四年级奥数 加法原理

合集下载

四年级奥数加法原理

四年级奥数加法原理

一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类; ② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);加法原理 发现不同知识框架3、类类相加加法原理分类讨论中加法原理的应用树形图法、标数法及简单的递推树形图法标数法简单递推模块一、分类讨论中加法原理的应用(枚举法)【例 1】柯南去给步美买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,柯南买一种礼物可以有多少种不同的选法?【例 2】从1~10中每次取两个不同的数相加,和大于10的共有多少种取法?【巩固】从1~50中每次取两个不同的数相加,和大于50的共有多少种取法?【例 3】甲、乙、丙三个工厂共订300份报纸,每个工厂至少订了99份,至多101份,问:一共有多少例题精讲种不同的订法?【巩固】光彦和元太共有《爆笑校园》不超过9本,他们各自有《爆笑校园》的数目有多少种可能的情况?【例 4】把一元钱换成角币,有多少种换法?人民币角币的面值有五角、二角、一角三种.【巩固】一把硬币全是2分和5分的,这把硬币一共有1元,问这里可能有多少种不同的情况?【例 5】袋中有3个相同红球,4个相同黄球和5个相同白球,家明从中任意拿出6个球,他拿出球的情况共有________种可能.【巩固】思思想将3个相同的小球放入A、B、C三个盒中,那么一共有________种不同的放法.【例 6】四个学生每人做了一张贺年片,放在桌子上,然后每人去拿一张,但不能拿自己做的一张.问:一共有多少种不同的方法?【巩固】甲、乙、丙、丁4名同学排成一行。

四年级下册数学讲义奥数导引 21 加法原理与乘法原理

四年级下册数学讲义奥数导引 21 加法原理与乘法原理

一、 基本原理1、加法原理:如果完成一件事有k 类方式,每类分别有1n 、2n 、…、k n 种不同方法,那么这件事共有12k N n n n =+++种完成方法.2、乘法原理:如果完成一件事要分为k 个步骤,每个步骤分别有1n 、2n 、…、k n 种不同方法,那么这件事共有12k N n n n =⨯⨯⨯种完成方法.二、 判断方法分类用加法,分步用乘法是基本原则,但难点是如何判定问题属于分类还是分步. 类与类之间满足:只选一类即可完成整件事,且不能同时选多类;步与步之间满足:每步只是整件事的一个步骤,只选一步无法完成整件事,必须全部完成,且步与步之间通常有先后顺序.若光做A 之后整件事情就已经全部完成了,那么A 就是一类做法,应用加法原理;若做完A 后整件事情并没有完成,那么A 就只是整件事的其中一步,应用乘法原理.三、 其它说明(1)枚举法和加乘原理是整个计数模块的最基础内容,重要性极强,所有后续讲次的内容全是由它们推导出来的,务必记住相应方法结论并理解其原理.(2)点标数法本质上是加乘原理和倒推法的结合,标数前需把上一步的位置考虑周全. (3)只用加法原理或乘法原理就能解答的通常是中低档题,在用乘法原理前务必检验是否满足“前不影响后”,即前面步骤可以影响下一步的具体方法,但不能影响下一步的方法数.(4)难题通常是加乘混合型,即“类里套步”或“步里套类”,特别是需分很多类的题目.当乘法原理无法解决问题时,一定要分类,切忌“强行使用”乘法原理.当类别过多时,可考虑使用排除法,从反面考虑问题.第9讲 加法原理与乘法原理知识点【例1】爸爸、妈妈带小高去吃西餐.餐厅里有米饭和面条2种主食,烤牛排、烤羊排和烤鸡排3种主菜,奶油蘑菇汤1种汤,以及蛋糕和布丁2种甜点.如果小高想要点1种主食和1种主菜,汤和甜点可点可不点,而且种类不限.请问:小高一共有多少种点菜方法?【例2】如图所示,在一个34的方格表内放入4枚相同的棋子,要求每列至多有1枚棋子,一共有多少种不同的放法?如果放入4枚互不相同的棋子,要求每列至多有1枚棋子,一共有多少种不同的放法?【例3】如下图所示,将图中的八个部分用红、黄、绿、蓝这4种不同的颜色染色,而且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色.请问:这幅图共有多少种不同的染色方法?超越篇题目A B C DEFGH【例4】 用4种不同的颜色给下图中的圆圈染色,有线段相连的两个圆圈不能同色,一共有多少种不同的染色方法?【例5】 一只甲虫沿着下图中的方格线从A 爬到B ,每次只能向右爬一格或向上爬一格.图中画着黑点的地方不能通过.请问:这只甲虫可以选择多少条不同的路线?【例6】 王老师家装修新房,需要2个木匠和2个电工.现有木匠3人、电工3人,另有1人既能做木匠也能做电工.要从这7人中挑选出4人完成这项工作,共有多少种不同的选法?ABDCB【例7】 如下图所示,一只小甲虫要从A 点出发沿着线段爬到B 点,不能重复经过任何点.试问:这只甲虫有多少种不同的走法?【例8】 如图所示,国际象棋中的棋子“皇后”从左下角走到右上角,每步只能向右、向上或者向右上移动任意多格,一共有多少种不同的走法?【习题1】元旦前,小芳给她的五位同学做贺卡,将贺卡装入信封时她装错了,五位同学都没收到小芳给自己做的贺卡,收到的是小芳给别人的贺卡.则一共有几种可能出现的情?补充题目【习题2】如图,有一个48的棋盘,现将一枚棋子放在棋盘左下角格子A处,要求每一步只能向棋盘右上或右下走一步(如从C走一步可走到D或E),那么将棋子从A走到棋盘右上角B处共有多少种不同的走法?【习题3】用4种颜色给右图中的9个小圆圈染色,要求有线段相连的两个圆圈的颜色不能相同.那么一共有几种不同的染法?【习题4】甲、乙两人玩抓石子游戏,共有12个石子,甲先乙后轮流抓取.每次可以抓取其中的2个、3个或4个,直到最后抓取完毕为止,那么共有多少种抓取石子的方案?。

