1)根据当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,则小正方形的边长是自变量,阴影部分的面积为因变量;(2)根据阴影部分的面积=大正方形的面积-4个小正方形的面积,即可解答;(3)根据当小正方形的边长由1cm 变化到5cm 时,x 增大,x 2也随之增大,-4x 2则随着x 的增大而减小,所以y 随着x 的增大而减小.(1)∥当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,∥小正方形的边长是自变量,阴影部分的面积为因变量;(2)由题意可得:2221241444y x x =-=-;(3)由(2)知:21444y x =-,当x=1cm 时,14441140y -⨯==(cm 2).当x=5cm 时,21444544y =-⨯=(cm 2).∥当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积由140cm 2变到44cm 2【点睛】本题考查了函数关系式,解决本题的关键是列出函数关系式.26.(1)证明见解析;(2)2AE BD =,证明见解析;(3)12013【解析】【分析】(1)连接CE ,根据等腰三角形的性质可得BE CE =、A ABC CB =∠∠,经过倒角及角的和差运算可得∥ABE =∥ACE ,利用等边对等角即可得证;(2)根据已知易得ABF 和CEF △都是等腰直角三角形,通过证明CBF EAF ≌即可得出结论;(3)由(1)可得EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,利用等面积法即可求解.【详解】解:(1)连接CE ,,∥AB =AC ,D 是BC 边的中点,∥AD 为线段BC 的垂直平分线,A ABC CB =∠∠,∥BE CE =,∥EBC ECB ∠=∠,∥ABC EBC ACB ECB ∠-∠=∠-∠,即∥ABE =∥ACE ,∥∥ABE =∥EFC ,∥∥ACE =∥EFC ,∥EF CE =,∥BE EF =;(2)连接CE ,由(1)可得∥ABE =∥ACE , ∥∥ABE =∥BAC =45°, ∥ABF 和CEF △都是等腰直角三角形, ∥AF BF =,CF EF =, ∥CBF EAF ≌, ∥BC AE =,∥2AE BD =;(3)由(1)可知BE CE =, ∥EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,1122ABC S BC AD AC BP =⋅=⋅, 解得12013BP =,∥EC+EF 的最小值为12013.【点睛】本题考查等腰三角形的性质、全等三角形的判定与性质、线段最值等内容,掌握等腰三角形的性质是解题的关键.21。
新北师大版七年级数学下册期末试卷及答案【完美版】

新北师大版七年级数学下册期末试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算(-2)1999+(-2)2000等于()A.-23999B.-2C.-21999D.219992.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元3.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中()A.亏了10元钱 B.赚了10钱C.赚了20元钱 D.亏了20元钱5.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°6.如图,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠17.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,58.比较2,5,37的大小,正确的是()A.3257<<B.3275<<C.3725<<D.3752<<9.一次函数满足,且随的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个.3.如果a的平方根是3±,则a=_________。
北师大版数学七年级下册期末考试试题附答案

北师大版数学七年级下册期末考试试卷本试卷满分120分,考试时间90分钟,试题共25题,选择12道、填空6道、解答7道.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外都相同,则事件“从中任意摸出3个球,至少有1个球是黑球”的事件类型是()A.随机事件B.不可能事件C.必然事件D.无法确定2.下列计算正确的是()A.a2•a3=a6B.(a+b)2=a2+b2C.(2b2)3=6b6D.(﹣a+b)(﹣b﹣a)=a2﹣b23.下列微信表情图标属于轴对称图形的是()A.B.C.D.4.如图,点C,F,B,E在同一直线上,∠C=∠DFE=90°,添加下列条件,仍不能判定∠ACB与∠DFE 全等的是()A.∠A=∠D,AB=DE B.AC=DF,CF=BEC.AB=DE,BC=EF D.∠A=∠D,∠ABC=∠E5.如图,在∠ABC中,AB=AC,∠A=30°,直线a∠b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是()A.40° B.45° C.50° D.35°6.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( )A .B .C .D .7.下列计算正确的是( )A .(﹣2y +1)(﹣2y ﹣1)=1﹣4y 2B .(12x +1)2=14x 2+1+xC .(x ﹣2y )2=(x +2y )2﹣6xyD .(x +3)(2x ﹣5)=2x 2﹣x ﹣158.如图,已知AB =AC ,AB =5,BC =3,以A ,B 两点为圆心,大于12AB 的长为半径画圆弧,两弧相交于点M ,N ,连接MN 与AC 相交于点D ,则∠BDC 的周长为( )A .8B .10C .11D .139.如图,在Rt∠ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N .再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =12,则∠ABD 的面积是( )A .12B .24C .36D .4810.如图,AB =AC ,BE ∠AC 于E ,CF ∠AB 于F ,BE ,CF 交于D ,则以下结论:∠∠ABE ∠∠ACF ;∠∠BDF ∠∠CDE ;∠点D 在∠BAC 的平分线上.正确的是( )A .∠B .∠C .∠∠D .∠∠∠11.小虎和小丽一起玩一种转盘游戏.转盘分成面积相等的三个区域,分别用“1”,“2”,“3”表示,固定指针转动转盘,任其自由停止.若指针所指的数字为奇数,小虎获胜;否则小丽获胜.则在该游戏中小虎获胜的概率是( )A .12B .49C .59D .2312.如图,有A ,B ,C 三个地点,且AB ∠BC ,从A 地测得B 地的方位角是北偏东43°,那么从C 地测B 地的方位角是( )A .南偏东47°B .南偏西43°C .北偏东43°D .北偏西47° 二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上 13.计算:﹣12016﹣(−13)﹣2+(π+1)0= ;(34)2007×(﹣113)2008= .14.等腰三角形的一个角为40°,则它的顶角为 . 15.计算:2019×2021﹣20202= .16.如图,在∠ABC 中,AC =BC ,点D 和E 分别在AB 和AC 上,且AD =AE .连接DE ,过点A 的直线GH 与DE 平行,若∠C =40°,则∠GAD 的度数为 .17.如图,从以下给出的四个条件中选取一个: (1)∠1=∠2;(2)∠3=∠4;(3)∠A=∠DCE;(4)∠A+∠ABD=180°.恰能判断AB∠CD的概率是.18.如图,这是用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成…按照这样的规律排列下去,则第6个图案中共有个白子.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤),只有一项是符合题目要求的.19.(1)(2x2y﹣3xy2)﹣(6x2y﹣3xy2)(2)(−32ax4y3)÷(−65ax2y2)⋅8a2y(3)(ab+1)2﹣(ab﹣1)2(4)20153﹣2014×2015×2016(5)(4y+3x﹣5z)(3x+5z﹣4y)(6)(34a4b7−12a3b8+19a2b6)÷(13ab3)2,其中a=12,b=﹣4.20.