1-编译内核和内核模块操作

合集下载

Linux系统的Makefile和Kconfig及模块简介

Linux系统的Makefile和Kconfig及模块简介

Linux系统的Makefile、Kconfig和模块1Makefile1.1Makefile组织层次Linux的Make体系由如下几部分组成:Ø顶层Makefile顶层Makefile通过读取配置文件,递归编译内核代码树的相关目录,从而产生两个重要的目标文件:vmlinux和模块。

Ø内核相关Makefile位于arch/$(ARCH) 目录下,为顶层Makefile提供与具体硬件体系结构相关的信息。

Ø公共编译规则定义文件。

包括Makefile.build 、Makefile.clean、Makefile.lib、Makefile.host等文件组成。

这些文件位于scripts目录中,定义了编译需要的公共的规则和定义。

Ø内核配置文件 .config通过调用make menuconfig或者make xconfig命令,用户可以选择需要的配置来生成期望的目标文件。

Ø其他Makefile主要为整个Makefile体系提供各自模块的目标文件定义,上层Makefile根据它所定义的目标来完成各自模块的编译。

1.2Makefile的使用在编译内核之前,用户必须首先完成必要的配置。

Linux内核提供了数不胜数的功能,支持众多的硬件体系结构,这就需要用户对将要生成的内核进行裁减。

内核提供了多种不同的工具来简化内核的配置。

make config,字符界面下命令行工具,这个工具会依次遍历内核所有的配置项,要求用户进行逐项的选择配置。

这个工具会耗费用户太多时间,除非万不得以(你的编译主机不支持其他配置工具)一般不建议使用。

make menuconfig,基于ncurse库编制的图形界面工具,一般台式机使用该工具。

make xconfig,基于X11的图形配置工具,一般用于工作站环境。

当用户完成配置后,配置工具会自动生成.config文件,它被保存在内核代码树的根目录下。

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程(转)linux是如何组成的?答:linux是由用户空间和内核空间组成的为什么要划分用户空间和内核空间?答:有关CPU体系结构,各处理器可以有多种模式,而LInux这样的划分是考虑到系统的安全性,比如X86可以有4种模式RING0~RING3 RING0特权模式给LINUX内核空间RING3给用户空间linux内核是如何组成的?答:linux内核由SCI(System Call Interface)系统调用接口、PM(Process Management)进程管理、MM(Memory Management)内存管理、Arch、VFS(Virtual File Systerm)虚拟文件系统、NS(Network Stack)网络协议栈、DD(Device Drivers)设备驱动linux 内核源代码linux内核源代码是如何组成或目录结构?答:arc目录存放一些与CPU体系结构相关的代码其中第个CPU子目录以分解boot,mm,kerner等子目录block目录部分块设备驱动代码crypto目录加密、压缩、CRC校验算法documentation 内核文档drivers 设备驱动fs 存放各种文件系统的实现代码include 内核所需要的头文件。

