正比例、反比例、一次函数教案
《反比例》数学教案(经典15篇)

《反比例》数学教案(经典15篇)《反比例》数学教案1教学内容:《反比例的意义》是六年制小学数学(北师版)第十二册第二单元中的内容。
是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
教学目标:1、知识与技能目标:使学生认识成反比例的量,理解反比例的意义,并学会判断两种相关联的量是否成反比例。
进一步培养学生观察、学析、综合和概括等能力。
初步渗透函数思想。
2、过程与方法:为学生营造一个经历知识产生过程的情境。
3、情感与态度目标:使学生在自主探索与合作交流中体验成功的乐趣,进一步增强学好数学的信心。
教学重点:理解反比例的意义。
教学难点:两种相关联的量的变化规律。
教学准备:学生准备:复习正比例关系,预习本节内容。
教师准备:投影片3张,每张有例题一个。
教学过程设计:一、谈话引入,激发兴趣。
1、谈话:通过最近一段时间的观察,我发现同学们越来越聪明了,会学数学了,这是因为同学们掌握了一定的数学学习的基本方法。
下面请回想一下,我们是怎样学习成正比例的量的?这节课我们用同样的学习方法来研究比例的另外一个规律。
2、导入:在实际生活中,存在着许多相关联的量,这些相关联的量之间有的是成正比例关系,有的成其他形式的关系,让我们一起来探究下面的问题。
二、创设情景引新:(出示:十二个小方块)师:同学们,这十二个小方块有几种排法?(生答后,老师板书下表的排列过程)每行个数行数师:请你观察上表中每行个数与行数成正比例关系吗?为什么?生:……师:这两种量这间有关系吗?有什么关系?这就是我们今天要研究的内容。
(出示课题:反比例的意义)三、合作自学探知1、学习例4。
(1)出示例4。
师:请同学们在小组内互相交流,并围绕这三个问题进行讨论,再选出一位组员作代表进行汇报。
正比例函数、反比例函数、一次函数、二次函数

正比例函数、反比例函数、一次函数、二次函数【教学目标】1.通过具体实例,了解简单的分段函数,并能简单应用;2.整理初中已学过的函数正比例函数、反比例函数、一次函数、二次函数,特别是二次函数;3.学会运用函数图象理解和研究函数的性质。
【教学重点】基础知识整理【教学难点】题型分类解析【教学方法】引导学生自主学习法教学过程:【知识回顾】1.正比例函数的定义是:;图象是:2.反比例函数的定义是:;图象是:3.一次函数的定义: ;图象是:4.二次函数解析式的三种形式:①一般式、②两根式、③顶点式5.二次函数的图象和性质,通常抓住以下三方面:①对称轴②单调性、③最值 .【基础练习】1.函数y=x2+bx+c(x≥0)是单调函数的充要条件是f x=x2+bx+c对任意实数t都有f(2+t)=f(2-t ),则f(1)、f(2)、2.若函数()f(4)的大小关系是:3.关于x的不等式-mx2-8mx-21>0的解为:-7<x<-1则m的值为f x的顶点为(4,0),且过点(0,2),则4.二次函数()f(x)= .5.两个不同函数()f x =x 2+ax+1和g(x)=x 2+x+a (a 为常数)定义域都为R ,若()f x 与g(x)的值域相同,则a= . 6.函数()f x =2x 2-mx+3当x∈(-∞,-1)时是减函数,当x∈(-1,+∞)时是增函数,则f(2)= . 7.实系数方程20(0)ax bx c a ++=≠两实根异号的充要条件是 ,有两正根的充要条件是 ;有两负根的充要条件是 .8.已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点(2,4),A B -(如图),则能使12y y >成立的x 的取值范围是_______.参考答案: 1. b≥ 02. f(2)<f(1)<f(4) 3. 34. 2)4(81-x5. 5-或16. 197. ;000;02121⎪⎩⎪⎨⎧>>+≥∆<x x x x ac ;0002121⎪⎩⎪⎨⎧><+≥∆x x x x(A (第8题)8. x<-2 ,x>8【典型例题】1.正比例函数、反比例函数、一次函数的图象、性质、应用 例1.已知正比例函数(21)y m x =-的图象上两点11(,)A x y 、22(,)B x y ,当12x x <时,有12y y >,那么m 的取值范围是_______. 答案:12m <例2.(1)已知函数)0()(<+=a xax x f ,请写出它的单调区间,你能画出它的简图吗?(2)请画出函数)0()(>+=a xax x f 的图象,并写出它的单调区间. 答案:(1)在)0,(-∞、),0(+∞上为增函数(2)),[],,(+∞--∞a a 增函数;],0(),0,[a a -减函数2.求二次函数的解析式例1.分别求满足下列条件的二次函数的解析式:①过点(0,2),(1,-1),(-2,20) ②过点(-1,0),(-4,0),(2,-36)③图象的顶点是(1,2)-,且经过原点答案:①2522+-=x x y ;②81022---=x x y ;③x x y 422--=例2.