四年级奥数加法原理教学内容

合集下载

四年级上册奥数讲义- 第七讲 加法原理与乘法原理-冀教版(无答案)

四年级上册奥数讲义- 第七讲 加法原理与乘法原理-冀教版(无答案)

四年级第七讲加法原理与乘法原理◆温故知新:1. 加法原理:如果完成一件事有几类方式,在每一类方式中又有不同的方法,那么把每类的方法数相加就得到所有的方法数。

2.乘法原理:如果完成一件事分为几个步骤,在每一个步骤中又有不同的方法,那么把每步的方法数相乘就得到所有的方法数。

3.分类是指完成一件事有几类不同的方法,从中任意选取一类即可,它们之间可以相互替代,任意选取一类都可以完成这件事。

这种情况下一般要用到加法原理。

4.分步是指完成一件事情有几步不同步骤,每一步都必须执行,他们之间不可以相互替代,少一步都不能完成这件事。

这种情况下一般要用到乘法原理。

5.加法原理的类与类之间会满足下列要求:(1)只能选择其中的某一类,而不能几类同时选;(2)类与类之间可以相互替代,只需要选择某一类就可以满足要求。

6.乘法原理的步与步之间满足下列要求:(1)每步都只是整件事情的一个部分,必须全部完成才能满足结论;(2)步骤之间有先后的顺序,先确定好一步,再做下一步,直到最后。

7.标数法的运用。

◆练一练1.小明去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个。

他准备找一家餐厅吃饭,一共有多少种不同的选择?2.小明进入一家中餐厅后,发现主食有3种,热菜有4种。

他打算主食和热菜各买一种,一共有多少种不同的买法?3.电影院里有10个空座位,小红和小丽去看电影,每个人坐一个座位,共有多少种不同的坐法?◆例题展示例题1小高一家人外出旅游,可以乘火车,也可以乘汽车,还可以坐飞机。

经过网上查询,出发的那一天中火车有4班,汽车有3班,飞机有2班。

任意选择其中一个班次,有多少种出行方法?练习1书架上有8本不同的小说和10本不同的漫画,大头要从书架上任意取一本书,有多少种不同的取法?例题2“IMO”是“国际数学奥林匹克”的编写,要求把这三个字母涂上三种不同的颜色,且每个字母只能涂一种颜色。

