小学奥数教师版-7-1-1 加法原理之分类枚举(一)

合集下载

小学奥数 加法原理之分类枚举(一) 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  加法原理之分类枚举(一) 精选练习例题 含答案解析(附知识点拨及考点)

1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类;② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲知识要点教学目标7-1-1.加法原理之分类枚举(一)2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲模块一、分类枚举——数出来的种类【例1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】小宝买一种礼物有三类方法:第一类,买玩具,有8种方法;第二类,买课外书,有20种方法;第三种,买纪念品,有10种方法.根据加法原理,小宝买一种礼物有8+20+10=38种方法.【答案】38【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】根据加法原理,共有6+4+3+2=15种取法.【答案】15【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】解决这个问题有3类办法:从一班、二班、三班男生中任选1人,从一班18名男生中任选1人有18种选法:同理,从二班20名男生中任选1人有20种选法;从三班16名男生中任意选1人有16种选法;根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:18201654++=种.【答案】54【例2】和为15的两个非零自然数共有对。

内蒙古阿拉善盟小学数学小学奥数系列7-1加法原理(一)

内蒙古阿拉善盟小学数学小学奥数系列7-1加法原理(一)

内蒙古阿拉善盟小学数学小学奥数系列7-1加法原理(一)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共25题;共113分)1. (5分)名羽毛球运动员参加单打比赛,两两配对进行单单循环赛,那么冠军一共要比赛多少场?2. (5分)某人忘记了自己的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜至少要试多少次?3. (5分)一只蚂蚁从长方体一个顶点A出发,沿着棱爬到B点,如果每次只能经过3条棱,共有多少种不同走法?4. (5分)一次象棋比赛共有10名选手参加,他们分别来自甲、乙、丙三个队,每个选手都与其余9名选手各赛1盘,每盘棋的胜者得1分,负者得0分,平局双方各得0.5分.结果,甲队选手平均得4.5分,乙队选手平均得3.6分,丙队选手平均得9分.那么,甲、乙、丙三队参加比赛的选手人数各多少?5. (5分)连一连。

(1)请你连一连,算一算,共有几种不同的搭配?(2)哪一种搭配最贵?一共多少元钱?6. (5分)小丽的手链缺4颗珠子,是哪4颗呢?7. (5分)8. (5分)饭店里晚上供应A,B,C,D四种炒菜,E,F,G三种主食,如果一种炒菜和一种主食配成一份套餐,共有多少种不同的搭配方法?9. (1分)清华中学乒乓球队有男运动员5名,有若干名女运动员,若从男女运动员中各选一名,参加混合双打比赛,一共有30种组队方案,则该队有女乒乓球运动员________名.10. (5分)后面一个应该是什么?请你画出来。

11. (5分)小丽有3张数字卡片2,4,9.小雨有3张数字卡片3,5,7.每次抽出一张,谁大谁胜出.(1)小丽胜的可能性是多少?小雨胜的可能性是多少?(2)这个游戏规则公平吗?小雨一定会胜吗?12. (5分)有6个小朋友,要互相通一次电话,他们一共要通多少个电话?13. (5分)“上升数”是指一个数中右边数字比左边大的自然数(如,,等),上升数不包括一位数。

辽宁省沈阳市小学数学小学奥数系列7-1加法原理(一)

辽宁省沈阳市小学数学小学奥数系列7-1加法原理(一)

辽宁省沈阳市小学数学小学奥数系列7-1加法原理(一)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共25题;共113分)1. (5分)用2、5、6、8和小数点能组成多少个不同的两位小数?并分别写出来。

(每个数字只能用一次,至少写出14个)2. (5分)按规律填数。

3. (5分)文艺汇演共有6个节目,分3种类型:1个小品,2个舞蹈,3个演唱.现在要编排一个节目单;(1)如果要求第一个节目是小品,那么共有多少种节目单的编排顺序?(2)如果要求第一个节目和最后一个节目都是演唱,那么共有多少种节目单的编排顺序?4. (5分)把19拆分成不大于9的三个不同数(0除外)之和。

一共有多少种不同的拆分方式?5. (5分)一个盒子里装有五个标号为1、2、3、4、5的小球,每次取出一个,记下它的号码后再放回盒子,共取放三次,那么三次中最大标号恰好是5的取法有多少种?6. (5分) (2019三上·高密期中) 明明为自己搭配早餐。