已知二次函数f(x)满足f(2)= -1,f(-1)= -1且f(x)的最大值是8,试确定此二次函数.思维分析:恰当选择二次函数的解析式法一:利用一般式设f(x)=ax 2+bx+c(a ≠0),由题意得:⎪⎪⎩⎪⎪⎨⎧=--=+--=++84411242a bac c b a c b a 解得:⎪⎩⎪⎨⎧==-=744c b a ∴f(x)= - 4x 2+4x+7法二:利用顶点式∵f(2)= f(-1) ∴对称轴212)1(2=-+=x 又最大值是8 ∴可设)0(8)21()(2<+-=a x a x f ,由f(2)= -1可得a= - 47448)21(4)(22++-=+--=∴x x x x f法三:由已知f(x)+1=0的两根为x 1=2,x 2=-1,故可设f(x)+1=a(x-2)(x+1)即f(x)=ax 2-ax-2a-1,又84)12(482max=---=aa a a y 即得a= - 4或a=0(舍)∴f(x)= - 4x 2+4x+7例3.已知二次函数f(x)=ax 2+bx+c 满足下列条件:(1)图象过原点,(2)f(-x+2002)=f(x -2000),(3)方程f(x)=x 有重根; 试确定此二次函数. 解:由(1)得:c=0,由(2)对称轴1220002002=-++-=x x x 可确定12=-ab, 由(3) f(x)=x 即ax 2+(b-1)x+c=0有重根 .2110)1(:))1(0(02-==∴=-==∆a b b c 从而得由x x x f +-=∴221)(3.二次函数在给定区间上的最值问题 例1.(1)已知f(x)=-x 2+2x+6, x∈[2,3],求f(x)的最大(小)值;(2)已知f(x)=-x 2+5x+6, x∈[2,3],求f(x)的最大(小)值. 答案:(1)大6,小3;(2)大449,小12;例2.已知f(x)=-x 2+ax+6, x∈[2,3],求f(x)的最大值答案:⎪⎪⎩⎪⎪⎨⎧>-≤≤+<+=).6(,33);64(,424);4(,22)(2maxa a a a a a x f例3.已知y=f(x)=x 2-2x+3,当x ∈[t,t+1]时,求函数的最大值和最小值. 答案:32,2,12min 2max +-=+=>t t y t y t 时2,2,121min 2max =+=≤<y t y t 时 2,32,210min 2max =+-=≤<y t t y t 时2,32,02min 2max +=+-=≤t y t t y t 时例4.已知函数f(x)= -x 2+2ax+1-a 在0≤x ≤1时有最大值2,求a 的值. 思维分析:一般配方后结合二次函数图象对字母参数分类讨论 解:f(x)= -(x-a)2+a 2-a+1(0≤x ≤1),对称轴x=a 10 a<0时,121)0()(max -=∴=-==a a f x f20 0≤a≤1时)(25121)()(2max舍得±==+-==aaaafxf30 a>1时,22)1()(max=∴===aafxf综上所述:a= - 1或a=24.一元二次方程根的分布的讨论例1.已知关于x的二次方程x2+2mx+2m+1=0(1)若方程有两根,一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.(2)若方程两根在区间(0,1)内,求m的范围.思维分析:一般需从三个方面考虑①判别式Δ②区间端点函数值的正负③对称轴abx2-=与区间相对位置.解:设f(x)=x2+2mx+2m+1(1)由题意画出示意图216556)1(2)1(12)0(-<<-⇒⎪⎩⎪⎨⎧>+>=-<+=⇔mmffmf(2)2121100)1(0)0(0-≤<-⇒⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆⇔m m f f例2.方程k x x =-232在(-1,1)上有实根,求k 的取值范围. 分析:宜采用函数思想,求)11(23)(2<<--=x x x x f 的值域.答案:)25,169[-∈k5.函数应用题:例.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租的车将会增加一辆,租出的车每辆需要维护费150元,未租的车每辆每月需要维护费50元, (1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少时,租赁公司的月收益最大?最大月收益是多少?思维分析:应用问题的数学建模,识模—建模—解模—验模 解:(1)当每辆车的月租金定为3600元时,未租出的车辆数为125030003600=-∴租出100-12=88辆。
一次函数与反比例函数综合应用教案

一次函数与反比例函数综合应用教案一、教学目标1. 让学生掌握一次函数和反比例函数的基本概念和性质。
2. 培养学生运用一次函数和反比例函数解决实际问题的能力。