与平台无关的头文件入在include/linux子目录下,与平台相关的头文件则放在相应的子目录中init 内核初始化代码ipc 进程间通信的实现代码kernel Linux大多数关键的核心功能者是在这个目录实现(程序调度,进程控制,模块化)lib 库文件代码mm 与平台无关的内存管理,与平台相关的放在相应的arch/CPU目录net 各种网络协议的实现代码,注意而不是驱动samples 内核编程的范例scripts 配置内核的脚本security SElinux的模块sound 音频设备的驱动程序usr cpip命令实现程序virt 内核虚拟机内核配置与编译一、清除make clean 删除编译文件但保留配置文件make mrproper 删除所有编译文件和配置文件make distclean 删除编译文件、配置文件包括backup备份和patch补丁二、内核配置方式make config 基于文本模式的交互式配置make menuconfig 基于文本模式的菜单配置make oldconfig 使用已有的配置文件(.config),但配置时会询问新增的配置选项make xconfig 图形化配置三、make menuconfig一些说明或技巧在括号中按“y”表示编译进内核,按“m”编译为模块,按“n”不选择,也可以按空格键进行选择注意:内核编译时,编译进内核的“y”,和编译成模块的“m”是分步编译的四、快速配置相应体系结构的内核配置我们可以到arch/$cpu/configs目录下copy相应的处理器型号的配置文件到内核源目录下替换.config文件五、编译内核1.————————————————————————————make zImage 注:zImage只能编译小于512k的内核make bzImage同样我们也可以编译时获取编译信息,可使用make zImage V=1make bzImage V=1编译好的内核位于arch/$cpu/boot/目录下————————————————————————————以上是编译内核make menuconfig时先“m”选项的编译接下来到编译“y”模块,也就是编译模块2.make modules 编译内核模块make modules_install 安装内核模块------>这个选项作用是将编译好的内核模块从内核源代码目录copy至/lib/modules下六、制作init ramdiskmkinitrd initrd-$version $version/**** mkinitrd initrd-$(可改)version $version(不可改,因为这version是寻找/lib/modules/下相应的目录来制作) ****/七、内核安装复制内核到相关目录下再作grub引导也就可以了1.cp arch/$cpu/boot/bzImage /boot/vmlinux-$version2.cp $initrd /boot/3.修改引导器/etc/grub.conf(lio.conf)正确引导即可#incldue <linux/init.h>#include <linux/module.h>static int hello_init(void){printk(KERN_WARNING"Hello,world!\n");return 0;}static void hello_exit(void){printk(KERN_INFO"Good,world!\n");}module_init(hello_init);module_exit(hello_exit);___________hello,world!范例___________________一、必需模块函数1.加载函数module_init(hello_init); 通过module_init宏来指定2.卸载函数module_exit(hello_exit); 通过module_exit宏来指定编译模块多使用makefile二、可选模块函数1.MODULE_LICENSE("*******"); 许可证申明2.MODULE_AUTHOR("********"); 作者申明3.MODELE_DESCRIPTION("***"); 模块描述4.MODULE_VERSION("V1.0"); 模块版本5.MODULE_ALIAS("*********"); 模块别名三、模块参数通过宏module_param指定模块参数,模块参数用于在加载模块时传递参数模块module_param(neme,type,perm);name是模块参数名称type是参数类型type常见值:boot、int、charp(字符串型)perm是参数访问权限perm常见值:S_IRUGO、S_IWUSRS_IRUGO:任何用户都对sys/module中出现的参数具有读权限S_IWUSR:允许root用户修改/sys/module中出现的参数/*****——————范例————————*******/int a = 3;char *st;module_param(a,int,S_IRUGO);module_param(st,charp,S_IRUGO);/*********————结束——————**********//**********----makefile范例----*************/ifneq ($(KERNELRELFASE),)obj-m := hello.o //这里m值多用obj-(CONFIG_**)代替elseKDIR := /lib/modules/$version/buildall:make -C $(KDIR) M=$(PWD) modulesclean:rm -f *.ko *.o *.mod.o *.mod.c *.symyersendif/*****这里可以扩展多文件makefile 多个obj-m***********end***************//******模块参数*****/#include <linux/init.h>#include <linux/module.h>MODULE_LICENSE("GPL");static char *name = "Junroc Jinx";static int age = 30;module_param(arg,int,S_IRUGO);module_param(name,charp,S_IRUGO);static int hello init(void){printk(KERN_EMERG"Name:%s\n",name);printk(KERN_EMERG"Age:%d\n",age);return 0;}static void hello_exit(void){printk(KERN_INFA"Module Exit\n");}moduleJ_init(hello_init);module_exit(hello_exit);/****************/----------------------------------------------------------------------------/proc/kallsyms 文档记录了内核中所有导出的符号的名字与地址什么是导出?答:导出就是把模块依赖的符号导进内核,以便供给其它模块调用为什么导出?答:不导出依赖关系就解决不了,导入就失败符号导出使用说明:EXPORT_SYMBOL(符号名)EXPORT_SYMBOL_GPL(符号名)其中EXPORT_SYMBOL_GPL只能用于包含GPL许可证的模块模块版本不匹配问题的解决:1、使用modprobe --force-modversion 强行插入2、确保编译内核模块时,所依赖的内核代码版本等同于当前正在运行的内核uname -r ----------------------------------------------------------------------printk内核打印:printk允许根据严重程度,通过附加不同的“优先级”来对消息分类在<linux/kernel.h>定义了8种记录级别。

Linux设备驱动程序原理及框架-内核模块入门篇

Linux设备驱动程序原理及框架-内核模块入门篇

Linux设备驱动程序原理及框架-内核模块入门篇内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块内核模块介绍Linux采用的是整体式的内核结构,这种结构采用的是整体式的内核结构,采用的是整体式的内核结构的内核一般不能动态的增加新的功能。