饮料有2种:牛奶、果汁;点心有3种:蛋糕、油条、面包。

饮料和点心各选一种。

一共有多少种不同的搭配方法?7. (5分)停车站划出一排个停车位置,今有辆不同的车需要停放,若要求剩余的个空车位连在一起,一共有多少种不同的停车方案?8. (5分)找规律,数字游戏。

9. (1分)要从5名女生和3名男生中各选出一名选手参加乒乓球男女混合双打,共有________种不同的选法.10. (5分)(2018·青岛) 推理题:某足球邀请赛有16个城市参加,每市派出甲乙两个队,根据比赛规则,每两个队之间至多赛一场,并且同一城市的两个队之间不进行比赛,比赛若干场后进行统计,发现除市甲队外,其他各队已经比赛过的场数各不相同,问市乙队已赛多少场?11. (5分)接下来画什么?请你圈一圈。

12. (5分)某管理员忘记了自己小保险柜的密码数字,只记得是由四个非数码组成,且四个数码之和是,那么确保打开保险柜至少要试几次?13. (5分)14. (1分)某校初三年级共有8个班进行辨论赛,规定单循环比赛(两个班之间赛一场)问初三年级的比赛是进行________场.15. (5分)树木生长的过程中,新生的枝条往往需要一段“休息”时间供自身生长,而后才能萌发新枝.一棵树苗在一年后长出一条新枝,第二年新枝“休息”,老枝依旧萌发新枝;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则依次“休息”.这在生物学上称为“鲁德维格定律”.那么十年后这棵树上有多少条树枝?16. (5分)如图,沿着“北京欢迎你”的顺序走(要求只能沿着水平或竖直方向走),一共有多少种不同的走法?17. (5分)如图,从点到点的最近路线有多少条?18. (5分) 5条直线两两相交,没有两条直线平行,没有任何三条直线通过同一个点,以这5条直线的交点为顶点能构成几个三角形?19. (5分)小蜜蜂通过蜂巢房间,规定只能由小号房间进入大号房间问小蜜蜂由房间到达房间有多少种方法?20. (1分)国际象棋中“马”的走法如图所示,位于○位置的“马”只能走到标有×的方格中,类似于中国象棋中的“马走日”.如果“马”在的国际象棋棋盘中位于第一行第二列(图中标有△的位置),要走到第八行第五列(图中标有@的位置),最短路线有________条.21. (5分)如下表,请读出“我们学习好玩的数学”这9个字,要求你选择的9个字里能连续(即相邻的字在表中也是左右相邻或上下相邻),这里共有多少种完整的“我们学习好玩的数学”的读法.22. (5分)用红、橙、黄、绿、蓝5种颜色中的1种,或2种,或3种,或4种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?23. (5分)如图,某城市的街道由5条东西向马路和7条南北向马路组成,现在要从西南角的处沿最短的路线走到东北角出,由于修路,十字路口不能通过,那么共有________种不同走法.24. (5分)一个自然数,如果它顺着看和倒过来看都是一样的,那么称这个数为“回文数”.例如1331,7,202都是回文数,而220则不是回文数.问:从一位到六位的回文数一共有多少个?其中的第1996个数是多少?25. (5分)在下图中,用水平或者垂直的线段连接相邻的字母,当沿着这些线段行走是,正好拼出“APPLE”的路线共有多少条?参考答案一、 (共25题;共113分)1-1、2、答案:略3-1、答案:略4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、。

新疆喀什地区数学小学奥数系列7-1加法原理(一)

新疆喀什地区数学小学奥数系列7-1加法原理(一)

新疆喀什地区数学小学奥数系列7-1加法原理(一)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共25题;共113分)1. (5分)图中的小格子都是正方形,则图中一共有多少个正方形?2. (5分) 4名同学到照相馆照相.他们要排成一排,问:共有多少种不同的排法?3. (5分)名羽毛球运动员参加单打比赛,两两配对进行单单循环赛,那么冠军一共要比赛多少场?4. (5分)有6个小朋友,要互相通一次电话,他们一共要通多少个电话?5. (5分)亚洲乒乓球锦标赛第一阶段共有32支球队参加,共分8个组,其中每组球队的前2名进入第二阶段比赛,如果这32支球队采取单循环赛制,第一阶段共赛多少场?6. (5分)四名同学参加区里围棋比赛,每两名选手都要比赛一局,规则规定胜一局得分,平一局得分,负一局得分.如果每个人最后得的总分都不相同,且第一名不是全胜,那么最多有几局平局?7. (5分) (2018三下·云南期末) 用2、3、5、7组成没有重复数字的两位数,能组成多少个个位是单数的两位数?8. (5分)用两个3、两个4、三个5可以组成多少个不同的七位数?9. (1分)从甲、乙、丙、丁、戊五人中选四人参加4×100m接力赛(每人跑一棒),按规定甲跑第一棒,丁跑第四棒,有________种安排方法.10. (5分)根据规律画出被挡住部分的珠子。

