浙教版七年级数学下册 分式的加减教案

合集下载

《分式的加法和减法》教案

《分式的加法和减法》教案

《分式的加法和减法》教案教学目标(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减.(3)通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践.能利用事物之间的类比性解决问题.教学重点熟练地进行异分母的分式加减法的运算.教学难点熟练地进行异分母的分式加减法的运算.教学方法引导启发、类比、讨论交流、讲练结合教学过程(一)、预习复习分数加减法的计算法则是怎样的?让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,请学生自己说出分式的加减法法则(二)、共同探索,建立知识体系1、学生类比分数的加减法法则归纳叙述分式的加减法法则:同分母分式相加减,分母不变,把分子相加减. 用式子表示是:c a ±c b =c ba ±.异分母分式相加减,先通分,变为分母的分式,再加减. 用式子表示为:b a ±d c =bd bcad ±.(注意:异分母的分式加减法的运算, 关键是通分,通分的关键是正确确定几个分式的最简公分母)通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做通分.2、分式通分时,要注意几点:(1)如果各分母的系数都是整数时通分,常取它们的系数的最小公倍数,作为最简公分母的系数;(2)若分母的系数不是整数时,先用分式的基本性质将其化为整数,再求最小公倍数;(3)分母的系数若是负数时,应利用符号法则,把负号提取到分式前面;(4)若分母是多项式时,先按某一字母顺序排列,然后再进行因式分解,再确定最简公分母.3、确定最简公分母的一般步骤:(1)找系数:如果各分母的系数都是整数,那么取它们的最小公倍数.(2)找字母:凡各分母因式中出现的所有字母或含字母的式子都要选取.(3)找指数:取分母因式中出现的所有字母或含字母的式子中指数最大的.这样取出的因式的积,就是最简公分母.4、异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式5、例题讲解计算:(1)2222235y x x y x y x ---+;(2)q p q p 321321--+ [例后总结]第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算(1)2222223223y x y x y x y x y x y x --+-+--+[分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.(2)96261312--+-+-x x x x [分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.(三)、作业练习.(1)ba ab b a b a b a b a 22255523--+++ (2)mn m n m n m n n m -+---+22(3)96312-++a a (4)b a b a b a b a b a b a b a b a ---+-----+-87546563。

分式的加法和减法教案

分式的加法和减法教案

分式的加法和减法教案
教案标题:探究分式的加法和减法
教学目标:
1. 理解分式的加法和减法的基本概念。

2. 掌握分式的加法和减法的计算方法。

3. 能够应用所学知识解决实际问题。

教学重点:
1. 分式的加法和减法的计算方法。

2. 分式的化简和通分。

教学难点:
1. 分式的加法和减法的应用。

2. 解决实际问题的能力。

教学准备:
1. 教师准备教学课件和相关教学素材。

2. 学生准备课堂笔记和相关教学工具。

教学过程:
一、导入
教师通过提问和引入实际问题,引发学生对分式的加法和减法的兴趣,激发学生的思考和探究欲望。

二、概念讲解
1. 分式的加法和减法的基本概念讲解。

2. 分式的加法和减法的计算方法讲解。

3. 分式的化简和通分的方法讲解。

三、示范演示
教师通过示范演示分式的加法和减法的计算过程,让学生理解和掌握计算方法。

四、练习训练
1. 学生进行分组练习,通过练习巩固所学知识。

2. 学生自主完成课堂练习和作业,巩固分式的加法和减法的计算方法。

五、拓展应用
教师设计一些实际问题,让学生运用所学知识解决问题,培养学生的实际应用
能力。

六、课堂总结
教师对本节课的重点内容进行总结,并强调分式的加法和减法的应用。

七、作业布置
布置相关作业,巩固学生对分式的加法和减法的掌握程度。

教学反思:
教师在教学过程中要注重引导学生思考和探究,培养学生的分析和解决问题能力。

同时要关注学生的学习情况,及时调整教学方法,确保教学效果。

2021年七年级数学下册 7.3分式的加减()教学设计 浙教版

2021年七年级数学下册 7.3分式的加减()教学设计 浙教版

2019-2020年七年级数学下册 7.3分式的加减(1)教学设计浙教版一、背景介绍及教学资料:分式的运算不同于整式运算先学加减,再算乘除,而是先学乘除,再算加减。