为此,的内核一般不能动态的增加新的功能。

为此,Linux提供了一种全新的机制,叫(可安装) 提供了一种全新的机制,可安装) 提供了一种全新的机制模块” )。

利用这个机制“模块”(module)。

利用这个机制,可以)。

利用这个机制,根据需要,根据需要,在不必对内核重新编译链接的条件将可安装模块动态的插入运行中的内核,下,将可安装模块动态的插入运行中的内核,成为内核的一个有机组成部分;成为内核的一个有机组成部分;或者从内核移走已经安装的模块。

正是这种机制,走已经安装的模块。

正是这种机制,使得内核的内存映像保持最小,的内存映像保持最小,但却具有很大的灵活性和可扩充性。

和可扩充性。

内核模块内核模块介绍可安装模块是可以在系统运行时动态地安装和卸载的内核软件。

严格来说,卸载的内核软件。

严格来说,这种软件的作用并不限于设备驱动,并不限于设备驱动,例如有些文件系统就是以可安装模块的形式实现的。

但是,另一方面,可安装模块的形式实现的。

但是,另一方面,它主要用来实现设备驱动程序或者与设备驱动密切相关的部分(如文件系统等)。

密切相关的部分(如文件系统等)。

课程内容内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块应用层加载模块操作过程内核引导的过程中,会识别出所有已经安装的硬件设备,内核引导的过程中,会识别出所有已经安装的硬件设备,并且创建好该系统中的硬件设备的列表树:文件系统。

且创建好该系统中的硬件设备的列表树:/sys 文件系统。

(udev 服务就是通过读取该文件系统内容来创建必要的设备文件的。

)。

riscv linux内核编译过程

riscv linux内核编译过程

riscv linux内核编译过程全文共四篇示例,供读者参考第一篇示例:RISC-V(Reduced Instruction Set Computing-V)是一种基于精简指令集(RISC)的开源指令集架构,旨在提供更灵活、更适用于现代计算需求的处理器设计。

在RISC-V架构中,Linux内核是最受欢迎的操作系统之一,为RISC-V平台提供强大的支持和功能。

本文将介绍RISC-V Linux内核的编译过程,帮助您了解如何在RISC-V架构下编译和定制Linux内核。

一、准备编译环境无论您是在本地计算机还是远程服务器上编译RISC-V Linux内核,首先需要安装必要的工具和软件包。

一般来说,您需要安装以下软件:1. GCC:GNU Compiler Collection是一个功能强大的编译器套件,用于编译C、C++和其他编程语言的程序。

在RISC-V架构下编译Linux内核时,可以使用最新版本的GCC版本。

2. Make:Make是一个构建自动化工具,可以大大简化编译和安装过程。

在编译Linux内核时,Make是必不可少的工具。

3. Git:Git是一个版本控制系统,可以帮助您获取和管理源代码。

在编译RISC-V Linux内核时,您需要从GitHub上克隆Linux内核源代码。

4. 软件包:除了以上基本软件外,您还可能需要安装其他依赖软件包,如Flex、Bison等。

二、获取Linux内核源代码```git clone https:///torvalds/linux.git```通过上述命令,您将在当前目录下创建一个名为“linux”的文件夹,其中包含了Linux内核的源代码。