3. 引导学生通过合作交流,提高解决问题的策略和思维能力。
二、教学内容1. 一次函数的基本概念和性质。
2. 反比例函数的基本概念和性质。
3. 一次函数和反比例函数的综合应用。
三、教学重点与难点1. 教学重点:一次函数和反比例函数的基本概念、性质和综合应用。
2. 教学难点:一次函数和反比例函数的综合应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究一次函数和反比例函数的性质。
2. 利用案例分析法,让学生通过实际问题体会一次函数和反比例函数的应用价值。
3. 采用合作交流法,培养学生团队协作和沟通能力。
五、教学过程1. 导入新课:通过生活实例引入一次函数和反比例函数的概念。
2. 自主学习:让学生自主探究一次函数和反比例函数的性质。
3. 案例分析:分析实际问题,引导学生运用一次函数和反比例函数解决问题。
4. 合作交流:分组讨论,让学生分享解题策略和心得。
5. 总结提升:总结一次函数和反比例函数的性质及应用,提高学生解决问题的能力。
6. 课后作业:布置相关练习题,巩固所学知识。
六、教学活动设计1. 活动一:引入概念通过展示实际生活中的线性关系图片,如直线轨道上列车的运动,引导学生思考线性关系的表现形式。
引导学生提出一次函数的表达式,并解释其含义。
2. 活动二:探索性质学生通过绘制一次函数图像,观察并总结其在坐标系中的性质。
通过实际例子,让学生理解一次函数的斜率和截距对图像的影响。
3. 活动三:反比例函数的引入引导学生从比例关系出发,思考反比例函数的概念。
通过实际问题,如在固定面积内,距离与面积的关系,引入反比例函数。
七、教学评价设计1. 评价目标:学生能理解并应用一次函数和反比例函数解决实际问题。
通过设计具有挑战性的问题,如购物预算问题,让学生应用所学的函数知识。
教师资格证面试初中数学教案10篇

目录第一篇《反比例函数》.................................................................第二篇《勾股定理》...................................................................14第三篇《二次函数》...................................................................18第四篇《二次根式的化简》 ............................................................23第五篇《消元法》.....................................................................28第六篇《乘方》.......................................................................33第七篇《平方差公式》.................................................................38第八篇《角平分线的性质》 ............................................................44第九篇《平行四边形的判定》...........................................................49第十篇《直方图》.....................................................................第一篇《反比例函数》1.题目:一次函数2.内容:3.基本要求:(1)试讲时间约10分钟;(2)学生理解反比例函数图像及特点(3)通过自主探索,能理解函数思想。
正比例和反比例教案

正比例和反比例教案
课时:1课时
教学目标:
1. 理解正比例和反比例的概念,并能够举出生活中的例子。
2. 能够通过计算确定两个变量之间的关系是正比例还是反比例。
3. 能够使用比例关系式解决实际问题。
教学过程:
1. 引入:通过展示生活中的一些例子(如购买饼干的数量与花费、旅行的距离与时间等),引导学生思考两个变量之间可能存在的关系。
2. 讲解:给出正比例和反比例的定义,并解释两者之间的区别: - 正比例:当一个变量增大时,另一个变量也随之增大;当
一个变量减小时,另一个变量也随之减小。
- 反比例:当一个变量增大时,另一个变量会相应地减小;
当一个变量减小时,另一个变量会相应地增大。
3. 实例分析:通过计算一些实例,让学生进一步理解正比例和反比例的概念,并能够判断两个变量之间的关系。
4. 案例讨论:提供一些实际生活中的问题,让学生分组讨论并解决问题。
鼓励学生根据实际情况建立比例关系式,然后进行计算和分析。
5. 总结:总结正比例和反比例的概念与特点,并强调建立比例关系式的重要性。