因为分式的加减包括同分母分式的加减和异分母分式的加减,而无论哪一种运算其结果都要进行约分;异分母分式的加减要先通分,在加减。

可见分式的加减是分式乘除的再巩固和再应用。

§7.3分式的加减(1)二、教学设计:【教学内容分析】分式的加减是分式的基本运算之一。

本节课是同分母分式的加减,是异分母分式加减基础。

教材中先让学生做两道同分母分数加减的题目,目的是通过与同分母分数加减类比,说明同分母分式的加减法法则。

【教学目标】1、理解和掌握同分母的分式加减法法则。

2、能运用法则进行同分母分式的加减运算。

3、能将分母绝对值相等的分式转化为同分母分式,并进行加减运算。

【教学重点】同分母分式加减法法则【教学难点】分母中只有符号不同的分式加减运算中的符号处理。

【教学过程】(一)类比引入,探求新知。

计算:17+27= _________5 10-310=这一法则能否推广到分式运算中?请尝试计算1a+3a,x-1x+1-xx+1, 并分别取a=3,x=4检验你的计算方程是否正确检验后,类比得到同分母的分式相加减的法则:同分母的分式相加减,把分子相加减,分母不变。

用式子表示是:ac±bc=a±bc(二)理解应用,体验成功练一练:(课内练习)1、口答:计算:(1)3a +12a-15a(2)1m--3m(3)ax-y -ay-x(4)yx-y-xx-y在学生回答的过程中,教师反问:(3)中x-y与y-x相同吗?怎么处理?(可能学生会讲出:y-x=-(x-y),教师肯定后再加以强调。

)设计说明:让学生经历应用新知的过程,从中体会和理解法则中字母含义的广泛性。

教师的反问起到了强调作用。

做一做:例1:计算(1)a+3ba+b+a-ba+b(2)2xy2+1(x-y)2-1+2x2y(y-x)2教学建议:把主动权交给学生,待学生完成后,教师反问:在(2)中(x-y)2与(y-x)2是同分母吗?为什么?(多数学生应该知道:(x-y)2=x2-2xy+y2 而(y-x)2=y2-2xy+x2所以(x-y)2=(y-x)2或(y-x)2=[-(y-x)]2=(x-y)2),再问(x-y)3=(y-x)3吗?为什么?在师生的互动过程中,归纳出:(1)(x-y)2n=(y-x)2n;(x-y)2n-1=(y-x)2n-1(2)分子相加减:应是分子“整体”相加减,注意添括号。

七年级数学下册第5章分式5-4分式的加减2教案浙教版

七年级数学下册第5章分式5-4分式的加减2教案浙教版

5.4分式的加减(2)一、学生起点分析学生知识技能基础:学生在前两节课已经学习同分母分式、异分母分式的加减运算及法则。

在第四章学习了因式分解,对这节课异分母分式相加减和分式求值及应用内容的学习都有了充分的铺垫。

学生活动经验基础:从学习字母表示数开始,学生就经历过许多从实际问题建模的思想,用代数式去解决实际问题的经验。

同时在以前的学习中,学生也经历了很多合作交流的学习过程,具有了一定的活动的经验和合作与交流的能力。

二、教学任务分析分式的加减法是代数变形的基础之一,分式的化简求值又是代数运算的主要内容,运用所学知识解决实际问题是学习的最终目的。

教科书在原有两节课时的基础上,改编成三节课时,本节课将重点放在运用分式的加减法。

因此本节课的教学目标为:1、 会进行分母是多项式的异分母分式的加减法运算及分式与整式的加减法运算;2、 提高学生对代数式化简变形的能力;3、 能进行分式的混合运算及较复杂的分式化简求值;4、 会运用分式建立数学模型,从而解决实际问题,增强学生用数学的意思。

