统计热力学基础习题课汇总
热力学与统计物理学课后习题及解答

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T k 。
解:由理想气体的物态方程为 nRT PV = 可得: 体胀系数:TP nR V T V V αp 111==⎪⎭⎫ ⎝⎛∂∂= 压强系数:TV nR P T P P βV 111==⎪⎭⎫ ⎝⎛∂∂=等温压缩系数:P P nRT V P V V κT 1)(112=−⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∂∂−=1.2 证明任何一种具有两个独立参量P T ,的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:()⎰−=dP κdT αV T ln 如果PκT αT 11==,,试求物态方程。
解: 体胀系数:p T V V α⎪⎭⎫ ⎝⎛∂∂=1,等温压缩系数:TT P V V κ⎪⎭⎫ ⎝⎛∂∂−=1 以P T ,为自变量,物质的物态方程为:()P T V V ,= 其全微分为:dP κV VdT αdP P V dT T V dV T Tp −=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=,dP κdT αV dV T −= 这是以P T ,为自变量的全微分,沿任意的路线进行积分得:()⎰−=dP κdT αV T ln 根据题设 ,将P κT αT 1,1==,代入:⎰⎪⎭⎫ ⎝⎛−=dP P dT T V 11ln 得:C pT V +=lnln ,CT PV =,其中常数C 由实验数据可确定。
1.4 描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是()0£=T L f ,,,实验通常在1n p 下进行,其体积变化可以忽略。
线胀系数定义为:£1⎪⎭⎫ ⎝⎛∂∂=T L L α,等温杨氏模量定义为:TL A L Y ⎪⎭⎫ ⎝⎛∂∂=£,其中A 是金属丝的截面积。
一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。
如果温度变化范围不大,可以看作常量。
热力学与统计物理课后习题答案

T
S T
V
;即
T T 0 S V CV
于是: 0>
p 正p数
V T V S
于是:
< 0p
V S
CP
T
S T
P
T
S , T ,
p p
T
S, p S,V
S,V T , p
T
p V
S
S,V T , p
T p V S
S T
,V ,V
T ,V T , p
化简。
解:由式(3.2.7)得:U TS pV ;又由式(3.4.6)得:
dp L dT TV
;L TS
Pa
U L L p dT T dp
L1
p T
dT dp
第四章 多元系的复相平衡和化学平衡
=0。
解: 由式(2.2.7)得:
(
U V
)T
p
=T
( T
)V
-p;
(
U V
)T
=0
;
p
T
( p T
)V
( U V
)T
=
(U ,T ) (V ,T )
(U ,T )
=
( p,T )
( p,T ) (V ,T )
U =0= ( p )T
(
p V
)T
∵
( p V
)T≠0
;
(
U p
)=T 0。
习题2.10 证明范氏气体的定容热容量只是温度的函数,与比容无
)U
>0
证: 由式(2.1.2)得: dH TdS VdP
等H过程: (TdS )H (VdP)H
热力学与统计物理课后习题答案第一章

试求理想气体的体胀系数,压强系数和等温压缩系数。
解:已知理想气体的物态方程为(1)由此易得(2)(3)(4)证明任何一种具有两个独立参量的物质,其物态方程可由实验测得的体胀系数及等温压缩系数,根据下述积分求得:如果,试求物态方程。
解:以为自变量,物质的物态方程为其全微分为(1)全式除以,有根据体胀系数和等温压缩系数的定义,可将上式改写为(2)上式是以为自变量的完整微分,沿一任意的积分路线积分,有(3)若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或(5)式(5)就是由所给求得的物态方程。