小学四年级奥数课件:加法原理

小学四年级奥数课件:加法原理

例2: 旗杆上最多可以挂两面信号旗,现有红色、
蓝色和黄色的信号旗各一面,如果用挂信号旗表 示信号,最多能表示出多少种不同的信号?
根据挂信号旗的面数可以将信号分为两类。第 一类是只挂一面信号旗,有红、黄、蓝3种;第二 类是挂两面信号旗,按前面学的乘法原理会有: 3×2=6种。所以,一共可以表示出不同的信号
例1: 从甲地到乙地,可以乘火车,也可以乘汽车,
还可以乘轮船。一天中火车有4班,汽车有3班, 轮船有2班。问:一天中乘坐这些交通工具从甲地 到乙地,共有多少种不同走法?
一天中乘坐火车有4种走法,乘坐汽车有3种走 法,乘坐轮船有2种走法,所以一天中从甲地到乙 地共有:4+3+2=9(种)不同走法。
例6: 右图中每个小方格的边长都是1。一只小虫从
直线AB上的O点出发,沿着横线与竖线爬行,可上 可下,可左可右,但最后仍要回到AB上(不一定 回到O点)。如果小虫爬行
的总长是3,那么小虫有多
少条不同的爬行路线?
பைடு நூலகம்
第一步往上,再往左右有两种可能(因为必须 回到AB线上), 分别是:(上1,左1,下1), (上1,右1,下1); 第一步往上,再往下也有两 种可能:(上1,下1,左1),(上1,下1,右1); 同理第一步往下也有4种可能;
例4: 用五种颜色给右图的五个区域染色,每个区
域染一种颜色,相邻的区域染不同的颜色。问: 共有多少种不同的染色方法?
在本例中没有一个区域与其它所有区域都相邻, 那么就要分颜色相同与不同两种情况分析。
当区域A与区域E颜色相同时,A有5种颜色可选; B有4种颜色可选;C有3种颜色可选;D也有3种颜色 可选。根据乘法原理,此时不同的染色方法有
再就是左右, 第一步往左,第二步分别上下各 一种:(左1,上1,下1),(左1,下1,上1); 第一步往左,第二步还往左右,则第三步也只能左 右,共4种;同理第一步往右也有6种情况。共有:

奥数加法原理

奥数加法原理

奥数加法原理
奥数加法原理是指在计算两个或多个数的和时,可以按照任意顺序进行计算,最终得到的和都是相同的。

这个原理在奥数学习中起着非常重要的作用,不仅可以帮助学生更好地理解加法运算,还可以应用于解决各种数学问题。

首先,我们来看一个简单的例子来说明奥数加法原理。

假设有三个数分别是3、4和5,按照加法原理,我们可以先计算3+4,然后再加上5,也可以先计算4+5,再加上3,或者先计算3+5,再加上4,最终得到的和都是12。

这就是奥数加法原理的基本概念。

在实际应用中,奥数加法原理可以帮助我们更快地解决一些复杂的数学问题。

比如,在排列组合中,如果我们需要计算一组数的和,可以根据加法原理任意选择计算顺序,从而简化计算过程。

又如,在概率统计中,奥数加法原理也可以帮助我们计算不同事件发生的总概率,提高计算效率。

除此之外,奥数加法原理还可以应用于解决一些实际生活中的问题。

比如,在购物时,如果我们需要计算一些商品的总价,可以根据加法原理任意选择计算顺序,以便更快地得出总价。

又如,在
时间安排上,如果我们需要计算一天中不同活动的总时间,也可以利用加法原理灵活安排时间,提高时间利用效率。

总的来说,奥数加法原理是一种非常实用的数学原理,可以帮助我们更好地理解加法运算,提高数学解题的效率,同时也可以应用于实际生活中,帮助我们更好地解决各种问题。

因此,我们在学习奥数的过程中,应该充分理解和掌握加法原理,灵活运用于解决各种数学问题和实际生活中的应用场景中。

这样不仅可以提高我们的数学能力,还可以提高我们的解决问题的能力,让我们在学习和生活中更加得心应手。

四年级奥数加减乘除中的巧妙规律总结与应用

四年级奥数加减乘除中的巧妙规律总结与应用

四年级奥数加减乘除中的巧妙规律总结与应用近年来,奥数竞赛在小学生中越来越受欢迎。

对于四年级的学生而言,加减乘除是基础的数学运算,然而,要在奥数中取得好的成绩,仅仅掌握基本的运算是远远不够的。

在本文中,我将总结四年级奥数加减乘除中的巧妙规律,并且探讨如何应用这些规律来解决问题。

一、加法的巧妙规律在四年级奥数中,加法的巧妙规律是一个重要的技巧。

以下是一些常见的加法规律:1. 交换律:加法满足交换律,即a + b = b + a。

这意味着,无论数字的顺序如何,结果都是一样的。

通过利用交换律,我们可以改变计算的顺序,使得计算更简单。

2. 连加:在计算多个数的和时,可以通过数的重新排序,使得计算变得更简单。

例如,对于数字1、2、3、4的求和,我们可以先计算1+4=5,然后再计算2+3=5,最后将两个和相加得到最终结果,即5+5=10。

3. 加零律:任何数加上0等于它本身。

这个规律在解决加法问题时非常有用。

无论多复杂的加法题目,只要有0参与运算,都可以利用加零律简化计算。

二、减法的巧妙规律减法是四年级奥数中较为复杂的运算之一,但是通过运用以下巧妙规律,可以极大地简化减法的计算:1. 差的加减律:减法可以转化为加法来解决。

例如,对于算式9 - 3,我们可以转化为求差的加减律,即9 + (-3)。

通过将减法问题转化为加法问题,可以更方便地计算。

2. 迭代减法:迭代减法是指重复使用减法的过程,逐渐逼近最终的差值。

例如,对于22 - 7,我们可以先减去7,得到15。

然后再减去7,得到8。

最后再减去7,得到1。

通过多次迭代减法,我们可以得到准确的差值。

3. 减零律:任何数减去0等于它本身。

这个规律在解决减法问题时非常有用。

无论多复杂的减法题目,只要有0参与运算,都可以利用减零律简化计算。

三、乘法的巧妙规律乘法是四年级奥数中相对较为简单的运算,但是通过以下巧妙规律,可以更快速地解决乘法问题:1. 乘法交换律:乘法满足交换律,即a * b = b * a。