现有五种不同颜色的笔,按上述要求能有多少种不同的涂色方法?练习2把“CHINA”这五个字母涂上五种不同的颜色,每个字母只能涂一种颜色。

四年级下册数学讲义奥数导引 21 加法原理与乘法原理

四年级下册数学讲义奥数导引 21 加法原理与乘法原理

一、 基本原理1、加法原理:如果完成一件事有k 类方式,每类分别有1n 、2n 、…、k n 种不同方法,那么这件事共有12k N n n n =+++种完成方法.2、乘法原理:如果完成一件事要分为k 个步骤,每个步骤分别有1n 、2n 、…、k n 种不同方法,那么这件事共有12k N n n n =⨯⨯⨯种完成方法.二、 判断方法分类用加法,分步用乘法是基本原则,但难点是如何判定问题属于分类还是分步. 类与类之间满足:只选一类即可完成整件事,且不能同时选多类;步与步之间满足:每步只是整件事的一个步骤,只选一步无法完成整件事,必须全部完成,且步与步之间通常有先后顺序.若光做A 之后整件事情就已经全部完成了,那么A 就是一类做法,应用加法原理;若做完A 后整件事情并没有完成,那么A 就只是整件事的其中一步,应用乘法原理.三、 其它说明(1)枚举法和加乘原理是整个计数模块的最基础内容,重要性极强,所有后续讲次的内容全是由它们推导出来的,务必记住相应方法结论并理解其原理.(2)点标数法本质上是加乘原理和倒推法的结合,标数前需把上一步的位置考虑周全. (3)只用加法原理或乘法原理就能解答的通常是中低档题,在用乘法原理前务必检验是否满足“前不影响后”,即前面步骤可以影响下一步的具体方法,但不能影响下一步的方法数.(4)难题通常是加乘混合型,即“类里套步”或“步里套类”,特别是需分很多类的题目.当乘法原理无法解决问题时,一定要分类,切忌“强行使用”乘法原理.当类别过多时,可考虑使用排除法,从反面考虑问题.第9讲 加法原理与乘法原理知识点【例1】爸爸、妈妈带小高去吃西餐.餐厅里有米饭和面条2种主食,烤牛排、烤羊排和烤鸡排3种主菜,奶油蘑菇汤1种汤,以及蛋糕和布丁2种甜点.如果小高想要点1种主食和1种主菜,汤和甜点可点可不点,而且种类不限.请问:小高一共有多少种点菜方法?【例2】如图所示,在一个34的方格表内放入4枚相同的棋子,要求每列至多有1枚棋子,一共有多少种不同的放法?如果放入4枚互不相同的棋子,要求每列至多有1枚棋子,一共有多少种不同的放法?【例3】如下图所示,将图中的八个部分用红、黄、绿、蓝这4种不同的颜色染色,而且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色.请问:这幅图共有多少种不同的染色方法?超越篇题目A B C DEFGH【例4】 用4种不同的颜色给下图中的圆圈染色,有线段相连的两个圆圈不能同色,一共有多少种不同的染色方法?【例5】 一只甲虫沿着下图中的方格线从A 爬到B ,每次只能向右爬一格或向上爬一格.图中画着黑点的地方不能通过.请问:这只甲虫可以选择多少条不同的路线?【例6】 王老师家装修新房,需要2个木匠和2个电工.现有木匠3人、电工3人,另有1人既能做木匠也能做电工.要从这7人中挑选出4人完成这项工作,共有多少种不同的选法?ABDCB【例7】 如下图所示,一只小甲虫要从A 点出发沿着线段爬到B 点,不能重复经过任何点.试问:这只甲虫有多少种不同的走法?【例8】 如图所示,国际象棋中的棋子“皇后”从左下角走到右上角,每步只能向右、向上或者向右上移动任意多格,一共有多少种不同的走法?【习题1】元旦前,小芳给她的五位同学做贺卡,将贺卡装入信封时她装错了,五位同学都没收到小芳给自己做的贺卡,收到的是小芳给别人的贺卡.则一共有几种可能出现的情?补充题目【习题2】如图,有一个48的棋盘,现将一枚棋子放在棋盘左下角格子A处,要求每一步只能向棋盘右上或右下走一步(如从C走一步可走到D或E),那么将棋子从A走到棋盘右上角B处共有多少种不同的走法?【习题3】用4种颜色给右图中的9个小圆圈染色,要求有线段相连的两个圆圈的颜色不能相同.那么一共有几种不同的染法?【习题4】甲、乙两人玩抓石子游戏,共有12个石子,甲先乙后轮流抓取.每次可以抓取其中的2个、3个或4个,直到最后抓取完毕为止,那么共有多少种抓取石子的方案?。