如图,在6×6的网格中已经涂黑了三个小正方形,请按下列要求画图.(1)在图1中涂黑一块小正方形,使涂黑的四个小正方形组成一个轴对称图形.(2)在图2中涂黑一块小正方形,使涂黑的四个小正方形组成一个中心对称图形.21.如图,是一个材质均匀的转盘,转盘分成8个全等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,(若指针指向两个扇形的交线时,当作指向右边的扇形),转动一次转盘:(1)求指针指向绿色扇形的概率;(2)指针指向红色扇形的概率大,还是绿色扇形概率大?为什么?22.如图,在∠ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过点E作EF∠BC交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.23.如图,已知AB=DC,AB∠CD,E、F是AC上两点,且AF=CE.(1)求证:∠ABE∠∠CDF;(2)连接BC,若∠CFD=100°,∠BCE=30°,求∠CBE的度数.24.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来后,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.25.学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式;(2)请用这3种卡片拼出一个面积为a2+5ab+6b2的长方形(数量不限),在图3的虚线框中画出示意图,并在示意图上按照图2的方式标注好长方形的长与宽;(3)选取1张A型卡片,4张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,图中两阴影部分(长方形)为没有放置卡片的部分.已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2.若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.(用含a或b的代数式表示)答案一、选择题1.C .2.D .3.C .4.D .5.A .6.C .7.B .8.A .9.B .10.D .11.D .12.A . 二、填空题 13.:﹣9,43.14.:40°或100°. 15.:﹣1. 16.:55°. 17.:12.18.54. 三、解答题19.【解析】(1)原式=2x 2y ﹣3xy 2﹣6x 2y +3xy 2=﹣4x 2y ; (2)原式=10x 2y 2;(3)原式=(ab +1+ab ﹣1)(ab +1﹣ab +1)=4ab ;(4)原式=20153﹣(2015﹣1)×2015×(2015+1)=20153﹣(20152﹣1)×2015=20153﹣(20153﹣2015)=20153﹣20153+2015=2015;(5)原式=9x 2﹣(4y ﹣5z )2=9x 2﹣16y 2+40yz ﹣25z 2; (6)原式=(34a 4b 7−12a 3b 8+19a 2b 6)÷19a 2b 6=274a 2b −92ab 2+1,当a =12,b =﹣4时,原式=−274−36+1=﹣4134. 20.【解析】(1)如图1所示:∠、∠、∠、∠处涂黑都可以使涂黑的四个小正方形组成一个轴对称图形;(2)如图2所示:∠、∠使涂黑的四个小正方形组成一个中心对称图形..21.【解析】按颜色把8个扇形分为2红、3绿、3黄,所有可能结果的总数为8,(1)指针指向绿色的结果有3个, ∠P (指针指向绿色)=38; (2)指针指向红色的结果有2个, 则P (指针指向红色)=28=14, 由(1)得:指针指向绿色扇形的概率大. 22.【解析】(1)∠AB =AC , ∠∠C =∠ABC , ∠∠C =36°, ∠∠ABC =36°, ∠D 为BC 的中点, ∠AD ∠BC ,∠∠BAD =90°﹣∠ABC =90°﹣36°=54°. (2)∠BE 平分∠ABC , ∠∠ABE =∠EBC , 又∠EF ∠BC , ∠∠EBC =∠BEF , ∠∠EBF =∠FEB , ∠BF =EF .23.【解答】(1)证明:∠AB ∠CD , ∠∠A =∠DCF , ∠AF =CE , ∠AE =CF ,在∠ABE 和∠CDF 中, {AB =CD∠A =∠DCF AE =CF, ∠∠ABE ∠∠CDF (SAS ).(2)∠∠ABE ∠∠CDF , ∠∠AEB =∠CFD =100°, ∠∠BEC =180°﹣100°=80°, ∠∠CBE =180°﹣80°﹣30°=70°.24.【解析】(1)∠乌龟是一直跑的而兔子中间有休息的时刻, ∠折线OABC 表示赛跑过程中兔子的路程与时间的关系; 由图象可知:赛跑的全过程为1500米; 故答案为:兔子,1500; (2)结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米). (3)700÷30=703(分钟), 所以乌龟用了703分钟追上了正在睡觉的兔子.(4)∠兔子跑了700米停下睡觉,用了2分钟, ∠剩余800米,所用的时间为:800÷400=2(分钟), ∠兔子睡觉用了:50.5﹣2﹣2=46.5(分钟). 所以兔子中间停下睡觉用了46.5分钟.25.【解析】(1)方法1:大正方形的面积为(a +b )2, 方法2:图2中四部分的面积和为:a 2+2ab +b 2, 因此有(a +b )2=a 2+2ab +b 2, 故答案为:(a +b )2=a 2+2ab +b 2. (2)如图,(3)设DG 长为x .∠S 1=a [x ﹣(a +2b )]=ax ﹣a 2﹣2ab ,S 2=2b (x ﹣a )=2bx ﹣2ab , ∠S =S 2﹣S 1=(2bx ﹣2ab )﹣(ax ﹣a 2﹣2ab )=(2b ﹣a )x +a 2, 由题意得,若S 为定值,则S 将不随x 的变化而变化, 可知当2b ﹣a =0时,即a =2b 时,S =a 2为定值, 故答案为:a =2b ,a 2.。
北师大版七年级下册数学期末考试试题含答案

北师大版七年级下册数学期末考试试卷一、单选题1.下列运算正确的是()A.a+b=ab B.(x+1)2 =x2+1C.a10÷ a5=a2D.(﹣a3)2=a62.某种细胞直径是0.00000095米,将0.00000095用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣6D.95×10﹣83.以每组数为线段的长度,可以构成三角形三边的是()A.5,6,10B.5,6,11C.3,4,8D.4,4,84.下列图形是轴对称图形的是()A.B.C.D.5.下列事件中,是必然事件的是()A.内错角相等B.掷两枚硬币,必有一个正面朝上,一个反面朝上C.13人中至少有两个人的生肖相同D.打开电视,一定能看到三水新闻6.如果∠A=50°,那么∠A的余角是()A.30°B.40°C.90°D.130°7.如图,把一副三角板放在桌面上,当AB∠DC时,∠CAE等于()A.10°B.15°C.20°D.25°8.一个长方体的长、宽、高分别是3m-4,2m和m,则它的体积是()A.3m3-4m2B.3m2-4m3C.6m3-8m2D.6m2-8m39.为了应用平方差公式计算(a﹣b+c)(a+b﹣c),必须先适当变形,下列变形中,正确的是()A.[(a+c)﹣b] [(a﹣c)+b]B.[(a﹣b)+c][(a+b)﹣c]C.[a﹣(b+c)] [a+(b﹣c)]D.[a﹣(b﹣c)] [a+(b﹣c)]10.如图所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的有()∠体育场离张强家3.5千米∠张强在体育场锻炼了15分钟∠体育场离早餐店1.5千米∠张强从早餐店回家的平均速度是3千米/小时A.1个B.2个C.3个D.4个二、填空题11.计算:(﹣a)2•a3=_______.12.若a x=2,a y=3,则a x-y=______.13.如图所示,在∠ABC中,AB=AC,∠B=50°,则∠A=________.14.有5张纸签,分别标有数字2,3,4,5,6,从中随机抽出一张,则抽出标有数字为偶数的概率为_____.15.已知等腰三角形的两边长为3和6,则它的周长为_____.16.三角形的底边长为8,高是x,那么三角形的面积y与高x之间的关系式是______.17.