‘三、教学过程设计本节课采用多媒体教学,通过多媒体展示本节课设计的6个教学环节:复习引入——学习新知——练习巩固——再探分式加减应用——巩固提高——课堂小结。

第一环节 复习引入活动内容通过幻灯片,展示复习问题以及课前练习问一问同分母分式是怎样进行加减运算的?异分母分式呢?练一练 a a14)1(2+; 111)2(+--a a a ; bc c b ab b a +-+)3(. 活动目的:通过回忆同分母分式、异分母分式的加减法运算法则,来加深学生对所学知识的认识,也为这节课铺下理论基础。

同时又通过练一练的三道题,检查学生对法则的运用情况,加强对法则的理解应用,为本节课的学习扫平障碍。

通过多媒体幻灯片展示问题,吸引学生注意力,调动学习兴趣。

活动的注意事项:学生回答时应视情况帮助辅正,并对法则作再次的解释,让学生真正理解法则。

对于练一练就根据学生的解答(采取演板形式)情况,对运算中一些问题作再一次的重申,如分子添括号啊,结果约分等。

七年级数学下册第5章分式5.4分式的加减教案(新版)浙教版

七年级数学下册第5章分式5.4分式的加减教案(新版)浙教版

5.4 分式的加减教学目标(一)教学知识点1.同分母的分式的加减法的运算法则及其应用.2.简单的异分母的分式相加减的运算.(二)能力训练要求1.经历用字母表示数量关系的过程,发展符号感.2.会进行同分母分式的加减运算和简单的异分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.(三)情感与价值观要求1.从现实情境中提出问题,提高“用数学”的意识.2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气. 教学重难点教学重点:1.同分母的分式加减法.2.简单的异分母的分式加减法.教学难点:当分式的分子是多项式时的分式的减法.教学过程1.同分母的加减法[师]我们首先来着看下面的问题:想一想:(1)同分母的分数如何加减?你能举例说明吗?(2)你认为分母相同的分式应该如何加减?做一做:(1)a 1+a2=____________. (2)22-x x -24-x =____________.(3)12++x x -11+-x x +13+-x x =____________. [生]同分母的分数的加减是分母不变,把分子相加减,例如:134+133-1317=131734-+=-1310. 同分母的分式相加减,分母不变,把分子相加减,用式子表示是:c a ±c b =cb a ±(其中a 、b 既可以是数,也可以是整式,c 是含有字母的非零的整式). [师]谁能试着到黑板上板演“做一做”中的三个小题.[生1]解:(1)a 1+a 2=a 21+=a3; [生2]解:(2)22-x x -24-x =242--x x ; [生3]解:12++x x -11+-x x +13+-x x =1312+-+--+x x x x =12+-x x . [师]我们一块来讲评一下上面三位同学的运算过程.[生]第(1)小题是正确的.第(2)小题没有把结果化简.应该为原式=242--x x =2)2)(2(--+x x x =x +2. [师]这位同学很仔细.我们学习分式乘除法时就强调运算结果必须是最简的,如果分子、分母中有公因式,一定要把它约去,使分式最简.[生]第(3)小题,我认为也有错误.同分母的分式相加减,分母不变,把分子相加减,我觉得(x +1)分母不变,做得对,但三个分式的分子x +2、x -1、x -3相加减应为(x +2)-(x -1)+(x -3).[师]的确如此,我们知道列代数式时,(x -1)÷(x +1)要写成分式的形式即11+-x x ,因此分数线既有除号的作用,还有括号的作用,即分子、分母应该是一个整体.[生]老师,是我做错了.第(3)题应为: (3)12++x x -11+-x x +13+-x x =1)3()1()2(+++--+x x x x=1312+-++-+x x x x =1+x x [师]发现问题,及时改正是一种很好的学习习惯,努力发扬,你一定会取得更大进步.2.简单的异分母的分式相加减想一想(1)异分母的分数如何加减?(2)你认为异分母的分式应该如何加减?比如a 3+a41应如何计算. [生]异分母的分数加减时,可利用分数的基本性质通分,把异分母的分数加减法化成同分母的分数加减法[生]我认为分式有很多地方和分数相类似,异分母的分式加减是否也可以通过像分数那样通分,将异分母的分式加减法化成同分母的分式加减法.[师]同学们的想法很好!我这儿就有两位同学将异分母的分式加减化成同分母的分式加减.小明认为,只要把异分母的分式化成同分母的分式,异分母分式的加减问题就变成了同分母分式的加减问题.