确定常量C需要进一步的实验数据。
在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。
问:(a)压强要增加多少才能使铜块的体积维持不变?(b)若压强增加100,铜块的体积改变多少?解:(a)根据题式(2),有(1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。
如果系统的体积不变,与的关系为(2)在和可以看作常量的情形下,将式(2)积分可得(3)将式(2)积分得到式(3)首先意味着,经准静态等容过程后,系统在初态和终态的压强差和温度差满足式(3)。
但是应当强调,只要初态和终态是平衡态,两态间的压强差和温度差就满足式(3)。
这是因为,平衡状态的状态参量给定后,状态函数就具有确定值,与系统到达该状态的历史无关。
本题讨论的铜块加热的实际过程一般不会是准静态过程。
在加热过程中,铜块各处的温度可以不等,铜块与热源可以存在温差等等,但是只要铜块的初态和终态是平衡态,两态的压强和温度差就满足式(3)。
将所给数据代入,可得因此,将铜块由加热到,要使铜块体积保持不变,压强要增强(b)题式(4)可改写为(4)将所给数据代入,有因此,将铜块由加热至,压强由增加,铜块体积将增加原体积的倍。
简单固体和液体的体胀系数和等温压缩系数数值都很小,在一定温度范围内可以把和看作常量. 试证明简单固体和液体的物态方程可近似为解: 以为状态参量,物质的物态方程为根据习题式(2),有(1)将上式沿习题图所示的路线求线积分,在和可以看作常量的情形下,有(2)或(3)考虑到和的数值很小,将指数函数展开,准确到和的线性项,有(4)如果取,即有(5)描述金属丝的几何参量是长度,力学参量是张力J,物态方程是实验通常在1下进行,其体积变化可以忽略。
大学物理热学习题课

dN m 32 4 ( ) e Ndv 2kT
v2
对于刚性分子自由度 单原子 双原子 多原子
i tr
(1)最概然速率
2kT 2 RT RT vp 1.41 m
(2)平均速率
i=t=3 i = t+r = 3+2 = 5 i = t+r = 3+3 =6
6、能均分定理
8kT 8 RT RT v 1.60 m
M V RT ln 2 M mol V1
QA
绝热过程
PV 常量
M E CV T M mol
(2)由两条等温线和两条绝热线 组成的循环叫做 卡诺循环。 •卡诺热机的效率
Q0
Q2 T2 卡诺 1 1 Q1 T1
M P1V1 P2V2 A CV T M mol 1
E 0
•热机效率
A Q1 Q2
M E CV T M mol M Q C P T M mol
A Q1 Q2 Q2 1 Q1 Q1 Q1
A=P(V2-V1) 等温过程
A
E 0
Q1 Q2 •致冷系数 e W Q1 Q2
热机效率总是小于1的, 而致冷系数e可以大于1。
定压摩尔热容
比热容比
CP ( dQ )P dT i2 i
8、平均碰撞次数 平均自由程
z
2d v n
2
CV •对于理想气体:
Cp
v z
1.热力学第一定律
1 2 2d n
二、热 力 学 基 础
Q ( E2 E1 ) A dQ dE dA
准静态过程的情况下
4. 摩尔数相同的两种理想气体 一种是氦气,一种是氢气,都从 相同的初态开始经等压膨胀为原 来体积的2倍,则两种气体( A ) (A) 对外做功相同,吸收的热量 不同. (B) 对外做功不同,吸收的热量 相同. (C) 对外做功和吸收的热量都不 同. (D) 对外做功和吸收的热量都相 同. A=P(V2-V1)
热力学第一定律习题课 (1)全

= 1.3%
(5)
P
qm ws
220 t/h103 kg/t 3600 s/h
1.1361 03
kJ/kg
=
6.94 104
kW
讨论
(1)本题的数据有实际意义,从计算中可以看到,忽略进出 口的动、位能差,对输轴功影响很小,均不超过3%,因此在实 际计算中可以忽略。 (2)蒸汽轮机散热损失相对于其他项很小,因此可以认为一 般叶轮机械是绝热系统。
m2u2 m1u1 m2 m1 h 0
u2
m2
m1 h
m2
m1u1
方法三 取充入气罐的m2-m1空气为闭口系
Q U W
Q 0 ? W ? U ?