鼓励学生在解决实际问题时运用所学的知识。
课堂作业:
1. 完成教师布置的课后习题,巩固所学的知识。
2. 自行寻找一个实际问题,通过建立比例关系式计算并解决。
一课时的教学安排基于学习内容的复杂度和学生的理解能力而定,教师可以根据具体情况进行适当调整。
《正比例》教学设计

《正比例》教学设计教学目标:1.理解正比例的概念,并能够运用公式解决实际问题。
2.培养学生运用正比例关系进行分析和解决问题的能力。
3.提高学生的观察能力和逻辑思维能力。
教学重点:1.正比例的概念。
2.正比例的性质和特点。
3.正比例的求解。
教学难点:1.在实际问题中找到正比例关系。
2.运用正比例关系解决问题。
教学准备:1.教学课件。
2.教学板书。
3.教学实例和练习题。
教学过程:一、导入(10分钟)1.教师呈现一张生活场景的图片,让学生观察并说出图片中可能存在正比例关系的因素。
2.引导学生思考这些因素之间的关系,并做出猜想。
二、概念讲解(15分钟)1.教师给出正比例的定义:“当两个量之间的比例关系恒定时,称为正比例。
”2.教师通过数学符号表示正比例关系:如果x和y是两个量,且x与y的比值为k(k≠0,k为常数),则称x与y成正比,记作x∝y。
3.引导学生观察、分析和提问:“在什么情况下,两个量之间会存在正比例关系?正比例关系有什么特点和性质?”三、性质和特点(15分钟)1.教师列举一些正比例关系的性质和特点,并与学生进行讨论。
2.教师引导学生总结出正比例的性质和特点,如:a)x和y之间存在正比例关系时,x和y的比值k是常数,称为比例系数。
b)当x增加或减少时,y也相应地按照比例变化。
c)当x=0时,对应的y值也为0。
d)在坐标系中,正比例关系呈直线。
四、求解正比例(20分钟)1.教师给出一些实际问题,引导学生利用正比例关系解决问题。
2. 教师通过具体的实例,教授学生如何利用y=kx的形式来求解正比例关系中的未知量。
3.教师进行板书总结,并提醒学生注意解答问题时的单位和精度。
五、练习和巩固(20分钟)1.学生在教师的指导下,完成一系列的练习题。
2.学生互相交流并批改答案,教师进行讲解和纠正。
六、拓展(10分钟)1.教师给出一些较为复杂的实际问题,引导学生运用正面关系解决问题。
2.学生分组进行讨论和解答,并通过小组展示呈现自己的解决思路和结论。
函数数学教案(精选7篇)

函数数学教案函数数学教案(精选7篇)在教学工作者实际的教学活动中,常常需要准备教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
那么问题来了,教案应该怎么写?以下是小编整理的函数数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
函数数学教案篇1一、目的要求1、使学生初步理解一次函数与正比例函数的概念。
2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。
二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。
2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。
第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。
3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。
6.1反比例函数(教案)(3)

三、教学难点与重点
1.教学重点
(1)反比例函数的定义:y = k/x(k≠0),强调k不为零,这是反比例函数成立的前提条件。
举例:在实际问题中,如速度与时间的关系,当时间为零时,速度没有意义,因此k不能为零。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y = k/x(k≠0)的函数。它在描述现实生活中的反比关系方面具有重要应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了反比例函数在描述物体在反比例力作用下运动的应用,以及它如何帮助我们解决问题。
针对这个问题,我计划在接下来的课程中,增加一些与生活紧密相关的反比例函数实例,让学生更加直观地感受反比例函数的作用。此外,我还将加强对学生的引导,鼓励他们在小组讨论中积极发表自己的观点,提高他们的参与度。
另外,我在课程中强调了反比例函数与一次函数图像的关系,但感觉学生们对此部分的掌握程度并不理想。在今后的教学中,我需要更加注重这方面的讲解和练习,让学生更好地理解两者之间的联系和区别。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了反比例函数的基本概念、图像性质和实际应用。同时,我们也通过实践活动和小组讨论加深了对反比例函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(2)反比例函数的图像与性质:双曲线、在每个象限内y随x的增大而减小(k>0)或增大(k<0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例、反比例、一次函数