小亮同意小明的这种看法,但他俩的具体做法不同: 小明:a 3+a 41=a a a 443⋅⋅+aa a ⋅4 =2412a a +24a a =2413a a =a413. 小亮:a 3+a 41=443⋅⨯a +a41 =a 412+a 41=a 413. 你对这两种做法有何评论?与同伴交流.[生]我觉得这两种做法都有一个共同的目标:把异分母的分式加减法化成同分母的分式加减法.但我觉得小亮的方法更简单.就像分数运算:61+41. 如果61+41=464⨯+646⨯=244+246=2410=125,这样计算就比较麻烦;如果找6和4的最小公倍数12,算起来就很方便,即61+41=262⨯+343⨯=122+123=125. [生]我认为也是这样,根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.但通分时为了简便,也应该像分数的通分一样,找各个分母的最小公倍数.[师]同学们分析得很有道理,为了计算简便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的公分母.例如a 3+a 41,a 和4a 的最简公分母是4a .下面我们再来看几个例子.[例]计算:(1)a3+a a 515-;(2)12-x +x x --11 [生]老师,我们组还是联系异分母的分数相加减的方法,利用分数的性质,先通分,转化成同分母的就可以完成.[生]我们组也是用了将异分母的分式相加减转化成同分母相加减的分式运算.[例]中的第(1)题,一个分母是a ,另一个分母是5a ,利用分式的基本性质,只需将第一个分式a 3化成a 553⨯=a515即可. 解:(1)a 3+a a 515-=a 515+aa 515- =aa 5)15(15-+=a a 5=51; [生]我们组也已完成了第(2)题.两个分式相加,一个分式的分母是x -1,另一个分式的分母是1-x ,我们注意到了1-x =-(x -1),所以要把xx --11化成分母为x -1的分式,利用分式的基本性质,得x x --11=)1()1()1()1(-⨯--⨯-x x =11--x x .所以第(2)题的解法如下: (2)12-x +x x --11=12-x +11--x x =1)1(2--+x x =13--x x [师]同学们能凭借自己的数学经验,将新出现的数学难题处理的有条有理,很了不起.[生]问题一可以出来结果啦.(1)小丽当走第二条路时,她从甲地到乙地需要的时间为v 1+v 32=v 33+v 32=v 323+=v35h . (2)小丽走第一条路所用的时间为v23h .作差可知v 35-v 23=v 610-v 69=v61>0.所以小丽走第一条路花费的时间少,少用v61h . Ⅲ.应用、升华1.计算:(1)xb 3-x b ;(2)a 1+a 21;(3)b a a --a b a - 2.计算:m n n m -+2+n m n --m n n -2. Ⅳ.课时小结[师]这节课我们学习了分式的加减法,同学们课堂上思维非常活跃,想必收获一定很大. [生]我觉得我这节课最大的收获是:“做一做”中犯的错误,在今后做此类题的过程中,一定不会犯同样的错误.[生]我的收获是学会用转化的思想将异分母的分式的加减法转化成同分母分式的加减法.Ⅴ.活动与探究已知x +y 1=z +x 1=1,求y +z 1的值.。

浙教版数学七年级下册5.4《分式的加减》教学设计1

浙教版数学七年级下册5.4《分式的加减》教学设计1

浙教版数学七年级下册5.4《分式的加减》教学设计1一. 教材分析本节课的主题是分式的加减,这是初中数学中一个重要的概念。

在浙教版数学七年级下册中,5.4节详细介绍了分式的加减运算规则。

通过本节课的学习,学生能够掌握分式加减的运算方法,并能够灵活运用到实际问题中。

教材通过例题和练习题的形式,帮助学生理解和掌握分式加减的运算规则。

二. 学情分析学生在学习本节课之前,已经学习了分式的基本概念,对分式的加减有一定的了解。

但学生在实际操作中,可能对分式的加减运算规则理解不深,容易出错。

因此,在教学过程中,需要帮助学生进一步理解和掌握分式的加减运算规则,提高学生的运算能力。

三. 教学目标1.知识与技能:学生能够掌握分式的加减运算规则,并能熟练进行分式的加减运算。

2.过程与方法:通过小组合作、讨论交流的方式,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心。

四. 教学重难点1.重点:分式的加减运算规则。

2.难点:分式加减的实际应用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,提高学生的学习兴趣和参与度。