U m2 m1 u2 u
W W1 W2 m2 m1 pv W2
2
则 Q23 U23 W23 U3 U2 87.5 kJ175 kJ 87.5 kJ
U1 U3 U123 87.5 kJ (77.5 kJ) 165 kJ
讨论
热力学能是状态参数,其变化只决定于初 终状态,于变化所经历的途径无关。
而热与功则不同,它们都是过程量,其变 化不仅与初终态有关,而且还决定于变化所 经历的途径。
1 2
(cf23
c22 )
ws
因为w3 0,所以
燃烧室 压 气 机
cf 3' 2 q (h3' h2 ) cf22
2 670103 J/kg- (800 - 580) 103 J/kg + (20 m/s)2 = 949 m/s
( 4 ) 燃气轮机的效率
取燃气轮机作为热力系,因为燃气在
( 5 ) 燃气轮机装置的总功率 装置的总功率=燃气轮机产生的功率-压气机消耗的功率
习题课(统计-平衡)

$ m $
( (B) α-HgS 与 β-HgS 处于平衡 (D) 无法判断何者稳定
)
$
与温度无关,则在 310 K 时平衡常数的值是 ____ 。
(1) = __________ ;2CO2(g) = 2CO(g) + O2(g) 的
−228.60 kJ ⋅ mol-1 ,则液态水的标准生成自由能为
$ m
(298.15 K) = -1079 kJ⋅mol-1。设外层空间的温度为 298 K,空气的组成与地面相同(O2 占
五分之一) 。
30. 已知反应 NiO (晶) + CO (g) = Ni (晶) + CO2(g) T /K: 936 1027 3 Kp : 4.54×10 2.55×103 若在上述温度范围内反应的ΔCp= 0,试求: (1) 此反应在 1000 K 时的ΔrG m ,ΔrH m ,ΔrS
$
(
)
(A) 2.0×1012 14.
(B) 5.91×106
(C) 873
(D) 18.9
已知分解反应 NH2COONH4(s) = 2NH3(g) + CO2(g) 在 30℃时的平衡常数 K= 6.55×10-4, 则此时 NH2COONH4(s)的分解压力为: ( ) 3 3 (A) 16.63×10 Pa (B) 594.0×10 Pa 3 (C) 5.542×10 Pa (D) 2.928×103 Pa 15. 转化反应 α-HgS =β-HgS 的ΔrG m /J⋅mol-1=980-1.456 T/K,则在 100℃标准状态下: (A) α-HgS 较 β-HgS 稳定 (C) β-HgS 较 α-HgS 稳定 16. PCl5 的分解反应是 PCl5(g) = PCl3(g) + Cl2(g), 在 473 K 达到平衡时,PCl5(g)有 48.5% 分解,在 573 K 达到平衡时,有 97% 分解,则此反应为 ( ) (A) 放热反应 (B) 吸热反应 (C) 即不放热也不吸热 (D) 这两个温度下的平衡常数相等 二、填空题 17. 在 298 K 时,磷酸酯结合到醛缩酶的平衡常数 K α =540,直接测定焓的变化是 -87.8 kJ⋅mol-1,若假定ΔrH 18. 按照不同的两种能量零点,可给出两种不同形式的配分函数: q'=exp(-ε0/kT)∑giexp(-εi/kT) q=∑gexp(-εi/kT) 在 q 和 q'中把粒子的最低能级的能量分别定为 _______ 和 _______ 。 19. 若反应 CO(g) + (1/2) O2(g) = CO2(g) 在 2000 K 时的 K p = 6.44,同样温度下,则反 应 2CO(g) + O2(g) = 2CO2(g) 的 K K p (2) = __________ 。 20. 25°C 时 , 水 的 饱 和 蒸 气 压 为 3.133 kPa , 水 蒸 气 的 标 准 生 成 自 由 能 为
热力学与统计物理课后习题答案第一章复习课程

热力学与统计物理课后习题答案第一章1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数Tκ的定义,可将上式改写为.TdVdT dpVακ=-(2)上式是以,T p为自变量的完整微分,沿一任意的积分路线积分,有()ln.TV dT dpακ=-⎰(3)若11,TT pακ==,式(3)可表为11ln.V dT dpT p⎛⎫=-⎪⎝⎭⎰(4)选择图示的积分路线,从00(,)T p积分到()0,T p,再积分到(,T p),相应地体积由V最终变到V,有000ln=ln ln,V T pV T p-即00p VpVCT T==(常量),或.pV CT=(5)式(5)就是由所给11,T T pακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。