小学四年级奥数课件:加法原理

小学四年级奥数课件:加法原理

例2: 旗杆上最多可以挂两面信号旗,现有红色、
蓝色和黄色的信号旗各一面,如果用挂信号旗表 示信号,最多能表示出多少种不同的信号?
根据挂信号旗的面数可以将信号分为两类。第 一类是只挂一面信号旗,有红、黄、蓝3种;第二 类是挂两面信号旗,按前面学的乘法原理会有: 3×2=6种。所以,一共可以表示出不同的信号
例1: 从甲地到乙地,可以乘火车,也可以乘汽车,
还可以乘轮船。一天中火车有4班,汽车有3班, 轮船有2班。问:一天中乘坐这些交通工具从甲地 到乙地,共有多少种不同走法?
一天中乘坐火车有4种走法,乘坐汽车有3种走 法,乘坐轮船有2种走法,所以一天中从甲地到乙 地共有:4+3+2=9(种)不同走法。
例6: 右图中每个小方格的边长都是1。一只小虫从
直线AB上的O点出发,沿着横线与竖线爬行,可上 可下,可左可右,但最后仍要回到AB上(不一定 回到O点)。如果小虫爬行
的总长是3,那么小虫有多
少条不同的爬行路线?
பைடு நூலகம்
第一步往上,再往左右有两种可能(因为必须 回到AB线上), 分别是:(上1,左1,下1), (上1,右1,下1); 第一步往上,再往下也有两 种可能:(上1,下1,左1),(上1,下1,右1); 同理第一步往下也有4种可能;
例4: 用五种颜色给右图的五个区域染色,每个区
域染一种颜色,相邻的区域染不同的颜色。问: 共有多少种不同的染色方法?
在本例中没有一个区域与其它所有区域都相邻, 那么就要分颜色相同与不同两种情况分析。
当区域A与区域E颜色相同时,A有5种颜色可选; B有4种颜色可选;C有3种颜色可选;D也有3种颜色 可选。根据乘法原理,此时不同的染色方法有
再就是左右, 第一步往左,第二步分别上下各 一种:(左1,上1,下1),(左1,下1,上1); 第一步往左,第二步还往左右,则第三步也只能左 右,共4种;同理第一步往右也有6种情况。共有:

四年级奥数第3专题-巧算加减法讲课教案

四年级奥数第3专题-巧算加减法讲课教案

四年级奥数第3专题-巧算加减法第四讲加、减法的计算及巧算四年级计算是数学的基础,在计算中,我们要巧妙利用数的某些特点进行速算与巧算,在解题的过程中,掌握其中的规律,做到灵活应用运算定律,这一讲,我们学习加、减法的巧算方法,主要根据加、减法的运算定律和运算性质,通过适当的技巧、方法,使计算简便化。

主要运算定律及性质:1、加法的交换律:A+B=B+A2、加法结合律:(A+B)+C=A+(B+C)3、减法运算性质:A-B-C=A-(B+C)※综合运用加减法混合运算中可交换的性质巩固练习:937+115-37+85 1897+689+103564-(387-136) 2345+911-111+655※选择“基准数”:例题1、 701+697+703+704+696= 700×5+(1-3+3+4-4)= 3500+1= 3501例题2、计算 (1)9+99+999+9999+99999[例题解析]:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成10 00—1去计算.这是小学数学中常用的一种技巧.解: 9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.(2)489+487+483+485+484+486+488[例题解析]:认真观察这几个加数,发现它们都和整数480接近并大于480,所以选480为基准数,然后用基准数乘以加数的个数,并且将少加的数加上,使和保持不变。

解:489+487+483+485+484+486+488=480×7+(9+7+3+5+4+6+8)=3360+42=3402想一想:如果选490为基准数,可以怎样计算?当几个加数比较接近时,可以选择一个数作基准数,然后用基准数乘以加数的个数,将“多加了的数减去,少加了的数加上”,使和保持不变。

小学奥数加法原理之分类枚举(完整版)

小学奥数加法原理之分类枚举(完整版)

小学奥数加法原理之分类枚举1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类;② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.7-1-1.加法原理之分类枚举(一)教学目标 知识要点例题精讲模块一、分类枚举——数出来的种类【例 1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】小宝买一种礼物有三类方法:第一类,买玩具,有8种方法;第二类,买课外书,有20种方法;第三种,买纪念品,有10种方法.根据加法原理,小宝买一种礼物有8+20+10=38种方法.【答案】38【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】根据加法原理,共有6+4+3+2=15种取法.【答案】15【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】解决这个问题有3类办法:从一班、二班、三班男生中任选1人,从一班18名男生中任选1人有18种选法:同理,从二班20名男生中任选1人有20种选法;从三班16名男生中任意选1人有16种选法;根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:18201654++=种.【答案】54【例 2】和为15的两个非零自然数共有对。