六. 教学准备1.教学PPT:制作详细的PPT,展示分式的加减运算规则和实例。

2.练习题:准备一些分式加减的练习题,用于课堂练习和巩固。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入分式的加减运算。

例如,假设有一瓶溶液,其中盐的质量分数为20%,加入一定量的水后,盐的质量分数变为10%。

问加入了多少水?2.呈现(10分钟)呈现PPT,展示分式的加减运算规则,并通过例题进行讲解。

3.操练(10分钟)学生分组进行练习,教师巡回指导。

每组解决一个实际问题,涉及分式的加减运算。

4.巩固(10分钟)学生独立完成一些分式加减的练习题,教师选取部分题目进行讲解和分析。

5.拓展(10分钟)学生进行小组讨论,探讨分式加减在实际问题中的应用,分享自己的解题心得。

《分式的加减法》教案设计

《分式的加减法》教案设计

《分式的加减法》教案设计《《分式的加减法》教案设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!学习内容分析学习目标描述:分式的加减法学习内容分析:本节内容一共安排了三课时。

第一节课阐述同分母的分式加减法的运算法则及分母互为相反式的分式加减法运算。

第二节课则阐述异分母分式的通分、加减法的运算法则及简单的应用,第三节课则提升到分母有公因式的分式加减法、分式与整式的加减运算、分式的求值及应用。

这样安排,给学生一个简单到复杂的认识过程,有了第一节的铺垫,使学生对分式加减法的掌握并不觉得难,且本节对于第三章分式的学习有着至关重要的作用,是后面根据实际生活问题列出分式方程,并求出正确答案的基本功,教学时必须踏踏实实,。

学生学情分析学生的知识技能基础:学生在小学时已经学习过同分母分数的加减,异分母分数的加减运算法则,在初一学习了整式的加减,在上一章学习了因式分解,本章又学习了分式及其乘除,都为这一节课的学习做好了铺垫。

由分数加减运算类比分式的加减是这节内容的要害。

学生活动经验基础:在相关知识的学习过程中,学生经历过许多类比和猜测的活动,如实数的加减运算类比整式的合并同类项;由在时的值的情况去猜测时的情况,由正整数相乘去发现规律猜测与负整数的乘法等,这些活动经验都为本节学习有很好的启迪教学策略设计同分母分式的加减法是最简单的,也是学习异分母的分式加减的基础,所以作为起始节也是工具节内容,它就要求教学时务必使学生理解它并且能够灵活运用,对分母互为相反式的分式加减,能明白改变运算符号的实质。

因此,本节课的教学目标定位为:1、类比同分数加减法的法则归纳出同分母分式的加减法法则。

2、理解同分母的分式加减法的运算法则,能进行同分母的分式加减及分母互为相反式的分式加减法运算。

3、通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富数学情感与思想。

信息技术运用说明利用PPT进行教学《分式的加减法》教案设计这篇文章共2272字。

浙教版数学七年级下《分式的基本性质》精品教案

浙教版数学七年级下《分式的基本性质》精品教案

教学目标:1.理解分数的定义和性质。

2.掌握分数的四则运算规则。

3.运用分数的性质解决实际问题。

教学重点:1.分数的定义和性质。

2.分数的四则运算规则。

教学难点:1.理解分数在实际问题中的运用。

2.运用分数的四则运算规则解决实际问题。

教学准备:教材《浙教版数学七年级下册》、课件、黑板、书籍、练习册。

教学过程:Step 1: 引入课题(5分钟)教师可以通过一个小游戏开始课程,如:“我有一张蛋糕,被分成了8份,每份都是一样大的,请问每份蛋糕是原来的几分之一?”学生可以尝试回答问题,探讨出分数的含义。