热力学统计物理课后习题答案.doc

第七章 玻耳兹曼统计7. 1 试根据公式 Pa lL证明,对于非相对论粒子lVP21 2 22 U 222n x , n y , n z2m 2mL n x n yn z ,( 0, 1, 2, )有P3 V上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明: 处在边长为 L 的立方体中,非相对论粒子的能量本征值为P21 222 22n x , n y , n z 0, 1, 2, ) ------- (1)n x , n y ,n z2m 2mLn x n yn z(为书写简便,我们将上式简记为aV 23----------------------- ( 2)其中 V=L 3 是系统的体积,常量a(2 ) 2222l 代表 n x ,n y ,n z 三2m n xn y n z ,并以单一指标个量子数。
由( 2)式可得L2aVV35 32l--------------------- ( 3)3 V代入压强公式,有 PL2 2 Ua lal l---------------------- ( 4)lV3V l3 V式中 Ual l是系统的内能。
l上述证明未涉及分布的具体表达式, 因此上述结论对于玻尔兹曼分布, 玻色分布和费米分布都成立。
注:( 4)式只适用于粒子仅有平移运动的情形。
如果粒子还有其他的自由度,式( 4)中的U 仅指平动内能。
7. 2 根据公式 Pa lL证明,对于极端相对论粒子lVcp c2n x 2 n y 2 n z 2 11 U2 , n x , n y , n z 0, 1, 2, 有PL3 V 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为2 n x 2 n y 2 n z 2 1c 2 , n x , n y , n z 0, 1, 2,-------( 1)n x ,n y ,n zL1为书写简便,我们将上式简记为aV 3 ----------------------- ( 2)其中 V=L 3 是系统的体积, 常量 a 2 c n x 2 n y 2n z 212,并以单一指标 l 代表 n x ,n y ,n z 三个量子数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计热力学基础习题课一、内容提要1、微观粒子的运动形式和能级公式式中,ε:粒子的总能量,t ε:粒子整体的平动能,r ε:转动能,v ε:振动能,e ε:电子运动能,n ε:核运动能。
(1)三维平动子式中,h :普朗克常数;m :粒子的质量;a ,b ,c :容器的三个边长,n x ,n y ,n z 分别为x ,y ,z 轴方向的平动量子数,取值1,2,3……。
对立方容器基态n x = 1,n y = 1,n z = 1,简并度10,=t g ,而其他能级的简并度要具体情况具体分析,如32286mVh t =ε的能级,其简并度g = 3。
(2)刚性转子双原子分子 )1(822+=J J Ih r πε式中,J :转动量子数,取值0,1,2……,I :转动惯量,20R I μ=,μ:分子的折合质量,2121m m m m +=μ,0R :分子的平衡键长,能级r ε的简并度 g r = 2J+1(3)一维谐振子式中,ν:分子的振动频率,υ:振动量子数,取值0,1,2……,各能级都是非简并的,g v = 1对三维谐振子, νυυυεh z y x )23(v +++=2)2)(1(v ++=s s g , 其中s=υx + υy + υz(4)运动自由度:描述粒子的空间位置所必须的独立坐标的数目。
2、能级分布的微态数和Boltzmann 分布 (1)能级分布的微态数能级分布:N 个粒子分布在各个能级上的粒子数,叫做能级分布数,每一套能级分布数称为一种分布。
微态数:实现一种分布的方式数。
定域子系统能级分布微态数 ∏=i i n i D n g N W i!!离域子系统能级分布微态数 ∏=i i n i D n g W i!系统总的微态数 ∑=ΩDD W(2)最概然分布等概率定理:对N ,U ,V 确定的系统,每个可能的微态出现的概率相等。