〖知识点〗
1、一次函数
(1)一次函数及其图象
如果y=kx+b (K ,b 是常数,K ≠0),那么,Y 叫做X 的一次函数。
特别地,如果y=kx (k 是常数,K ≠0),那么,y 叫做x 的正比例函数 一次函数的图象是直线,画一次函数的图象,只要先描出两点,再连成直线
(2)一次函数的性质
当k>0时y 随x 的增大而增大,当k<0时,y 随x 的增大而减小。
2、反比例函数
(1) 反比例函数及其图象
如果)0,(≠=k k x k
y 是常数,那么,y 是x 的反比例函数。
反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象
(2)反比例函数的性质
当K>0时,图象的两个分支分别在一、二、三象限内,在每个象限内, y 随x 的增大而减小;
当K<0时,图象的两个分支分别在二、四象限内,在每个象限内,y 随x 的增大而增大。
3.待定系数法
先设出式子中的未知数,再根据条件求出未知系数,从而写出这个式子的方法叫做待定系数法可用待定系数法求一次函数、二次函数和反比例函数的解析式
〖考查重点与常见题型〗
1.考查正比例函数、反比例函数、一次函数的定义、性质,有关试题常出现在选择题中
2.综合考查正比例、反比例、一次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题
3.用待定系数法求正比例,反比例,一次函数的解析式,有关习题出现的频率很高,类型有中档解答题和选拔性的综合题
4.利用函数解决实际问题,并求最值,这是近三年中考应用题的新特点。
考查题型
1.若函数y =(m +1)x m 2+3m+1是反比例函数,则m 的值是()(A) m =-1(B )m =-2(C )m =2或m =1(D )m =-2或m =-1
2.已知一次函数y =(m +2)x +(1-m ),若y 随x 的增大而减小,且该函数的图像与x 轴的交点在原点的右侧,则m 的取值范围是( )(A )m>-2 (B )m<1 (C )-2<m<-1 (D )m<-2
3.函数y =k x
与y =kx +1(k ≠0)在同一坐标系内的图像大致为图中的( ) y y y y
4(0,0)x 值的增大而减小,则此函数的解析式 。
5.一次函数y =2x -3在y 轴上的截距是
6.对于函数y=-1
x
,当x>0时,y随x的增大而
7.如果直线y=2x+m不经过第二象限,那么实数m的取值范围是8.若双曲线y=(m-1)x-1在第二、四象限,则m的取值范围是
9.已知直线y=3
4
x+b被两坐标轴截取的线段长为5,求此直线函数解析式。
10.已知一次函数y=kx+2b+3的图象经过点(-1,-3),k是方程m2-3m=10的一个根,且Y随x的增大而增大,求这个一次函数解析式。
考点训练:
1. y= x 的图象是一条过原点及点(-3,3 2 )的直线
2.一次函数y=kx+b 的图象经过P(1,0) 和Q(0,1)两点,则k= ,b= .
3.正比例函数的图象与直线y= -2
3
x+4平行,则该正比例函数的解析式为,该正比例函数y 随x的增大而 .
4.已知y-2与x成正比例,且x=2时,y=4,则y与x之间的函数关系是 ,若点(m,2m+7), 在这个函数的图象上,则m = 5.函数y=(m-4)x m2-5m-5的图象是过一、三象限的一条直线,则 m =
6.函数y=k
x
(k≠0)的图象经过点( 2 ,3),则k= ,当x>0时,y随着x的增大而
7.如果一次函数y=kx+b和反比例函数y=k
x
的图象都经过(-2,1)点,则b的值是
8.已知一次函数y=kx+b的y随x的增大而减小,那么它的图象必经过象限。
9.已知函数y= -2x-6。
(1)求当x= -4时,y的值,当y= -2时,x 的值。
(2)画出函数图象;
(3)求出函数图象与坐标轴的两个交点之间的距离;
(4)如果y 的取值范围-4≤y≤2,求x的取值范围.
10.已知z与y- 3 成正比例,x与6
z
成反比例,(1)证明:y是x的一次函数;(2)如果这个一次函数的图象经过点
(-2,3 3 ),并且与x、y轴分别交于A、B两点。
求两点的坐标。
*11.已知函数y=k
x
的图象上有一点P(m,n),且m,n关于t的方程t2-4at+4a2-6a-8=0的两个实数根,
其中a是使方程有实数根的最小整数,求函数y=k
x
的解析式,
解题指导
1.函数y= - 3
2
x的图象是一条过原点(0,0)及点(2, )的直线,这条直线经过第象限,y随的增大而
2.已知一次函数y= - 1
2
x+2,当x= 时,y=0;当x 时y>0; 当x 时y<0.