Step 2: 导入新知(10分钟)通过让学生观察分数的定义和性质,学生可以总结出以下几点:1.分数由分子和分母组成,分子表示被分的份数,分母表示总份数。

2.分母不能为0,分子和分母应为整数。

3.分子和分母互质时,分数为最简形式。

4.相同数被相同数分割,分数相等。

Step 3: 分数的四则运算规则(15分钟)教师可以用具体的分数例子演示四则运算规则:1.加法:分母相同,直接相加;分母不同,通分后相加。

2.减法:分母相同,直接相减;分母不同,通分后相减。

3.乘法:分子相乘,分母相乘。

4.除法:反乘倒数。

Step 4: 训练与实践(30分钟)教师可以设计一些练习题来让学生进行训练和实践:1.对照例题,完成相应的课后练习。

2.完成教材上的分式练习题。

3.解决实际问题,如:小明有一块长方形巧克力,被分成5份,小明吃了其中的3/5,还剩下多少?请学生用分数运算解答。

Step 5: 检验与总结(10分钟)教师可以用一些练习题来检验学生的掌握情况,并为学生总结本节课的重点和难点。

Step 6: 作业布置(5分钟)布置相关的练习题,让学生进行巩固练习,以及预习下一节课内容。

教学反思:通过本节课的讲解和练习,学生应该对分数的定义和性质有了较为全面的了解,并能够熟练运用分数的四则运算规则解决实际问题。

同时,本节课也强调了实际问题的运用,让学生明确分数在生活中的作用,提高了学习的实践性和可操作性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《分式的加减》教案
教学目标
(一)教学知识点
1.同分母的分式的加减法的运算法则及其应用.
2.简单的异分母的分式相加减的运算.
(二)能力训练要求
1.经历用字母表示数量关系的过程,发展符号感.
2.会进行同分母分式的加减运算和简单的异分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.
(三)情感与价值观要求
1.从现实情境中提出问题,提高“用数学”的意识.
2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气. 教学重难点
教学重点:
1.同分母的分式加减法.
2.简单的异分母的分式加减法.
教学难点:
当分式的分子是多项式时的分式的减法.
教学过程
1.同分母的加减法
[师]我们首先来着看下面的问题:
想一想:
(1)同分母的分数如何加减?你能举例说明吗?
(2)你认为分母相同的分式应该如何加减?
做一做:
(1)a 1+a
2=____________. (2)22-x x -2
4-x =____________.
(3)12++x x -11+-x x +1
3+-x x =____________. [生]同分母的分数的加减是分母不变,把分子相加减,例如:
134+133-1317=131734-+=-13
10. 同分母的分式相加减,分母不变,把分子相加减,用式子表示是:
c a ±c b =c
b a ±(其中a 、b 既可以是数,也可以是整式,
c 是含有字母的非零的整式). [师]谁能试着到黑板上板演“做一做”中的三个小题.
[生1]解:(1)a 1+a 2=a 21+=a
3; [生2]解:(2)22-x x -24-x =2
42--x x ; [生3]解:
12++x x -11+-x x +1
3+-x x =1
312+-+--+x x x x =12+-x x . [师]我们一块来讲评一下上面三位同学的运算过程.
[生]第(1)小题是正确的.
第(2)小题没有把结果化简.应该为原式=242--x x =2
)2)(2(--+x x x =x +2. [师]这位同学很仔细.我们学习分式乘除法时就强调运算结果必须是最简的,如果分子、分母中有公因式,一定要把它约去,使分式最简.
[生]第(3)小题,我认为也有错误.
同分母的分式相加减,分母不变,把分子相加减,我觉得(x +1)分母不变,做得对,但三个分式的分子x +2、x -1、x -3相加减应为(x +2)-(x -1)+(x -3).
[师]的确如此,我们知道列代数式时,(x -1)÷(x +1)要写成分式的形式即
1
1+-x x ,因此分数线既有除号的作用,还有括号的作用,即分子、分母应该是一个整体.
[生]老师,是我做错了.第(3)题应为: (3)