奥数第四讲加法和乘法原理

奥数第四讲加法和乘法原理

奥数第四讲加法和乘法原理加法原理和乘法原理是数学中常用的计数原理。

它们适用于很多不同的问题,包括排列组合、事件的计数等等。

下面将详细介绍加法原理和乘法原理的定义和应用。

加法原理是指当两个事件A和B无重叠的时候,事件A或B发生的总数等于事件A发生的总数加上事件B发生的总数。

换句话说,如果A事件有m种可能的结果,B事件有n种可能的结果,并且A和B之间没有共同的结果,那么A或B事件的总数就是m+n。

例如,如果从1到6中选取一个数,结果可以是奇数或者大于4的数。

奇数的总数是3(1,3,5),大于4的数的总数是2(5,6)。

根据加法原理,奇数或者大于4的数的总数是3+2=5加法原理也可以扩展到多个事件之间。

如果有三个互不相交的事件A、B和C,它们发生的总数等于事件A发生的总数加上事件B发生的总数再加上事件C发生的总数。

同样的,对于更多的事件也可以类推。

乘法原理是指当两个事件A和B相互独立时,事件A和事件B同时发生的总数等于事件A发生的总数乘以事件B发生的总数。

换句话说,如果事件A有m种可能的结果,事件B有n种可能的结果,并且事件A和事件B之间没有任何依赖关系,那么事件A和事件B同时发生的总数就是m*n。

例如,如果从1到6中选取两个数,第一个数可以是奇数或者大于4的数,第二个数可以是正整数。

根据乘法原理,第一个数和第二个数同时满足条件的总数是3*6=18乘法原理也适用于更多的事件。

如果有三个独立的事件A、B和C,它们同时发生的总数等于事件A发生的总数乘以事件B发生的总数乘以事件C发生的总数,以此类推。

加法原理和乘法原理的应用非常广泛。

在排列组合中,加法原理可以用于计算所有情况的总数,而乘法原理则可以用于计算分成几个步骤的情况的总数。

例如,有两个装有红、白、蓝三种颜色球的箱子,一个球从两个箱子中挑选一个。

根据加法原理,总共有3+3=6种可能的结果。

而如果分成两个步骤,第一步从第一个箱子中挑选,有3种可能的结果,第二步从第二个箱子中挑选,同样有3种可能的结果。

小学四年级奥数教程加法原理

小学四年级奥数教程加法原理

例2: 旗杆上最多可以挂两面信号旗,现有红色、
蓝色和黄色的信号旗各一面,如果用挂信号旗表 示信号,最多能表示出多少种不同的信号?
根据挂信号旗的面数可以将信号分为两类。第 一类是只挂一面信号旗,有红、黄、蓝3种;第二 类是挂两面信号旗,按前面学的乘法原理会有: 3×2=6种。所以,一共可以表示出不同的信号
1+6+33=40〔种〕。
例6: 右图中每个小方格的边长都是1。一只小虫从
直线AB上的O点出发,沿着横线与竖线爬行,可上 可回下到,O点可〕左。可如右果,小但虫最爬后行仍要回到AB上〔不一定 的总长是3,那么小虫有多 少条不同的爬行路线?
第一步往上,再往左右有两种可能〔因为必须
小学四年级奥数教程-加回法原到理 AB线上〕, 分别是:〔上1,左1,下1〕,
可以重复,至少有连续三位是1的五位数有多少个?
将至少有连续三位数是1的五位数分成三类:连
问:一天中乘坐这些交续通工五具从位甲地是到乙1地、,共连有多续少种四不同位走法是? 1、连续三位是1。
连续五位是1,只有11111一种; 再就是左右, 第一步往左,第二步分别上下各一种:〔左1,上1,下1〕,〔左1,下1,上1〕;
A可以是2,3,4中任一个,所以有3+3=6〔种〕; 如果每天有20班火车、6班飞机、8班汽车和4班轮船,那么共有多少种不同的走法?
加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法 ……在第n类方法中有
m如n果种小不虫同爬方行法的,总那长么是完3成,这那件么任小连务虫共有续有多少三条不位同的是爬行1路,线?有111AB,A111C,BA111三种情
例1: 从甲地到乙地,可以乘火车,也可以乘汽车,
还可以乘轮船。一天中火车有4班,汽车有3班, 轮船有2班。问:一天中乘坐这些交通工具从甲地 到乙地,共有多少种不同走法?