如图,已知∠ACB=90°,BC=6,AC=8,AB=10,点D在线段AB上运动,线段CD的最短距离是_____.三、解答题)﹣2+(﹣1)202018.﹣32+50﹣(1219.先化简再求值:[(x﹣y)2﹣(y﹣x)(y+x)]÷2x,其中x=2021,y=1.20.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?21.如图,AB=CD,AF=CE,∠A=∠C,那么BE=DF吗?请说明理由.22.三水区响应“绿色环保”号召,鼓励市民节约用电,对电费采用分段收费标准,若某户居民每月应交电费y(元)与用电量x(度)之间关系的图象如图所示:(1)当用电量不超过50度时,每度收费多少元?超过50度时,超过的部分每度收费多少元?(2)若某户居民某月交电费120元,该户居民用电多少度?23.如图,在∠ABC中,∠C=60°,∠A=40°.用尺规作图作边AB的垂直平分线,交AC于点D,交AB于点E(要求:不写作法,保留作图痕迹).24.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个关于整式乘法的数学等式,例如图1可以得到完全平方公式(a+b)2=a2+2ab+b2,请利用这一方法解决下列问题:(1)观察图2,写出所表示的数学等式:_________________________=____________________________.(2)观察图3,写出所表示的数学等式:_________________________=____________________________.(3)已知(2)的等式中的三个字母可以取任何数,若a=7x-5,b=﹣4x+2,c=﹣3x+4,且a2+b2+c2=37.请利用(2)中的结论求ab+bc+ac的值.25.如图(1),AB=7cm,AC∠AB,BD∠AB,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上由点B向点D运动.它们运动的时间为t (s),当点P到达点B时,点Q也停止运动.(1)若点Q的运动速度与点P的运动速度相等,当t=1s时,∠ACP与∠BPQ全等,此时PC∠PQ吗?请说明理由.(2)将图(1)中的“AC∠AB,BD∠AB”为改“∠CAB=∠DBA=60°”后得到如图(2),其他条件不变.设点Q的运动速度为xcm/s.当点P、Q运动到某处时,有∠ACP与∠BPQ全等,求出相应的x、t的值.(3)在(2)成立的条件下且P、Q两点的运动速度相同时,∠CPQ=__________.(直接写出结果)参考答案1.D【分析】根据合并同类项法则、完全平方公式、同底数幂的的除法的运算法则、幂的乘方的运算法则进行计算后判断即可.【详解】解:A、a与b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、(x+1)2=x2+2x+1,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、(-a3)2=a6,原计算正确,故此选项符合题意;故选:D.2.A【解析】【分析】用科学记数法表示较小数时的形式为10n a -⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0 的数字后面即可,确定n 的值时,n 等于该数从左起第一个不为0的数字前所有0的个数.【详解】易知9.5a =,从左起第一个不为0的数字前面有7个0,所以7n =∠70.000000959.510-=⨯ .故选:A .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.3.A【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】解:根据三角形的三边关系,A 、5+6=11>10,能组成三角形;B 、5+6=11,不能够组成三角形;C 、3+4=7<8,不能组成三角形;D 、4+4=8,不能组成三角形.故选:A .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.D【解析】【分析】一个图形的一部分,沿着一条直线对折后两部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、B、C不符合轴对称图形的定义,D符合轴对称图形的定义,故选D.【点睛】本题考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解答本题的关键.5.C【解析】【分析】直接利用随机事件的定义分别分析得出答案.【详解】解:A.内错角相等,是随机事件,不合题意;B.掷两枚硬币,必有一个正面朝上,一个反面朝上,是随机事件,不合题意;C.13人中至少有两个人的生肖相同,是必然事件,符合题意;D.打开电视,一定能看到三水新闻,是随机事件,不合题意;故选:C.【点睛】此题主要考查了随机事件,正确把握相关定义是解题关键.6.B【解析】【分析】和为90°的两个角是互为余角,∠A的余角为(90°-∠A),代入计算即可.【详解】解:90°-∠A=90°-50°=40°,故选:B.【点睛】本题主要考查余角的意义和计算方法,关键是掌握如果两个角的和为90°,那么这两个角互为余角.7.B【解析】【分析】根据三角形的内角和定理和平行线的性质定理可得结果.解:∠AB∠DC,∠∠EAB=∠AED=45°,∠∠BAC=30°,∠∠CAE=∠EAB-∠BAC=45°-30°=15°,故选:B.【点睛】本题考查三角形内角和定理,平行线的性质等知识,解题的关键是熟练掌握性质定理.8.C【解析】【分析】根据长方体体积的计算方法,列出算式进行计算即可.【详解】解:根据长方体体积的计算公式得,(3m-4)•2m•m=6m3-8m2,故选:C.【点睛】本题考查单项式乘以多项式的计算方法,掌握计算方法是正确计算的前提.9.D【解析】【分析】由于平方差公式是把多项式分解为两个数的和与两个数的差的积的形式,所以根据这个特点即可判定选择项.【详解】解:(a-b+c)(a+b-c)=[a-(b-c)][a+(b-c)].选项A,B,C不符合平方差公式的结构特征,只有选项D是正确的,故选:D.【点睛】此题主要考查了因式分解的平方差公式的特点:两个数的和乘以两个数的差,此题解题关键是分别找出两个括号的符号相同的和符号不同的项,然后变形就比较简单.10.A【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得距离.【详解】解:∠由纵坐标看出,体育场离张强家3.5千米,故∠正确;∠由横坐标看出,30-15=15分钟,张强在体育场锻炼了15分钟,故∠正确;∠由纵坐标看出,3.5-2.0=1.5千米,体育场离早餐店1.5千米,故∠正确;∠由纵坐标看出早餐店离家2千米,由横坐标看出从早餐店回家用了95-65=30分钟=0.5小=4千米/小时,故∠错误;时,2÷12故选:A.【点睛】本题考查了函数图象,观察函数图象获得有效信息是解题关键.11.a5【解析】【分析】先计算积的乘方,再根据“同底数幂相乘,底数不变,指数相加”进行计算即可.【详解】解:(﹣a)2•a3= a2•a3=a5,故答案是:a5.【点睛】本题考查了积的乘方、同底数幂的乘法,解题的关键是注意符号的确定..12.23【解析】【详解】试题解析:∠a x=2,a y=3,.∠a x-y=a x÷a y=2÷3=23考点:同底数幂的除法.13.80°【解析】略【详解】根据等腰三角形的性质,∠B=∠C=50°,然后根据三角形内角和定理就可推出∠A的度数解:∠在∠ABC中,AB=AC,∠B=50°∠∠C=50°∠∠A=180°﹣50°﹣50°=80°故答案为80°.【点睛】略14.3 5【解析】【分析】直接利用概率公式得出答案.【详解】解:有5张纸签,分别标有数字2,3,4,5,6,从中随机抽出一张,则抽出标有数字为偶数的是2,4,6,故抽出标有数字为偶数的概率为:35.故答案为:35.【点睛】此题主要考查了概率公式,正确掌握概率求法是解题关键.15.15【解析】【分析】分两种情况:当3为底时和3为腰时,再根据三角形的三边关系定理:两边之和大于第三边去掉一种情况即可.【详解】解:当3为底时,三角形的三边长为3,6,6,则周长为15;当3为腰时,三角形的三边长为3,3,6,∠3+3=6,∠3,3,6不能组成三角形,综上所述,等腰三角形的三边长为3,3,6,周长为15;故答案为:15.【点睛】本题考查了等腰三角形的定义以及三角形的三边关系定理,是基础知识,要熟练掌握.注意分类讨论思想的应用.16.y=4x【解析】【分析】根据三角形的面积计算方法可得函数关系式.【详解】解:y=12×8x=4x ,故答案为:y=4x .