您可以根据需要切换到不同的分支,如稳定的分支或特定版本的分支。

三、配置内核选项在编译RISC-V Linux内核之前,您需要配置内核选项以适应特定的硬件平台或应用需求。

您可以通过以下命令进入内核配置菜单:```make menuconfig```通过上述命令,将打开一个文本界面,您可以在其中选择不同的内核配置选项。

动手编写一个操作系统的内核

动手编写一个操作系统的内核

动手编写一个操作系统的内核引言操作系统是计算机系统中最底层、最核心的软件之一,它负责管理计算机的硬件和软件资源,并提供各种服务和接口供其他应用程序使用。

编写一个操作系统的内核,可以帮助我们深入理解计算机系统的工作原理,并提升我们的系统编程能力。

本文将介绍如何动手编写一个简单的操作系统内核。

准备工作在开始编写内核之前,我们需要确保准备工作完成。

首先,我们需要一台能够安装和运行开发工具的计算机。

其次,我们需要一些开发工具,比如C/C++编译器、汇编器、链接器等。

最后,我们需要一些用于测试和调试的工具,比如模拟器或者虚拟机等。

这里我们推荐使用具备调试功能的模拟器,比如QEMU。

QEMU是一个开源的虚拟机和模拟器,它支持多种处理器架构和操作系统。

通过使用QEMU,我们可以在一个虚拟环境中运行我们的内核,并进行调试。

设计内核的基本架构在开始编写内核之前,我们需要设计内核的基本架构。

一个简单的内核通常由以下几个模块组成:1.引导模块:负责启动内核的加载过程。

2.中断处理模块:负责处理硬件中断。

3.内存管理模块:负责管理计算机的内存资源。

4.进程管理模块:负责管理和调度进程。

5.文件系统模块:负责管理和操作文件。

不同的操作系统内核可能还包括其他模块,比如设备驱动程序模块、网络模块等,这里我们只介绍一个简单的内核架构。

编写引导模块引导模块负责启动内核的加载过程。

在x86架构的计算机上,引导模块通常被存储在计算机的启动扇区或者硬盘主引导记录中。

我们可以使用汇编语言编写引导模块。

以下是一个简单的引导模块示例:section .textglobal _start_start:; 这里编写引导模块的代码逻辑引导模块的具体实现方式和功能取决于操作系统的需求和目标。

编写中断处理模块中断处理模块负责处理硬件中断。

在x86架构的计算机上,中断处理程序通常由汇编语言编写,以便与硬件交互。

以下是一个简单的中断处理程序示例:section .textglobal interrupt_handlerinterrupt_handler:; 这里编写中断处理程序的代码逻辑中断处理程序的具体实现方式和功能取决于操作系统的需求和目标。

LINUX内核模块编译步骤

LINUX内核模块编译步骤

LINUX内核模块编译步骤编译Linux内核模块主要包括以下步骤:1.获取源代码2.配置内核进入源代码目录并运行make menuconfig命令来配置内核。

该命令会打开一个文本菜单,其中包含许多内核选项。

在这里,你可以配置内核以适应特定的硬件要求和预期的功能。

你可以选择启用或禁用各种功能、设备驱动程序和文件系统等。

配置完成后,保存并退出。

3. 编译内核(make)运行make命令开始编译内核。

这将根据你在上一步中进行的配置生成相应的Makefile,然后开始编译内核。

编译的过程可能需要一些时间,请耐心等待。

4.安装模块编译完成后,运行make modules_install命令将编译好的模块安装到系统中。

这些模块被安装在/lib/modules/<kernel-version>/目录下。

5.安装内核运行make install命令来安装编译好的内核。

该命令会将内核映像文件(通常位于/arch/<architecture>/boot/目录下)复制到/boot目录,并更新系统引导加载程序(如GRUB)的配置文件。

6.更新GRUB配置文件运行update-grub命令来更新GRUB引导加载程序的配置文件。

这将确保新安装的内核在下次启动时可用。

7.重启系统安装完成后,通过重启系统来加载新的内核和模块。

在系统启动时,GRUB将显示一个菜单,你可以选择要启动的内核版本。

8.加载和卸载内核模块现在,你可以使用insmod命令来加载内核模块。

例如,运行insmod hello.ko命令来加载名为hello.ko的模块。

加载的模块位于/lib/modules/<kernel-version>/目录下。

如果你想卸载一个已加载的内核模块,可以使用rmmod命令。

例如,运行rmmod hello命令来卸载已加载的hello模块。

9.编写和编译模块代码要编写一个内核模块,你需要创建一个C文件,包含必要的模块代码。

LINUX内核模块编程指南

LINUX内核模块编程指南

第1章Hello, World如果第一个程序员是一个山顶洞人,它在山洞壁(第一台计算机)上凿出的第一个程序应该是用羚羊图案构成的一个字符串“Hello, Wo r l d”。

罗马的编程教科书也应该是以程序“S a l u t, M u n d i”开始的。

我不知道如果打破这个传统会带来什么后果,至少我还没有勇气去做第一个吃螃蟹的人。

内核模块至少必须有两个函数:i n i t_m o d u l e和c l e a n u p_m o d u l e。

第一个函数是在把模块插入内核时调用的;第二个函数则在删除该模块时调用。

一般来说,i n i t_m o d u l e可以为内核的某些东西注册一个处理程序,或者也可以用自身的代码来取代某个内核函数(通常是先干点别的什么事,然后再调用原来的函数)。