Ω=1P ,某个分布的概率 Ω=D D WP最概然分布:微态数最大的分布称为最概然分布。
最概然分布可以用来代表平衡分布。
(3)玻耳兹曼分布对于一个N ,U ,V 确定的系统,kT i i ie g qN n ε-=——玻耳兹曼分布配分函数:kTi ieg q ε-∑=式中,i g :能级i 的简并度,n :分布在能级i 上的粒子数。
3、配分函数由于i n i e i i r i t i ,,,v ,,εεεεεε++++=,i n i e i i r i t i g g g g g g ,,v,,,⋅⋅⋅⋅=可得:n e r t q q q q q q v = 为配分函数的析因子性质。
(1)能量零点的选择选择各独立运动形式的基态能级作为各自能量的零点,则能级i 的能量有00εεε-=i i, kTe q q 0ε-= kTeq q 0ε⋅=(2)平动配分函数t f :立方容器中平动子一个平动自由度的配分函数。
因为:00,≈t ε,所以:t t q q ≈0 (3)转动配分函数双原子分子 r r ThIkT q Θ==σσπ228 式中,I :分子的转动惯量。
σ:分子的对称数,异核双原子分子σ=1,同核双原子分子σ=2。
Ikh r 228π=Θ 为转动特征温度。
2121⎪⎪⎭⎫ ⎝⎛Θ==r rr T q f σ r f :一个转动自由度上的配分函数。
由于 00,=r ε,r r q q =0对非线型分子()()21323228z y xr I I Ih kT q σππ=(4)振动配分函数其中,kh ν=Θv 为振动特征温度,一般情况 Θv >>T 。
f v =q v 一个振动自由度上的配分函数 多原子线型分子 ∏-=---=531v 1n i kTh kT h iieeq νν多原子非线型分子 ∏-=---=631v 1n i kTh kT h iieeq νν(5)电子运动的配分函数通常情况下,电子运动全部处于基态。
(6)核运动的配分函数对于化学变化,通常情况下,核运动处于基态。
4、热力学函数与配分函数之间的关系 (1)玻耳兹曼熵定理:Ω=ln k S摘取最大项原理:Ω≈ln ln B W ,B W k S ln =式中,B W :最概然分布的微态数。
(2)热力学函数与配分函数之间的关系①热力学能其中,000U U N U U -=-=ε,U=U 0+U 00εN 是系统中全部粒子均处于基态时的能量。
0U 是系统处于0K 时的热力学能。
∴n e r t U U U U U U ++++=v其中 0,0,2,,00v 0v 0==-==≈n e r r t t U U Nh U U U U U U ν NkT U t 230=, NkT U r =0 ②摩尔定容热容R C tV 23,= , R C r V =, 22v v ,1v v -ΘΘ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛Θ=T T V e e T R C ③熵离域子系统 Nk TU N q Nk Nk T U N q Nk S ++=++=00lnln Nk T U N q Nk S t t t ++=00ln ,T U q Nk S r r r 00ln +=,TU q Nk S T U q Nk S o e oe e +=+=ln ,ln 0v 0v v定域子系统 TU q Nk T U q Nk S 00ln ln +=+=④其它函数 亥姆霍兹函数A :离域子系统 00!)(ln )!ln(U N q kT N q kT A NN+-=-= 定域子系统 00)ln(ln U q kT q kT A N N +-=-=压力p : T T V q NkT V q NkT p ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂=0ln ln 吉布斯函数G : ∵ G=A+PV离域子系统 T N VqNkTV N q kT G )ln ()!ln(∂∂+-= 定域子系统 T N VqNkTV q kT G )ln (ln ∂∂+-=焓H :选取基态能级为能量零点时,U 、A 、G 、H 表达式中多一个0U 项。