【点睛】本题考查用函数关系式表示变量之间的关系,掌握三角形面积的计算方法是得出关系式的前提.17.4.8【解析】【分析】当CD∠AB 时,线段CD 的长度最短,依据三角形的面积即可得到CD 的长.【详解】解:∠点D 在线段AB 上运动,∠当CD∠AB 时,线段CD 的长度最短,又∠∠ACB=90°,BC=6,AC=8,AB=10, ∠12AC×BC=12AB×CD ,86 4.810AC BC CD AB ⨯⨯∴===, 故答案为:4.8.【点睛】本题主要考查了垂线段最短,垂线段最短指的是从直线外一点到这条直线所作的垂线段最短.18.-11【解析】【分析】先分别化简乘方,零指数幂,负整数指数幂,然后进行有理数的混合运算.【详解】解:原式=-9+1-4+1=-11.【点睛】本题考查乘方,零指数幂,负整数指数幂及有理数的混合运算,掌握法则和运算顺序正确计算是解题关键.19.x-y;2020【解析】【分析】原式中括号中利用完全平方公式,以及平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【详解】解:[(x-y)2-(y-x)(y+x)]÷2x=(x2-2xy+y2-y2+x2)÷2x=(2x2-2xy)÷2x=x-y,当x=2021,y=1时,原式=2021-1=2020.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20.(1)34;(2)125【解析】【分析】根据题意求出概率,进行简单计算即可求解.【详解】解:(1)指针指向1,2,3,5,6,8都获奖,∠获奖概率P=68=3,4(2)获得一等奖的概率为18, 100018⨯=125(人),∠获得一等奖的人数可能是125人.【点睛】本题考查了概率的简单应用,概率的求法,属于简单题,熟悉概率的实际含义是解题关键.21.见解析【解析】【分析】由“SAS”可证∠ABF∠∠CDE ,可得BF=DE ,可得BE=DF .【详解】解:BE=DF .理由如下:在∠ABF 和∠CDE 中,AB CDA CAF CE=⎧⎪∠=∠⎨⎪=⎩∠∠ABF∠∠CDE (SAS ),∠BF=DE ,∠BF -EF=DE -EF ,∠BE=DF .【点睛】本题考查了全等三角形的判定和性质,证明∠ABF∠∠CDE 是本题的关键.22.(1)0.6元;1元 (2)140度【解析】【分析】(1)根据图象上点的坐标进行列式计算即可;(2)根据(1)的结论求出超过50度部分的用电量即可求解.【详解】解:(1)不超过50度时每度收费:30÷50=0.6(元),超过50度时,超过的部分每度收费:(60-30)÷(80-50)=1(元);答:当用电量不超过50度时,每度收费0.6元,超过50度时,超过的部分每度收费1元.(2)120-0.6×50=90(元),90÷1=90(度),50+90=140(度).答:该户居民用电140度.【点睛】本题主要考查一次函数的应用,关键学会读懂图象信息,学会构建一次函数解决问题.23.作图见解析【解析】【分析】AB长为半径画弧,两弧交于点M,N,作直线MN交AC于分别以A.B为圆心,大于12D,交AB于E.【详解】解:如图,直线DE即为所求.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)(a+2b)(a+b);a2+3ab+2b2;(2)(a+b+c)2;a2+b2+c2+2ab+2ac+2bc;(3)-18【解析】【分析】(1)根据大矩形的面积=各矩形的面积之和求解即可;(2)根据正方形的面积=各矩形的面积之和求解即可;(3)先求出(a+b+c)2的值,再根据(2)中关系式求得结果.【详解】解:(1)大矩形的面积=(a+2b)(a+b),各部分面积和=a2+3ab+2b2,∠(a+2b)(a+b)=a2+3ab+2b2,故答案为:(a+2b)(a+b);a2+3ab+2b2;(2)正方形的面积可表示为=(a+b+c)2;各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ca,∠(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.故答案为:(a+b+c)2;a2+b2+c2+2ab+2bc+2ac;(3)由(2)得(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.∠(a+b+c)2=(7x-5-4x+2-3x+4)2=1,∠1=a2+b2+c2+2ab+2ac+2bc,∠a2+b2+c2=37,∠1=37+2(ab+bc+ac),∠2(ab+bc+ac)=-36,∠ab+bc+ac=-18.【点睛】本题考查了因式分解的应用,完全平方公式的几何背景,以及完全平方公式在几何图形相关计算中的应用,本题具有一定的综合性,难度中等略大.25.(1)PC∠PQ,理由见解析;(2)t=1,x=2或t=74,x=207;(3)60°【解析】【分析】(1)利用SAS证得∠ACP∠∠BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由∠ACP∠∠BPQ,分两种情况:∠AC=BP,AP=BQ,∠AC=BQ,AP=BP,建立方程组求得答案即可;(3)根据题意得P、Q两点的运动速度为2,得到BP=AC,根据全等三角形的性质得到∠C=∠BPQ,于是得到结论.【详解】解:(1)当t=1时,AP=BQ=2,BP=AC=5又∠AC∠AB,BD∠AB,∠∠A=∠B=90°在∠ACP和∠BPQ中AP BQA B AC BP=⎧⎪∠=∠⎨⎪=⎩∠∠ACP∠∠BPQ(SAS),∠ACP BPQ∠=∠,∠90APC BPQ APC ACP∠+∠=∠+∠=∠∠CPQ=90°,即线段PC与线段PQ垂直;(2)∠若∠ACP∠∠BPQ,则AC=BP,AP=BQ,7-2t=5,2t=xt,解得t=1,x=2,∠存在t=1,x=2,使得∠ACP与∠BPQ全等,∠若∠ACP∠∠BQP,则AC=BQ,AP=BP,5=xt,2t=7 2解得t=74,x=207,∠存在t=74,x=207,使得∠ACP与∠BPQ全等,综上所述,存在t=1,x=2或t=74,x=207使得∠ACP与∠BPQ全等(3)∠∠A=∠B=60°∠P、Q两点的运动速度相同,∠P、Q两点的运动速度为2,∠t=1,∠AP=BQ=2,∠BP=5,∠BP=AC,在∠ACP和∠BPQ中AP BQA B AC BP=⎧⎪∠=∠⎨⎪=⎩∠∠ACP∠∠BPQ(SAS);∠∠C=∠BPQ,∠∠C+∠APC=120°,∠∠APC+∠BPQ=120°,∠∠CPQ=60°.故答案为:60°.【点睛】本题考查了三角形的综合题,全等三角形的判定和性质,余角的性质,正确的识别图形是解题的关键.。
北师大版七年级数学下册期末测试题及参考答案

北师大版七年级数学下册期末测试题) 1. 下列事件是必然事件的是( )A. 小梅的数学考试将得99分B. 抛出去的铅笔将着地C. 明天会是晴天D. 2018年有370天 2. 下列计算正确的是( )A. a4·a4=a16B. (a3)4=a7C. 12a6b4÷3a2b -2=4a4b2D. (-a3b)2=a6b23.如图, 在△ABC 中, AB =AC, DE ∥BC, ∠ADE =48°, 则下列结论中不正确的是( )A. ∠B =48°B. ∠AED =66°C. ∠A =84°D. ∠B +∠C =96° 4.已知xy =9, x -y =-3, 则x2+3xy +y2的值为( ) A. 27 B. 9 C. 54 D. 185.为应对越来越严峻的交通形势, 某市对其主干道进行拓宽改造.工程队在工作了一段时间后, 因雨被迫停工几天, 随后工程队加快了施工进度, 按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路y(米)与时间x(天)的关系的大致图象是( )6. 如图, 在△ABC 中, D 是AB 上一点, DF 交AC 于点E, AE =EC, DE =EF, 则下列说法中: ①∠ADE =∠EFC ;②∠ADE +∠ECF +∠FEC =180°;③∠B +∠BCF =180°;④S △ABC =S 四边形DBCF, 正确说法的个数有( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题, 每小题3分, 满分18分)7. 在不借助任何工具的情况下, 人的眼睛可以看到的最小物体的大小约为0.00003米, 将0.00003用科学记数法表示为____________.8. 