函数c l e a n u p_m o d u l e的任务是清除掉i n i t_m o d u l e所做的一切,这样,这个模块就可以安全地卸载了。

1.1 内核模块的Makefiles 文件内核模块并不是一个独立的可执行文件,而是一个对象文件,在运行时内核模块被链接到内核中。

因此,应该使用- c 命令参数来编译它们。

还有一点需要注意,在编译所有内核模块时,都将需要定义好某些特定的符号。

• _ _KERNEL_ _—这个符号告诉头文件:这个程序代码将在内核模式下运行,而不要作为用户进程的一部分来执行。

• MODULE —这个符号告诉头文件向内核模块提供正确的定义。

• L I N U X —从技术的角度讲,这个符号不是必需的。

然而,如果程序员想要编写一个重要的内核模块,而且这个内核模块需要在多个操作系统上编译,在这种情况下,程序员将会很高兴自己定义了L I N U X 这个符号。

这样一来,在那些依赖于操作系统的部分,这个符号就可以提供条件编译了。

还有其它的一些符号,是否包含它们要取决于在编译内核时使用了哪些命令参数。

内核编译的步骤

内核编译的步骤

内核编译的步骤以内核编译的步骤为标题,写一篇文章。

一、概述内核编译是将操作系统内核的源代码转换为可以在特定硬件平台上运行的机器代码的过程。

通过编译内核,可以定制操作系统,优化性能,添加新的功能等。

二、准备工作1. 获取内核源代码:可以从官方网站或版本控制系统中获取内核源代码。

2. 安装编译工具链:需要安装交叉编译工具链,以便在主机上编译生成目标平台上的可执行文件。

3. 配置编译环境:设置编译选项,选择适合的配置文件,配置内核参数。

三、配置内核1. 进入内核源代码目录:在命令行中切换到内核源代码目录。

2. 启动配置界面:运行命令“make menuconfig”或“make config”启动配置界面。

3. 配置选项:在配置界面中,可以选择内核所支持的功能和驱动程序,根据需求进行配置。

例如,选择硬件平台、文件系统、网络协议等。

4. 保存配置:保存配置并退出配置界面。

四、编译内核1. 清理编译环境:运行命令“make clean”清理编译环境,删除之前的编译结果。

2. 开始编译:运行命令“make”开始编译内核。

编译过程可能需要一段时间,取决于硬件性能和代码规模。

3. 生成内核镜像:编译完成后,将生成内核镜像文件,通常为“vmlinuz”或“bzImage”。

4. 安装内核模块:运行命令“make modules_install”安装内核模块到指定目录。

五、安装内核1. 备份原始内核:在安装新内核之前,建议备份原始内核以防止意外情况发生。

2. 安装内核镜像:将生成的内核镜像文件复制到引导目录,通常为“/boot”。

3. 配置引导程序:根据使用的引导程序(如GRUB或LILO),更新引导配置文件,添加新内核的启动项。

4. 重启系统:重启计算机,并选择新内核启动。

六、验证内核1. 登录系统:使用新内核启动系统后,使用合法的用户凭证登录系统。

2. 检查内核版本:运行命令“uname -r”可查看当前正在运行的内核版本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业未留,以下内容纯属自娱自乐。

练习升级Linux内核操作。

操作系统为xUbuntu 14.04 x86_64,升级方法与RHEL、CentOS完全一样。

【步骤0】查看系统当前版本,并准备好新内核。

内核来源:https:///
内核版本:4.13 Latest Stable Kernel
【步骤1】解压内核源码包。

【步骤2】配置内核编译参数,生成内核参数配置文件。

启用NTFS写支持,选择File systems → DOS/FAT/NT Filesystems → NTFS write support,选择可按回车键,勾选则使用空格键。

勾选后,按TAB键将光标定位至最下方< Save >,并按回车保存。

然后,即可生成.config配置文件。

可通过vim编辑器对.config文件进行编辑。

搜索NTFS关键字,CONFIG_NTFS_RW=y(NTFS写支持已生效)。

【步骤3】编译内核。

该步骤用时相对较长,取决于硬件性能。

【步骤4】编译驱动模块。

此操作用时也相对较长。

【步骤5】安装模块。

【步骤6】安装系统内核。

【可选步骤】查看或修改GRUB菜单(/boot/grub/grub.conf)。

【步骤7】重启系统后查看内核版本。

大功告成,一切都很好。

相关文档
最新文档