四年级奥数讲义教案库四年级上学期第08讲加法原理和乘法原理学生版

四年级奥数讲义教案库四年级上学期第08讲加法原理和乘法原理学生版

第八讲加法原理和乘法原理要点总结加法原理:如果完成一件事情可以分成几类方法,每一类又包含若干种不同方法,那么将所有类中的方法数累加就是完成这件事的所有方法数。

加法原理的关键在于分类,类与类之间用加法。

乘法原理:如果完成一件事情可以分成几个步骤,每一步又包含若干种不同方法,那么将所有步骤中的方法数连乘就是完成这件事的所有方法数。

乘法原理的关键在于分步,步与步之间用乘法。

分类原则:分类要做到“不重不漏”。

任意两类之间不可以重复,这叫做不重;把所有的类别累加在一起就得到整体,这叫做不漏。

分步原则:分步要做到“前不影响后”。

无论前面步骤采取哪种方法,后面一个步骤都应该有相同多的方法数,也就是说后面一个步骤的方法数与前面步骤采取哪一种方法无关。

课堂精讲【例1】学校食堂为老师预备了三种主食:馒头、米饭和烙饼;五种炒菜:红烧肉、炒豆腐、土豆丝、香菇油菜和辣子鸡丁;两种汤:紫菜汤和鸡蛋西红柿汤。

张老师要买一种主食一个炒菜和一碗汤。

张老师一共可以有多少种不同的买法?【例2】小刚家到学校必须要通过一座桥,他从家到桥有3条路,过了桥之后有条路可以到学校。

小刚从家到学校一共可以有多少种不同的走法?0 3 4 5【例3】有四张数字卡片:,小明想用这4张卡片摆成四位数。

他可以摆成多少个不同的四位数?【例4】用数字7、3、5和8可以写成多少个不同的三位数?【例5】舰船信号兵用红、黄、蓝(每种颜色旗各一面)从上到下挂在旗杆上表示不同的信号,每次可以任意挂一面、二面、三面,且不同的顺序表示不同的信号。

一共可以表示多少种不同的信号?【例6】从1开始依次写下去一直到999,得到一个多位数12345678910111213……997998999,请问这个多位数一共有多少位?第999位数字是多少?在这个多位数中9一共出现了多少次?8一共出现了多少次?0一共出现了多少次?【例7】如果一个四位数含有2,6,7,8这4个数字中的一个或几个,我们就称之为“好数”。

四年级下奥数第九讲 加法原理(学生用)

四年级下奥数第九讲 加法原理(学生用)