12++x x -11+-x x +1
3+-x x =1)3()1()2(+++--+x x x x
=
1
312+-++-+x x x x =1+x x [师]发现问题,及时改正是一种很好的学习习惯,努力发扬,你一定会取得更大进步.
2.简单的异分母的分式相加减
想一想
(1)异分母的分数如何加减?
(2)你认为异分母的分式应该如何加减?比如a 3+a
41应如何计算. [生]异分母的分数加减时,可利用分数的基本性质通分,把异分母的分数加减法化成同分母的分数加减法
[生]我认为分式有很多地方和分数相类似,异分母的分式加减是否也可以通过像分数那样通分,将异分母的分式加减法化成同分母的分式加减法.
[师]同学们的想法很好!我这儿就有两位同学将异分母的分式加减化成同分母的分式加减.
小明认为,只要把异分母的分式化成同分母的分式,异分母分式的加减问题就变成了同分母分式的加减问题.小亮同意小明的这种看法,但他俩的具体做法不同: 小明:
a 3+a 41=a a a 443⋅⋅+a
a a ⋅4 =2412a a +24a a =2413a a =a
413. 小亮:a 3+a 41=443⋅⨯a +a
41 =a 412+a 41=a 413. 你对这两种做法有何评论?与同伴交流.
[生]我觉得这两种做法都有一个共同的目标:把异分母的分式加减法化成同分母的分式加减法.但我觉得小亮的方法更简单.就像分数运算:
61+41. 如果61+41=464⨯+646⨯=244+246=2410=12
5,这样计算就比较麻烦;如果找6和4的最小公倍数12,算起来就很方便,即61+41=262⨯+343⨯=122+123=12
5. [生]我认为也是这样,根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.但通分时为了简便,也应该像分数的通分一样,找各个分母的最
小公倍数.
[师]同学们分析得很有道理,为了计算简便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的公分母.例如
a 3+a 41,a 和4a 的最简公分母是4a .下面我们再来看几个例子.
[例]计算:
(1)a
3+a a 515-;(2)12-x +x x --11 [生]老师,我们组还是联系异分母的分数相加减的方法,利用分数的性质,先通分,转化成同分母的就可以完成.
[生]我们组也是用了将异分母的分式相加减转化成同分母相加减的分式运算.
[例]中的第(1)题,一个分母是a ,另一个分母是5a ,利用分式的基本性质,只需将第一个分式a 3化成a 553⨯=a
515即可. 解:(1)a 3+a a 515-=a 515+a
a 515- =a
a 5)15(15-+=a a 5=51; [生]我们组也已完成了第(2)题.两个分式相加,一个分式的分母是x -1,另一个分式的分母是1-x ,我们注意到了1-x =-(x -1),所以要把x
x --11化成分母为x -1的分式,利用分式的基本性质,得x x --11=)1()1()1()1(-⨯--⨯-x x =1
1--x x .所以第(2)题的解法如下: (2)
12-x +x x --11=12-x +1
1--x x =1)1(2--+x x =13--x x [师]同学们能凭借自己的数学经验,将新出现的数学难题处理的有条有理,很了不起. [生]问题一可以出来结果啦.
(1)小丽当走第二条路时,她从甲地到乙地需要的时间为v 1+v 32=v 33+v 32=v 323+=v
35h . (2)小丽走第一条路所用的时间为
v 23h . 作差可知v 35-v 23=v 610-v 69=v 61>0.所以小丽走第一条路花费的时间少,少用v 61h . Ⅲ.应用、升华
1.计算:
(1)
x
b 3-x b ;(2)a 1+a 21;(3)b a a --a b a - 2.计算:m n n m -+2+n m n --m n n -2. Ⅳ.课时小结
[师]这节课我们学习了分式的加减法,同学们课堂上思维非常活跃,想必收获一定很大. [生]我觉得我这节课最大的收获是:“做一做”中犯的错误,在今后做此类题的过程中,一定不会犯同样的错误.
[生]我的收获是学会用转化的思想将异分母的分式的加减法转化成同分母分式的加减法.
Ⅴ.活动与探究
已知x +y 1=z +x 1=1,求y +z 1的值.。

相关文档
最新文档