5、理想气体反应平衡常数理想气体反应标准平衡常数与配分函数 理想气体反应 ∑=BB B ν0分子浓度表示的平衡常数 kTBBC r BeqK 0)(εν∆-*∏=物质的量浓度表示的平衡常数 kTBBc r BB eLqK 0)(*ενν∆-∑-⋅=∏压力表示的平衡常数 kT BBp r B B e pkT qK 0))((*ενθνθ∆-∑∏=,其中V q q B B 0*=二、例题解析1、在边长为a 的立方容器中,质量为m 的粒子作三维平动子运动,其中kT mah 1.0822=,试计算状态(1,2,3)与状态(1,1,1)的粒子数之比。
解题思路:本题利用平动子的能级公式和玻耳兹曼分布,求得不同能级的分布数之比。
解:立方容器 kT n n n n n n mah z y x z y x t 1.0)()(822222222⨯++=++=ε 状态(1,1,1) g 1=1, kT 3.01=ε, 状态(1,2,3) g 2=6, kT 4.12=ε∵kT i i ie g qNn ε-=∴997.1)3.0exp(1)4.1exp(6121212=-⨯-⨯==--kTkT kT kTeg e g n n kTkT εε2、某分子的振动能级间隔 J 20v 10942.5-⨯=∆ε,试计算(1)分别在298K ,900K 时,某一能级和其较低能级上的分子数之比。
(2)若振动能级间隔为J 20v 1043.0-⨯=∆ε,情况又将如何变化?解题思路:本题利用玻耳兹曼分布和两个能级上分布数之比kTi kTi ji jie g e g n n εε--=来讨论不同温度、不同能级差对分布的影响。
解:(1)对分子的振动 g i =1 εi -εj =Δεv =5.942⨯10-20J∴kTkTkTji j i jie e e n n )(11εεεε----=⨯⨯= T=298K 时,7123201036.5)29810381.110942.5exp(----⨯=⨯⋅⨯⨯-=K K J Jn n j i T=900K 时,3123201040.8)90010381.110942.5exp(----⨯=⨯⋅⨯⨯-=K K J Jn n j i (2)若J j i 201043.0-⨯=-εε时T=298K 时 352.0)29810381.11043.0exp(12320=⨯⋅⨯⨯-=---K K J Jn n j iT=900K 时 708.0)90010381.11043.0exp(12320=⨯⋅⨯⨯-=---K K J Jn n j i 对振动能级,升高温度,高能级上的分布数会增大。
假若振动能级间隔减小,高能级上的分布数会增大许多。
3、NO 分子的振动特征温度K 2744v =Θ,其振动能级只考虑基态和第一激发态,求算:(1)当T=2744K 时,其振动配分函数0v v ,q q 为多少?(2)若使激发态分子数%92.111=Nn ,温度应达到多大值?解题思路:本题(1)意在熟悉不同能量零点选择所对应的配分函数的定义和(2)讨论玻耳兹曼分布,求出所要求的温度,但要注意粒子的配分函数值与温度有关,不能把(1)中的配分函数值拿过来用,因为(2)的温度与(1)的温度很可能不相同。
解:(1)∑=+-=1v })21(ex p{υνυkT h q(2)∵kT i e g qNn i i ε-=∴)23exp()2exp()23exp(v v v111TT Tqeg N n kTΘ-+Θ-Θ-==-ε∴K K T 13720.227440.2v ==Θ=4、1摩尔纯态的理想气体,假设分子的某内部运动形式只有三个可及的能级,它们的能量和简并度分别为ε0 = 0 , g 0 = 1 ; ε1/ k = 100K , g 1=3 ; ε2/k = 300K , g 2=5 (1)计算200K 时的分子的配分函数。
(2)计算200K 时能级1ε上的分子分布数。
(3)当T →∞时,三个能级上的分布数之比为多少?解题思路:本题利用配分函数的定义式和玻耳兹曼分布,可求出结果来。
本题不能套用配分函数计算公式,只能根据其定义进行加和计算,而一些计算公式是无穷项求和的结果。
当T →∞时,εi /kT →0表示能级开放的经典极限情况。
解:(1)∑-=ikTi ieg q ε(2)23231110785.2200100ex p 3935.310023.61⨯=⎪⎭⎫ ⎝⎛-⨯⨯⨯==-K K e g q L n kTε(3)当T →∞时,0→kTiε∴1)ex p(→-kTiε∴5:3:1::::210210==g g g n n n5、证明在室温下异核双原子气体分子在转动量子数J 的转动能级上的分子数为其中Ik h r 228π=Θ,并且在)12(21-Θ=rTJ 处有一个极值。