第九讲: 加法原理(一)知识要点加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类;② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”. 加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲分类讨论中加法原理的应用【例 1】 小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?(2级)日期: 5.4【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?(2级)【例2】从1~10中每次取两个不同的数相加,和大于10的共有多少种取法?(4级)【巩固】从1~8中每次取两个不同的数相加,和大于10的共有多少种取法?(4级)【例3】甲、乙、丙三个工厂共订300份报纸,每个工厂至少订了99份,至多101份,问:一共有多少种不同的订法?(4级)【巩固】大林和小林共有小人书不超过9本,他们各自有小人书的数目有多少种可能的情况?(4级)【例4】四个学生每人做了一张贺年片,放在桌子上,然后每人去拿一张,但不能拿自己做的一张.问:一共有多少种不同的方法?(6级)【例5】(第六届走美试题)一次,齐王与大将田忌赛马.每人有四匹马,分为四等.田忌知道齐王这次比赛马的出场顺序依次为一等,二等,三等,四等,而且还知道这八匹马跑的最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等,自己的四等.田忌有________种方法安排自己的马的出场顺序,保证自己至少能赢两场比赛.(6级)【例6】把一元钱换成角币,有多少种换法?人民币角币的面值有五角、二角、一角三种.(6级)【巩固】一把硬币全是2分和5分的,这把硬币一共有1元,问这里可能有多少种不同的情况?(6级)【例7】用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法?(6级)【巩固】一个文具店橡皮每块5角、圆珠笔每支1元、钢笔每支2元5角.小明要在该店花5元5角购买两种文具,他有多少种不同的选择.(6级)【例8】袋中有3个红球,4个黄球和5个白球,小明从中任意拿出6个球,他拿出球的情况共有________种可能.(2008年北京“数学解题能力展示”读者评选活动)(6级)【例9】1、2、3、4四个数字,从小到大排成一行,在这四个数中间,任意插入乘号(最少插一个乘号),可以得到多少个不同的乘积?(4级)【例10】1995的数字和是1+9+9+5=24,问:小于2000的四位数中数字和等于26的数共有多少个? (6级)【巩固】1995的数字和是1+9+9+5=24,问:小于2000的四位数中数字和等于24的数共有多少个?(6级)【巩固】在四位数中,各位数字之和是4的四位数有多少?(6级)【例11】有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数共有个.(8级)【例12】如果一个大于9的整数,其每个数位上的数字都比他右边数位上的数字小,那么我们称它为迎春数.那么,小于2008的迎春数一共有多少个?(8级)【例13】有些五位数的各位数字均取自1,2,3,4,5,并且任意相邻两位数字(大减小)的差都是1.问这样的五位数共有多少个?(10级)树形图法“树形图法”实际上是枚举的一种,但是它借助于图形,可以使枚举过程不仅形象直观,而且有条理又不重复遗漏,使人一目了然.【例14】A、B、C三个小朋友互相传球,先从A开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A手中,那么不同的传球方式共多少种?(2005年《小数报》数学邀请赛)(6级)【巩固】一只青蛙在A,B,C三点之间跳动,若青蛙从A点跳起,跳4次仍回到A点,则这只青蛙一共有多少种不同的跳法?(6级)【例15】甲、乙二人打乒乓球,谁先连胜两局谁赢,若没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止.问:一共有多少种可能的情况?(6级)勤学苦练1、阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?(2级)2、从2~9中每次取两个不同的数相加,和大于10的共有多少种取法?(4级)3、大林和小林共有小人书不超过10本,他们各自有小人书的数目有多少种可能的情况?(4级)4、从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。

4年级奥数第六讲:加法原理

4年级奥数第六讲:加法原理

一、加法原理概念生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.完成一件事,有n 类方法可以用。

在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,……,在第N 类办法中有M(N)种不同的方法,那么完成这件事情共有M1+M2+……+M(N)种不同的方法。