四年级奥数加法原理和乘法原理

四年级奥数加法原理和乘法原理

四年级奥数加法原理和乘法原理今天我们来聊一聊四年级数学里两个超级有趣的概念——加法原理和乘法原理。

听起来是不是有点高大上?别担心,这些东西一点也不难,关键是要懂得怎么去用,怎么去看待。

来吧,跟我一起看一看,加法原理和乘法原理到底是怎么回事,顺便也说几句我们平时不太注意的数学趣事。

你们知道吗?这些原理其实就像我们在厨房做饭一样,分步骤来,就能做好一锅好菜。

加法原理和乘法原理不就是生活中那些简单的道理嘛,只不过它们是用数学的语言告诉我们怎么做事,怎么计划。

好,先来说说加法原理。

说得简单点,就是当你在做事情的时候,如果选择了几种不同的方式,每一种方式都有若干个可能的结果,而你可以选择其中的一种结果,那么这些不同的选择加起来就是所有的可能性。

比如说,假设你今天早上有两种早餐选择:一个是煎饼果子,一个是包子。

如果你去买煎饼果子,你有三种不同口味可以选:甜的、咸的、辣的。

哦,别忘了包子,包子你有两种口味可以选:肉包或者菜包。

这时你一共能选择几种早餐呢?嘿嘿,简单!就是3种(煎饼果子的口味)加2种(包子的口味),一共是5种不同的选择。

这不就像你走进超市,看到架子上满是各种商品,你看着都眼花缭乱,最后你就能从每种商品里选出一个,合起来就是你能拿到的不同组合。

再说乘法原理。

这个呀,更简单了。

乘法原理告诉我们,如果一个事件有几种方式可以发生,而每一种方式都能与另外一些独立的事件组合成结果,那么所有可能的组合数就是各个事件方式数的乘积。

说得更直白点,就是每种选择背后可能会有更多的选择。

比方说,假如你有两个衬衫,三条裤子,和四双鞋子。

那么你穿上哪一件衬衫,都可以和三条裤子搭配,而且每条裤子又能和四双鞋子搭配。

你是不是已经开始在脑袋里琢磨,你能穿几套衣服了?对!你一共可以搭配2×3×4=24套衣服!这就是乘法原理啦!看,你平时是不是也有“拿起了筷子就要点菜”的那种冲动,恨不得所有的美食都尝个遍,那种把不同东西结合起来的感觉,想想就过瘾!这两种原理虽然名字不同,但它们就像是数学中的兄弟,互相配合,互相补充。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级奥数加法原理
思维聚焦
加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn 种不同的方法。

关键问题:确定工作的分类方法。

基本特征:每一种方法都可完成任务。

一、典型例题
从甲地到乙地可以乘火车,可以坐汽车,也可以坐轮船。

已知每天火车有两班,轮船有一班,汽车有四班,那么从甲地到乙地一共有多少种不同的走法?
思路点拨从甲地到乙地,坐火车有2种走法,坐轮船有1种走法,坐汽车有4种走法。

所以,要求有多少种不同的走法,只要把这几种走法加起来就可以了。

解答2+1+4
=3+4
=7(种)
答:从甲地到乙地一共有7种不同的走法。

二、触类旁通
10个人参加会议,每两人握一次手,一共要握几次手?思路点拨假设第一个人是A,那么他必须要和另外9个人每
人握一次手,也就是9次;第二个人是B,由于他与A已经握过手,所以他只要与其他8个人每人握一次手,是8次;第三个人C只要再与其他7个人握手,是7次;以此类推,以后每个人需要再握6次、5次……这样一共要握9+8+7+6+5+4+3+2+1=45(次)。

解答 9+8+7+6+5+4+3+2+1=45(次)
答:一共要握45次手。

三、熟能生巧
1、从A地到B地有2条路可以走,从B地到C地有3条路可以走,从A地到C地有4条路可以走。

请问如果从A地到达C地一共有几种走法?
2、学校食堂的早餐有4种包子,3种粥,5种面条。

如果玲玲每次只吃其中一种作为自己的早餐,那么她一共有几种吃法?
3、一列火车从北京到上海,中途停靠10个站。

这列火车一共要准备多少种不同的车票?
4、用1元、2元、5元的纸币各一张,一共可以组成多少种不同的纸币值?
5、小刚、小强和小明三个好朋友在公园照相,共有多少种不同的照
法?
6、两次掷骰子,两次出现的数字之和为偶数的情况有多少种?
7、从3名男生、2名女生中选出三好学生3人,其中至少有一名女生,共有多少种不同的选法?。

相关文档
最新文档