汽车由吉安驶往相距220km的南昌,它的平均速度为100km/h,则汽车距南昌的路程s(km)与行驶的时间t(h)的关系式为__________________.9.四张质地、大小相同的卡片上, 分别画上如图所示的四个图形.在看不到图形的情况下从中任意抽取一张, 则抽取的卡片是轴对称图形的概率为________.10. 如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线分别交AC, AD, AB于点E, O, F, 则图中全等的三角形共有________对.第10题图第11题图11. 如图, 有一块边长为4的正方形塑料模板ABCD, 将一块足够大的直角三角板的直角顶点落在A点, 两条直角边分别与CD交于点F, 与CB的延长线交于点E, 则四边形AECF 的面积是________.12. 我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”. 如果等腰三角形的“内角正度值”为45°, 那么该等腰三角形的顶角度数为________.三、解答题(本大题共5小题, 每小题6分, 满分30分)13. (1)计算:43×0.259;(2)如图, 直线AB, CD相交于点O, OM⊥AB.若∠COB=135°, 求∠MOD的度数.14. 先化简, 再求值: 2a(a+2b)-(a+2b)2, 其中a=2, b=-1.15. 如图, ∠A=65°, ∠ABD=∠DCE=30°, 且CE平分∠ACB, 求∠DBC的度数.16. 如图, 在等边△ABC中, D是BC上一点, ∠BAD=40°, E是AC上一点, AD=AE,求∠AED的度数.17. 如图是由一个长方形和一个等腰三角形组成的轴对称图形, 请你用两种方法作出它的对称轴(要求: 只能用没有刻度的直尺, 可不写作法, 但要保留作图痕迹).四、(本大题共3小题, 每小题8分, 共24分)18.如图, 已知AB ∥CD, DA 平分∠BDC, ∠A =∠C. (1)试说明: CE ∥AD ;(2)若∠C =30°, 求∠B 的度数.19. 有四根小木棒长度分别是1, 3, 5, 7, 若从中任意抽出三根木棒组成三角形. (1)下列说法正确的序号是________; ①第一根抽出木棒长度是3的可能性是14;②抽出的三根木棒能组成三角形是必然事件; ③抽出的三根木棒能组成三角形是随机事件; ④抽出的三根木棒能组成三角形是不可能事件.(2)求抽出的三根木棒能组成三角形的概率.20. 对于任意有理数a, b, c, d, 我们规定符号(a, b)□(c, d)=ad-bc.例如: (1, 3)□(2, 4)=1×4-2×3=-2.(1)(-2, 3)□(4, 5)=________;(2)求(3a+1, a-2)□(a+2, a-3)的值, 其中a2-4a+1=0.五、(本大题共2小题, 每小题9分, 共18分)21. 如图, 在△ABC中, AB=AC, D, E, F分别在三边上, 且BE=CD, BD=CF, G为EF 的中点.(1)若∠A=40°, 求∠B的度数;(2)试说明: DG垂直平分EF.22. 一水果零售商在批发市场按每千克1.8元批发了若干千克西瓜进城出售, 为了方便, 他带了一些零钱备用. 他先按市场价售出一些后, 又降价出售. 售出西瓜的质量x(千克)与他手中持有的钱数y(元)(含备用零钱)的关系如图所示, 结合图象回答下列问题:(1)零售商自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完, 这时他手中的钱(含备用的钱)是450元, 问他一共批发了多少千克的西瓜?(4)这位水果零售商一共赚了多少钱?六、(本大题共12分)23. 如图①, 在△ABC中, ∠BAC=90°, AB=AC, 直线MN过点A, 且MN∥BC, 点D是直线MN上一点, 不与点A重合.(1)若点E是图①中线段AB上一点, 且DE=DA, 请判断线段DE与DA的位置关系, 并说明理由;(2)请在下面的A, B两题中任选一题解答.A: 如图②, 在(1)的条件下, 连接BD, 过点D作DP⊥DB交线段AC于点P, 请判断线段DB与DP的数量关系, 并说明理由;B:如图③, 在图①的基础上, 改变点D的位置后, 连接BD, 过点D作DP⊥DB交线段CA的延长线于点P, 请判断线段DB与DP的数量关系, 并说明理由.我选择: ________.参考答案与解析1. B2.D3.B4.C5.D6.A7. 3×10-58.s=220-100t9.10.411. 16解析: 根据题意可知∠BAE=∠DAF=90°-∠BAF, AB=AD, ∠ABE=∠ADF=90°, ∴△AEB≌△AFD(ASA), ∴S四边形AECF=S正方形ABCD=42=16.12.30°或90°解析: 设最小角的度数为x, 则最大角的度数为x+45°.当最小角是顶角时, 则x+x+45°+x+45°=180°, 解得x=30°, 此时三角形顶角的度数为30°.当最大角为顶角时, 则x+x+45°+x=180°, 解得x=45°, 此时三角形顶角的度数为90°.综上所述, 等腰三角形的顶角为30°或90°.13. 解: (1)43×0.259=43×0.253×0.256=(4×0.25)3×0.256=1×0.256=0.256.(3分)(2)∵∠COB=135°, ∴∠AOD=135°.∵OM⊥AB, ∴∠AOM=90°, ∴∠MOD=∠AOD-∠AOM=135°-90°=45°.(6分)14. 解: 原式=2a2+4ab-a2-4ab-4b2=a2-4b2.(3分)当a=2, b=-1时, 原式=4-4=0.(6分)15. 解: ∵∠DCE=30°, CE平分∠ACB, ∴∠ACB=2∠DCE=60°.(2分)∵∠A=65°, ∴∠ABC=180°-∠ACB-∠A=55°.(4分)∵∠ABD=30°, ∴∠DBC=∠ABC-∠ABD=25°.(6分)16. 解:∵△ABC是等边三角形, ∴∠BAC=60°.(2分)∵∠BAD=40°, ∴∠CAD=∠BAC-∠BAD=20°.(4分)∵AD=AE, ∴∠AED=(180°-∠CAD)=80°.(6分)17.解:如图所示, 直线AB即为所求.(6分)18. 解: (1)∵AB∥CD, ∴∠A=∠ADC.(1分)又∵∠A=∠C, ∴∠ADC=∠C, ∴CE∥AD.(3分)(2)由(1)可得∠ADC=∠C=30°.∵DA平分∠BDC, ∴∠CDB=2∠ADC=60°.(5分)∵AB∥DC, ∴∠B+∠CDB=180°, ∴∠B=180°-∠CDB=120°.(8分)19. 解: (1)①③(3分)(2)从1, 3, 5, 7中任意抽出三根木棒有1, 3, 5;1, 3, 7;3, 5, 7;1, 5, 7, 共四种情况, 而能组成三角形的只有3, 5, 7一种情况, (6分)∴抽出的三根木棒恰好能组成三角形的概率为.(8分)20. 解: (1)-22(2分)(2)原式=(3a+1)(a-3)-(a-2)(a+2)=3a2-9a+a-3-(a2-4)=3a2-9a+a-3-a2+4=2a2-8a+1.(5分)∵a2-4a+1=0, ∴a2=4a-1, ∴原式=2(4a-1)-8a+1=-1.(821. 解: (1)∵AB=AC, ∴∠C=∠B.∵∠A=40°, ∴∠B==70°.(3分)(2)连接DE, DF.在△BDE与△CFD中, ∴△BDE≌△CFD(SAS), ∴DE=DF.(7分)∵G 为EF的中点, ∴DG⊥EF, ∴DG垂直平分EF.(9分)22. 解: (1)零售商自带的零钱为50元. (2分)(2)(330-50)÷80=280÷80=3.5(元).答: 降价前他每千克西瓜出售的价格是3.5元. (4分)(3)(450-330)÷(3.5-0.5)=120÷3=40(千克), 80+40=120(千克).答: 他一共批发了120千克西瓜. (7分)(4)450-120×1.8-50=184(元).答: 这位水果零售商一共赚了184元. (9分)23. 解:(1)DE⊥DA.(1分)理由如下:∵∠BAC=90°, AB=AC, ∴∠B=∠C=45°.(2分)∵MN∥BC, ∴∠DAE=∠B=45°.(3分)∵DA=DE, ∴∠DEA=∠DAE=45°, ∴∠ADE=180°-∠DEA-∠DAE=90°, 即DE⊥DA.(5分)(2)选A DB=DP.(6分)理由如下:∵DP⊥DB, ∴∠BDE+∠EDP=90°.(7分)由(1)知DE⊥DA, ∴∠ADP+∠EDP=90°, ∴∠BDE=∠ADP.(9分)∵∠DEA=∠DAE=45°, ∴∠BED=∠DAE+∠BAC=135°, ∠DAP=∠DAE+∠BAC=135°, ∴∠BED=∠DAP.(10分)在△DEB和△DAP中, ∴△DEB≌△DAP(ASA), ∴DB=DP.(12分)或选B DB=DP.(6分)理由如下: 如图, 延长AB至F, 连接DF, 使DF=DA.(7分)同(1)得∠DFB=∠DAF=45°, ∴∠ADF=90°.∵DP⊥DB, ∴∠FDB=∠ADP.(9分)∵∠BAC=90°, ∠DAF=45°, ∴∠PAD=45°, ∴∠BFD=∠PAD.(10分)在△DFB和△DAP中, ∴△DFB≌△DAP(ASA),∴DB=DP.(12分)。