二、乘法原理解题三部曲1、完成一件事分N 类方法;2、每类方法中找数量;3、类类相加。

三、加法原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.(2)在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.第六讲加法原理知识要点加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.【例 1】 王老师从重庆到南京,他可以乘飞机、汽车直接到达,也可以先到武汉,再由武汉到南京.他从重庆到武汉可乘船,也可乘火车;又从武汉到南京可以乘船、火车或者飞机,如图.那么王老师从重庆到南京有多少种不同走法呢?(2级)【例 2】 从益智中心到王明家有3条路可走,从王明家到张老师家有2条路可走,从益智中心到张老师家有3条路可走,那么从益智中心到张老师家共有多少种走法?(2级)【巩固】 如下图,从甲地到乙地有2条路,从乙地到丙地有4条路,从甲地到丁地有3条路可走,从丁地到丙地也有3条路,请问从甲地到丙地共有多少种不同走法?(2级)丁丙乙甲【例 3】 小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品11种,那么如果选两类(每类一件)不同的东西作为生日礼物,小宝买生日礼物可以有多少种不同的选法?例题精讲【例 4】从北京到广州可以选择直达的飞机和火车,也可以选择中途在上海或者武汉作停留,已知北京到上海、武汉和上海、武汉到广州除了有飞机和火车两种交通方式外还有汽车.问,从北京到广州一共有多少种交通方式供选择?(2级)【例 5】如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?(4级)【例6】五面五种颜色的小旗,任意取出一面、两面或三面排成一行表示各种信号,问:共可以表示多少种不同的信号?(6级)【例 7】如图,将1,2,3,4,5分别填入图中15的格子中,要求填在黑格里的数比它旁边的两个数都大.共有种不同的填法.【走进美妙数学花园少年数学邀请赛】(6级)【例 8】从1到100的所有自然数中,不含有数字4的自然数有多少个? (6级)【例 9】直线a,b上分别有5个点和4个点,以这些点为顶点可以画出多少个三角形?(6级)【巩固】直线a,b上分别有4个点和2个点,以这些点为顶点可以画出多少个三角形?(4级)【例10】如图,从A点到B点的最近路线有多少条?(4级)BA【例 11】如图,某城市的街道由5条东西向马路和7条南北向马路组成,现在要从西南角的A处沿最短的路线走到东北角B出,由于修路,十字路口C不能通过,那么共有____种不同走法.(6级)A【例 12】如图所示,从A点到B点,如果要求经过C点或D点的最近路线有多少条?(6级)【例13】如图1为一幅街道图,从A出发经过十字路口B,但不经过C,走到D的不同的最短路线有条.(8级)ArrayA【例 14】在下图的街道示意图中,有几处街区有积水不能通行,那么从A到B的最短路线有多少种?(6级)AB 【例 15】在下图的街道示意图中,C处因施工不能通行,从A到B的最短路线有多少条?(6级)CB A【例 16】(第三届“希望杯”2试试题)右图中的“我爱希望杯”有______种不同的读法.(6级)杯杯杯杯杯望望望望希希希爱爱我【例 17】图中有10个编好号码的房间,你可以从小号码房间走到相邻的大号码房间,但不能从大号码走到小号码,从1号房间走到10号房间共有多少种不同的走法?(8级)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.南京去上海可以乘火车、乘飞机、乘汽车和乘轮船。

如果每天有20班火车、6班飞机、8班汽车和4班轮船,那么共有多少种不同的走法?
2.光明小学四、五、六年级共订300份报纸,每个年级至少订99份报纸。

问:共有多少种不同的订法?
3.将10颗相同的珠子分成三份,共有多少种不同的分法?
4.在所有的两位数中,两位数码之和是偶数的共有多少个?
5.用1,2,3这三种数码组成四位数,在可能组成的四位数中,至少有连续两位是2的有多少个?
6.下图中每个小方格的边长都是1。

有一只小虫从O点出发,沿
图中格线爬行,如果它爬行的总长度是3,那么它最终停在直线
AB上的不同爬行路线有多少条?
7.如下图,从甲地到乙地有三条路,从乙地到丙地有三条路,
从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地
到丙地共有多少种走法?
8.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?
9.如下图中,沿线段从点A走最短的路线到B,各有多少种走法?
10.在1~1000的自然数中,一共有多少个数字0?
11.在1~500的自然数中,不含数字0和1的数有多少个?
12.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?
四年级奥数-加法原理AB答案
1.38种。

2.10种。

提示:没有年级订99份时,只有三个年级各订100份一种订法;只有一个年级订99份时,另外两个年级分别订100份和101份,有6种订法;有两个年级订99份时,另外一个年级订102份,有3种订法。

3.8种。

4.45个。

提示:两个数码都是奇数的有5×5(个),两个数码都是偶数的有4×5(个)。

5.21个。

提示:与例5类似,连续四位都是2的只有1种,恰有连续三位是2的有4种,恰有连续两位是2的有16种。

6.10条。

提示:第一步向下有5条,第一步向上有1条,第一步向左或向右各有2条。

7.3×3+2×4=17(种).
8.6+7+15+21+6×7=91(种).
提示:拿两本的情况分为2本画报或2本书或一本画报一本书.
9.(1)6;(2)10;(3)20;(4)35.
10.9+180+3=192(个).
11.8+8×8+3×8×8=264(个).
12.9+8+7+6+5+4+3+2+1=45(次).
我们通常解题,总是要先列出算式,然后求解。

可是对有些题目来说,这样做不仅麻烦,而且有时根本就列不出算式。

这一讲我们介绍利用加法原理在“图上作业”的解题方法。

相关文档
最新文档