3.若一次函数y
1=kx-b图象经过第一、三、四象限,则一次函数y
2
=bx+k的图象经过第象限。
4.直线y
1=k
1
x+b
1
和直线y
2
=k
2
x+b
2
相交于y轴上同一点的条件是;这两直线平行的条件是
5.过点(0,2)且与直线y= - x平行的直线是。
6.y与3x+2成正比例,比例系数是4,则y与x的函数关系式是。
7.等腰三角形的周长为30cm,它的腰长为ycm与底长xcm的函数关系式是。
8.y= x -1的图象是一条过点(4
5
,-
3
4
)的双曲线,在它的图象所在的每一个象限内,y随x的增大而。
9.把直线y=- 32 x -2向上平移2个单位,得到直线 ,把直线y=- 32 x -2向 平移 个单位,得到直线y=- 32
(x+4) 10.
11.直线y=kx+b 经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,求其解析式。
12.已知反比例函数y=k x
的图象上的一点P,它到原点O 的距离OP=2 5 ,PQ 垂直于y 轴,垂足为Q.若△OPQ 的面积为4平方单位,求:(1)点P 的坐标;(2)这个反比例函数的解析式.
独立训练(一):
1.函数y= - 2x
是 函数,这个函数的图象位于第 象限。
2.对函数y= - 53x
当x>0时,y 随x 的增大而 。
3.反比例函数y=k x 的图象上有一点P ,它的横坐标m 与纵坐标n 是方程t 2-4t-2=0的两个根,则k= 4.如图,P 为反比例函数y=k
x
的图象上的点,过P 分别向 x 轴和y 轴引垂线,它们与两条坐标轴围成的矩形面积为2,
这个反比例函数解析式为 。
5.反比例函数y=(a-3)x 2a -2a-4的函数值是4时,它的自变量x 的值是 。
6.一次函数y=kx+b 与反比例函数y=2x 的图象的两个交点的横坐标为12
和 -1,则一次函数y= 7.一次函数y=kx+b 过点(-2,5),且它的图象与y 轴的交点和直线y=-12
x+3与y 轴的交点关于x 轴对称,那么一次函
数的解析式是
8.如图,在矩形ABCD 中,已知AB=2 3 ,BD=6,对角线AC 和BD 相交于O ,
以O 为原点分别以平行于AB 和AD 的直线为轴和轴建立平面直角坐标
系,则对角线AC 和BD 的函数表达式分别为 。
9.求直线y=3x+10,y= -2x-5与y 轴所围成的三角形的面积。
10.如图,一次函数y=k 1x+b 的图象过一、三、四象限,且与双曲线y=k 2x
的图象交于A 、B 两点,与y 轴交于C 点,且A (x 1,y 1)是∠XOA 终边上一点。
(1) tan ∠XOA=15
,原点到A 点的距离为26 ,求A 点的坐标;
(2)在(1)的条件下,若S △AOC =b 2-6,求一次函数的解析式。
独立训练(二):
1. 如图,A 、B 是函数y=1x
的图象上关于原点O 对称的任意两点,AC 平行于y 轴, BC 平行于x 轴,△ABC 的面积S ,则( )
(A )S=1 (B ) 1<S<2 (C ) S=2 (D ) S>2
2.函数y=k 1x+b(k 1b<0)与y=k 2x
(k 2<0)在同一坐标系中的图象大致是( )
3.在边长为 2 的正方形ABCD 的边BC 上,有一点P 从 B 点运动到C 点,设PB=x ,图形APCD 的面积为y ,
写出y 与自变量x 的函数关系式,并且在直角坐标系 中画出它的图象
4.已知y=y 1+y 2,y 1与x 2成正比例,y 2与x 成反比例,并且当x=1时,y=1,当x=3时,y=-17,求x=-1时,y 的值
5.如图,在y= 8x
(x>0)反比例函数的图象上有不重合的两点 A 、B ,且A 点的纵坐标是2,B 点的横坐标为2,BB 1和AA 1 都垂直于轴,垂足分别为B 1和A 1,(1)求A 点横坐标;
(2)求S △1O B B (3)当OB=2 5 时,求S △OBA
6.如图已知AB 是⊙O 的直径,P 是BA 延长线上一点, PC 切⊙O 于C ,PA =6,PEF 是⊙O 的割线,设PE =x, PF =y ,弦CM ⊥AB 于D ,且AD :DB =1:2, 求y与x之间的函数关系式,
并求出自变量x取值范围。
B。