(完整版)北师大版七年级下册数学期末试卷及答案

件是 添加 还 格除颜色 要 的条 c (件)123 第 3D 第 7AD一、细心填一填(每小题 2 分,共计 20)12. 下列运算正确的是( )1. 计算: x 2 ⋅ x 3 =; 4a 2b ÷ 2ab =.c A . a 5 + a 5 = a 10 B . a 6 ⨯ a 4 = a 24aC . a 0 ÷ a -1 = aD . a 4 - a 4 = a 02. 如果x 2 + kx + 1 是一个完全平方式,那么k 的值是.3. 如图,两直线 a 、b 被第三条直线 c 所截,若∠1=50°,∠2=130°,则直线 a 、b 的位置关系是 .13. 下列结论中,正确的是()bA. 若a ≠ b,则a 2 ≠ b 2C .若a 2 = b 2,则a = ±bB. 若a > b , 则a 2 > b 2D .若a > b , 则1 > 1BE C第 14a b4. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006 年中央财政用于“三农” 的支出将达到 33970000 万元,这个数据用科学记数法可表示为 万元.14. 如图,在△ABC 中,D 、E 分别是 AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数是() A .15°B .20°C .25°D .30°5. 一只蝴蝶在空中飞行,然后随意落在如图所示的某一方格中(每个方 S (千米)外完全相同),则蝴 16. 观察一串数:0,2,4,6,….第 n 个数应为()蝶停止在白色方格中的概率是 .30A .2(n -1)B .2n -1C .2(n +1)D .2n +16. 等腰三角形一边长是 10㎝,一边长是 6㎝,则它的周长是 O7. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,需2 第 9 题t (小时).17. 下列关系式中,正确的是( )A . (a - b )2= a 2 - b 2C . (a + b )2= a 2 + b 2B. (a + b )(a - b )= a 2 - b 2 D. (a + b )2= a 2 - 2ab + b 2A18. 如图表示某加工厂今年前 5 个月每月生产某种产品的产量 c (件)与时间 t (月)之间的关系, E则对这种产品来说,该厂()A .1 月至 3 月每月产量逐月增加,4、5 两月产量逐月减小B .1 月至 3 月每月产量逐月增加,4、5 两月产量与 3 月持平第 59.某物体运动的路程 s (千米)与运动的时间 t (小时)关系如图所示,则当 t=3 小时时,物体运动所经过的路程为千米.C .1 月至 3 月每月产量逐月增加,4、5 两月产量均停止生产D . 1 月至 3 月每月产量不变,4、5 两月均停止生产19.下列图形中,不一定是轴对称图形的是() O(月)第 18 题10. 某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图所示, 则该汽车的号码是 .二、相信你的选择A .等腰三角形B .线段C .钝角D .直角三角形20. 长度分别为 3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为()A .1B .2C . 3D .4.O 21 3345y(元)21. 2(y6 )2 -(y4 )3 ;22.先化简(2x -1)2 -(3x +1)(3x -1)+ 5x(x -1),再选取一个你喜欢的数代替 x,并求原代数式的值. 29.如图所示,要想判断AB 是否与CD 平行,我们可以测量那些角;请你写出三种方案,并说明理由.B四、认真画一画(23 题 4 分,24 题 4 分,共计 8 分)23.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写30.乘法公式的探究及应用.D 第29 C作法和证明)M (1)如左图,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是理由是:. 第23 ,面积是(写成多项式乘法的形式)25.在“五·四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额.小丽想出了一个办法,她将一个转盘(均质的)均分成6 份,如图所示.游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?第25 题第30 题(3)比较左、右两图的阴影部分面积,可以得到乘法公式(用式子表达). (4)运用你所得到的公式,计算下列各题:六、生活中的数学(第27 小题4 分,第28 小题5 分,共计9 分)①10.3 ⨯ 9.7 ② (2m +n -p)(2m -n +p)28.某种产品的商标如图所示,O 是线段AC、BD 的交点,并且AC=BD,AB=CD.小明认为图中的两个三角形全等,他的思考过程是:八、信息阅读题(6 分)31.一农民朋友带了若干千克的土豆进城出售,为了方便,他带了一些零26在△ABO 和△DCO 中⎧AC =BD A D 20钱备用.按市场售出一些后,又降价出售.售出土豆千克数 x 与他手中10⎪⎨∠AOB =∠DOC⎪AB =CD −→∆ABO ≅∆DCO 持有的钱数y(含备用零钱)的关系如图所示,结合图像回答下列问 5 0⎩30 x(千克)你认为小明的思考过程正确吗?如果正确,他用的是判定三B 角形全等的哪个条件?如果不正确,请你增加一个条件,并说明你的思考过程. C第28 题题:(1)农民自带的零钱是多少?abbaEA(2)降价前他每千克土豆出售的价格是多少?第31(3)降价后他按每千克 0.4 元将剩余的土豆售完,这时他手中的钱(含备用的钱)是26 元,问他一共带了多少千克的土豆?。
北师大版七年级下册数学期末考试试题含答案

北师大版七年级下册数学期末考试试题含答案北师大版七年级下册数学期末考试试卷一、单选题1.下列图形中是轴对称图形的是()A。
B。
C。
D。
2.下列运算正确的是()A。
a ÷ a = a^6 (a ≠ 0)B。
a^2 × a^3 = a^6C。
3a + 2a = 5aD。
a^2 ÷ a^(-3) = a^53.下列长度的四根木棒,能与长度分别为3cm和6cm的木棒构成三角形的是()A。
3cmB。
6cmC。
9cmD。
10cm4.石墨烯被认为是一种未来革命性的材料,它是一种由碳原子构成的纳米材料。
其中每两个相邻碳原子间的键长为0.xxxxxxxx0142米,将0.xxxxxxxx0142科学记数法表示为()A。
0.142×10^(-9)B。
1.42×10^(-10)C。
1.42×10^(-11)D。
0.142×10^(-8)5.下列事件中,属于随机事件的是()A。
抛出的篮球往下落B。
在只有白球的袋子里摸出一个红球C。
购买10张彩票,中一等奖D。
地球绕太阳公转6.若多项式m^2 - kmn + n^2是一个完全平方式,则常数k 的值为()A。
1B。
±1C。
2D。
±27.如图,在钝角三角形ABC中,∠ABC为钝角,以点B 为圆心,AB长为半径面弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连结AD,CB的延长线交AD于点E。
下列结论错误的是()A。
CE垂直平分ADB。
CE平分∠ACDC。
ABD是等腰三角形D。
ACD是等边三角形8.将202×198变形正确的是()A。
2002 - 4B。
2022 - 4C。
2002 + 2×200 + 4D。
2002 - 2×200 + 49.如图,在四边形ABCD中,AD//BC,∠A为直角,动点P从点A开始沿A→B→C→D的路径匀速前进D,在这个过程中,△APD的面积S随时间t的变化过程可以用图像近似的表示为()A。
北师大版七年级数学下册期末试卷及答案

北师大版七年级数学下册期末试卷及答案数学七年级(下)期末考试题时间:120分钟满分:100分基础知识卷(100分)一、填空题(1×28=28)1、下列代数式中:①3x+5y ②x 2+2x+y 2③0 ④-xy 2⑤3x=0 ⑥a1单项式有 _____个,多项式有_____ 个.2、单项式-7a 2bc 的系数是______, 次数是______.3、多项式3a 2b 2-5ab 2+a 2-6是_____次_____项式,其中常数项是_______. 4、 3b 2m(_______)=3b4m+1-(x-y)5(x-y)4=________ (-2a 2b)2÷(_______)=2a5、 (-2m+3)(_________)=4m 2-9 (-2ab+3)2=_____________6、如果∠1与∠2互为补角,∠1=72o,∠2=_____o ,若∠3=∠1 ,则∠3的补角为_______o ,理由是__________________________.7、在左图中,若∠A+∠B=180o,∠C=65o,则∠1=_____o,A 2 D ∠2=______o.B C8、在生物课上,老师告诉同学们:“微生物很小,枝原体直径只有0.1微米”,这相当于________________米(1米=106微米,请用科学记数法表示).9、在进行小组自编自答活动时,小芳给小组成员出了这样一道题,题目:我国古代数学家祖冲之发现了圆周率π=3.1415926……,取近似值为3.14,是精确到_______位,有______个有效数字,而小明出的题是:如果一年按365天计算,那么,一年就有31536000秒,精确到万位时,近似数是_____________秒,有______个有效数字. 10、小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则P (小明被选中)= ________ , P (小明未被选中)=________.11、随意掷出一枚骰子,计算下列事件发生的概率标在下图中. ⑴、掷出的点数是偶数⑵、掷出的点数小于7⑶、掷出的点数为两位数⑷、掷出的点数是2的倍数0 1/2 1不可能发生必然发生二、选择题(2×7=14)1、今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x 2+3xy-21y 2)-(-21x 2+4xy-23y 2)= -21x 2_____+y 2空格的地方被钢笔水弄污了,那么空格中的一项是() A 、-7xy B 、7xy C 、-xy D 、xy 2、下列说法中,正确的是()A 、一个角的补角必是钝角B 、两个锐角一定互为余角C 、直角没有补角D 、如果∠MON=180o,那么M 、O 、N 三点在一条直线上 3、数学课上老师给出下面的数据,()是精确的A 、 2002年美国在阿富汗的战争每月耗费10亿美元B 、地球上煤储量为5万亿吨以上C 、人的大脑有1×1010个细胞 D 、这次半期考试你得了92分4、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是() A 、154 B 、31C 、51D 、1525、已知:∣x ∣=1,∣y ∣=21,则(x 20)3-x 3y 2的值等于() A 、-43或-45 B 、43或45 C 、43 D 、-456、下列条件中不能得出a ∥b 的是()A 、∠2=∠6B 、∠3+∠5=180oC 、∠4+∠6=180oD 、∠2=∠7、下面四个图形中∠1与∠2是对顶角的图形有()个A 、0B 、1C 、2D 、3三、计算题(4×8=32)⑴ -3(x2-xy)-x(-2y+2x) ⑵ (-x5)?x3n-1+x3n?(-x)4⑶ (x+2)(y+3)-(x+1)(y-2) ⑷ (-2m2n)3?mn+(-7m7n12)0-2(mn)-4?m11?n8⑸ (5x2y3-4x3y2+6x)÷6x,其中x=-2,y=2 ⑹ (3mn+1)(3mn-1)-(3mn-2)2用乘法公式计算:⑺ 9992-1 ⑻ 20032四、推理填空(1×7=7)A 已知:如图,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠2E 求证:CD⊥ABF 证明:∵DG⊥BC,AC⊥BC(___________)D ∴∠DGB=∠ACB=90o(垂直的定义)∴DG∥AC(_____________________)B C ∴∠2=_____(_____________________)∵∠1=∠2(__________________) ∴∠1=∠DCA(等量代换) ∴EF∥CD(______________________) ∴∠AEF=∠ADC(____________________)∵EF ⊥AB ∴∠AEF=90o ∴∠ADC=90o 即CD ⊥AB五、解答题(1题6分,2题6分,3题⑴2分,⑵2分,⑶3分,总19分)1、小康村正在进行绿地改造,原有一正方形绿地,现将它每边都增加3米,面积则增加了63平方米,问原绿地的边长为多少?原绿地的面积又为多少?2、已知:如图,AB ∥CD ,FG ∥HD ,∠B=100o,FE 为∠CEB 的平分线,求∠EDH 的度数. A F C EB H G D3、下图是明明作的一周的零用钱开支的统计图(单位:元)24681012周一周二周三周四周五周六周日分析上图,试回答以下问题:⑴、周几明明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少?⑵、哪几天他花的零用钱是一样的?分别为多少?⑶、你能帮明明算一算他一周平均每天花的零用钱吗?能力测试卷(50分)(B 卷)一、填空题(3×6=18)1、房间里有一个从外表量长a 米、宽b 米、高c 米的长方形木箱子,已知木板的厚度为x 米,那么这个木箱子的容积是________________米3.(不展开) 2、式子4-a 2-2ab-b 2的最大值是_______. 3、若2×8n×16n=222,则n=________. 4、已知,1,511-==-xy y x 则4411yx +=__________. 5、一个小男孩掷一枚均匀的硬币两次,则两次均朝上的概率为_________. 6如图,∠ABC=40o,∠ACB=60o,BO 、CO 平分∠ABC 和∠ACB ,过O 点,且DE ∥BC ,则∠BOC=_______o.二、选择题(3×4=12)1、一个角的余角是它的补角的31,则这个角为() A 、60o B 、45o C 、30o D 、90o 2、对于一个六次多项式,它的任何一项的次数()A 、都小于6B 、都等于6C 、都不小于6D 、都不大于6 3、式子-m n与(-m)n的正确判断是()A 、这两个式子互为相反数B 、这两个式子是相等的C 、当n 为奇数时,它们互为相反数;n 为偶数时它们相等D 、当n 为偶数时,它们互为相反数;n 为奇数时它们相等4、已知两个角的对应边互相平行,这两个角的差是40o,则这两个角是() A 、140o和100o B 、110o和70o C 、70o和30o D 、150o和110o三、作图题(不写作法,保留作图痕迹)(6分)利用尺规过A 点作与直线n 平行的直线m (不能用平推的方法作).A ?n四、解答题(7×2=14)1、若多项式x 2+ax+8和多项式x 2-3x+b 相乘的积中不含x 2、x 3项,求(a-b)3-(a 3-b 3)的值.3、如图,已知AB ∥CD ,∠A=36o,∠C=120o,求∠F-∠E 的大小. A B EFC D北师大七年级下学期数学期末试卷班级:_______姓名:_______得分:_______发展性评语:___________一、请准确填空(每小题3分,共24分)1.(-2a 2b )3=________;-3ab 3·(-4a 2b )=________;(31)-1+(3-π)0=________.2.正方形的面积是2a 2+2a +21(a >-21)的一半,则该正方形的边长为________. 3.一种病毒的长度约为0.000 052 mm,用科学记数法表示为________mm.AB C D O201(m i n )图1 图24.如图1所示,AC 、BD 相交于点O ,AB =CD ,要使△AOB ≌△COD,需再补充一个条件:__________.(写出一个你认为正确的即可)5.任意写出一个两位数,个位上的数字恰好是5的概率的是________;写出一个发生概率为0的事件:________.6.等腰三角形的底角是顶角的两倍,则此等腰三角形的顶角为________.7.小刚正面对镜子,从镜子中看他身后的墙上写的一组数据是,请你写出这组数据的真实数:________.8.如图2所示,根据图中提供的信息,请你再写出三条不同的信息:_________________________________________________________________________________ __________.二、相信你的选择(每小题3分,共24分) 9.下列各式中能用平方差公式计算的是A.(a +b )(-a -b )B.(a +b )(-a +b )C.(a +b )(-a -b )D.(a -b )(b -a )10.小亮截了四根长分别为5 cm 、6 cm 、12 cm 、13 cm 的木条,任选其中三条组成一个三角形,这样拼成的三角形共有A.1个B.2个C.3个D.4个11.在线段、角、圆、直角三角形、等腰三角形、正六边形、正五边形、四边形八个图形中,一定是轴对称图形的个数有A.3 B.4 C.6D.712.某人从甲地出发,骑摩托车去乙地,途中因车出现故障而停车修理,到达乙地时正好用了2 h.已知摩托车行驶的路程s (km)与行驶的时间t (h)之间的函数关系如图3所示.若这辆摩托车平均每行驶100 km 的耗油量为2 L,根据图中给出的信息,从甲地到乙地,这辆摩托车共耗油34)l 1l 2 A BC E1 2 O 图3 图4A.0.45 LB.0.65 LC.0.9 LD.1 L13.如图4所示,直线l 1∥l 2,AB ⊥l 1,垂足为O ,BC 与l 2相交于点E ,若∠1=43°,则∠2的度数是A.43° B.47° C.120° D.133°14.从一个箱子中摸出红球的概率为41,已知口袋中红球有4个,则袋中共有球的个数为A.24B.16C.8D.4 15.在△ABC 和△A ′B ′C ′中,AB =A ′B ′,∠B =∠B ′,补充条件后仍不一定能保证△ABC ≌△A ′B ′C ′,则补充的这个条件是A.AC =A ′C ′B.BC =B ′C ′C.∠A =∠A ′D.∠C =∠C ′16.如图(1),小明拿一张正方形纸片,沿虚线对折一次得到图(2),再对折一次得到图(3),然后用剪刀沿图(3)中的虚线剪去一个角再打开后的形状是⑵⑶图5ABCD图6三、考查你的基本功(共20分)17.(6分)计算:(1)(3x+2)-2(x 2-x+2); (2)(a+b)2-(a -b)218.(6分)如图7,在△ABC 中,高线CD 将∠ACB 分成20°和50°的两个小角.请你判断一下△ABC 是轴对称图形吗?并说明你的理由.ABCD5020o o图719.(8分)如图8所示,△ABC中,BE⊥AD于点E,CF⊥AD于点F,且BE=CF.根据以上信息你能得到哪些正确的结论,选一种加以说明.AFB CDE图8四、生活中的数学(共16分)20.(8 分)声音在空气中的传播速度y(m/s)(秒音速)与气温x(℃)的关系,如下表.(1)(2)当x=150℃时,音速y是多少?当音速为352m/s时,气温x 是多少?21.(8 分)甲、乙两同学做摸球游戏,在口袋中装有标有1~6号数字的球(各球除号码不同外,其余全相同).游戏规定:有放回地摸球,每一轮,两人分别摸出一球,如果两球的数字之和为偶数,那么甲得1 分;如果两球的数字之和为奇数,乙得1 分.谁先达到10分,谁就获胜.你认为这个游戏公平吗?请你给出分析结果.五、探究拓展与应用(共16分)22.(8 分)学校有一块等边三角形花坛,要在花坛中种上四种不同颜色的花,要求四部分的面积相等.请你在下列图中给出四种不同的设计方案.图923.(8 分)有一系列等式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,……(1)根据你的观察,归纳发现规律,写出8×9×10×11+1的结果;(2)试猜想n(n+1)(n+2)(n+3)+1 是哪一个数的平方?说明理由,并与同伴交流.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版初一数学下册期末考试试卷及答案
公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-
一、选择题
1、下列运算正确的是( )。
A 、1055a a a =+
B 、2446a a a =⨯
C 、a a a =÷-10
D 、044a a a =- 2、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( ) A 、1个 B 、2个 C 、3个 D 、4个
3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是
( ) A 、
154 B 、31 C 、51 D 15
2 4、1纳米相当于1根头发丝直径的六万分之一。
则利用科学记数法来表示,头
发丝的半径..
是( )A 、6万纳米 B 、6×104纳米 C 、3×10-6
米 D 、3×10-5米
5、下列条件中,能判定两个直角三角形全等的是( )
A 、一锐角对应相等
B 、两锐角对应相等
C 、一条边对应相等
D 、两条直角边对应相等 6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( ) (1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;
(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.
A
B
C D
20
408060510152025303540
速度
时间
A 、1个
B 、2个
C 、3个
D 、4个 7.下列图形中,不一定...
是轴对称图形的是( ) A.等腰三角形 B.线段 C.钝角 D.直角三角形 8. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )
C. 3 9. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,若
△ADB≌△EDB≌△EDC ,则∠C 的度数是
°
° ° ° 10.下列关系式中,正确..
的是( ) A.()222b a b a -=- B.()()22b a b a b a -=-+
C.()222b a b a +=+
D.()222b 2ab a b a +-=+
11.下面有4个汽车标致图案,其中是轴对称图形的有( )
A .1个
B .2个
C .3个
D .4个 12.下列乘法中,不能运用平方差公式进行运算的是( )
A .(x +a )(x -a )
B .(a+b )(-a -b )
C .(-x -b )(x -b )
D .(b +m )(m -b )
二、填空题(每空4分,共20分) 13、单项式31
3
xy -的次数是 .
14、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形.
15、如图∠AOB=1250
,AO ⊥OC ,B0⊥0D 则∠COD= . 16、小明同学平时不用功学习,某次数学测验做选择题时,他
有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 . 17、观察下列运算并填空:
1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……
根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。
三、计算题(15分)
18、(7分)计算:302112(20053)()33
--++--
19、化简求值:(8分)22(2)()(3)5x y x y x y y +-+--,其中2x =-,12
y =
20、(10分)已知:如图,∆ABC 中,AB=AC ,BD 和CE 为∆ABC 的高,BD 和CE 相
交于点O 。
求证:OB=OC.
21、(15分)一水果贩子在批发市场按每千克元批发了若干千克的西瓜进城出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出
_E _D _C
_B
_A
_O
O
D
C B
A
售.售出西瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图像回答下列问题:
(1)农民自带的零钱是多少
(2)降价前他每千克西瓜出售的价格是多少
(3)随后他按每千克下降元将剩余的西瓜售完,这时
他手中的钱(含备用的钱)是450元,问他一共批
发了多少千克的西瓜
(4)请问这个水果贩子一共赚了多少钱
22、(10分)如图,AP∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的
延长线交AP于D,
求证:(1)AB=AD+BC;
(2)若BE=3,AE=4,求四边形ABCD的面积
P E
D
C
B
A。