(1)(2)11. (5分) 8名学生和7名老师进行拔河比赛,首先选一名老师担任裁判,接着再把其余14人分成两队,每队都必须包含4名学生和3名老师,那么共有多少种不同的分队方法?12. (5分)四个人进行象棋单循环赛,规定胜者得分,负者得分,和棋双方各得分,比赛结束后统计发现,四个人的得分和加起来一定是多少?13. (5分)从甲地到丁地,售票员需要准备几种车票?(写出所有可能)14. (1分)要从四名男生和三名女生中各选派一人参加混合双打比赛,一共有________种不同的组队方案。

吉林省长春市数学小学奥数系列7-1加法原理(一)

吉林省长春市数学小学奥数系列7-1加法原理(一)

吉林省长春市数学小学奥数系列7-1加法原理(一)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共25题;共113分)1. (5分)用2、3、5、7组成没有重复数字的两位数,能组成多少个个位是单数的两位数?2. (5分)填空。

(1)(2)3. (5分)一共有赤、橙、黄、绿、青、蓝、紫七种颜色的灯各一盏,按照下列条件把灯串成一串,有多少种不同的串法?(1)把盏灯都串起来,其中紫灯不排在第一位,也不排在第七位.(2)串起其中盏灯,紫灯不排在第一位,也不排在第四位.4. (5分) 3个骰子掷出的点数和中,哪个数最有可能?5. (5分)用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数?6. (5分)书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的书不要分开,一共有多少种排法?如果只要求童话书和漫画书不要分开有多少种排法?7. (5分)甲、乙、丙、丁、戊、己六个人站队,如果:(1)甲乙两人之间必须有两个人,问一共有多少种站法?(2)甲乙两人之间最多有两个人,问一共有多少种站法?8. (5分) (2020四下·涟水月考) 用2、3、0、0这四个数字组成两个四位数,要使它们的和是5050,这两个四位数各是多少?9. (1分) (2020二上·嘉陵期末) 4个小朋友比赛打羽毛球,每2个人要打一场比赛,4个人一共要打________场比赛。

10. (5分)她只能从这三本书中挑选两本书,共有多少种挑选方法?每种挑选方法要花多少钱?11. (5分)袋子里有红、黄、白皮球各2个,任意摸出2个球,可能出现什么结果?列举出来。

12. (5分)“上升数”是指一个数中右边数字比左边大的自然数(如,,等),上升数不包括一位数。

求所有上升数的个数。

广东省深圳市小学数学小学奥数系列7-1加法原理(一)

广东省深圳市小学数学小学奥数系列7-1加法原理(一)

广东省深圳市小学数学小学奥数系列7-1加法原理(一)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共25题;共113分)1. (5分)找规律,数字游戏。

2. (5分)图中的小格子都是正方形,则图中一共有多少个正方形?3. (5分) 5个人并排站成一排,其中甲必须站在中间有多少种不同的站法?4. (5分)食堂买来5只羊,每次取出两只合称一次重量,得到10种不同重量(单位:千克):47,50,51,52,53,54,55,57,58,59.问:这五只羊各重多少千克?5. (5分)找规律,数字游戏。

6. (5分) 2003年7月25日,世界青年女篮锦标赛在克罗地亚开战,参加这届世青赛的队伍共有12支。

(1)第一阶段分两组进行单循环比赛,每个小组有________支球队,两个小组一共进行________场比赛。

(2)中青队、阿根廷队、澳大利亚队、俄罗斯队、拉托维亚队、突尼斯队在这次比赛中被分在一组,则这一小组需要赛几场?请画出示意图。

(3)第二阶段由小组前四名晋级八强,进行交叉淘汰赛。

把8支球队依次编为A、B、C、D、E、F、C、H,补全八强比赛的示意图;(4)一共要比赛________轮,就可以决出冠军和亚军来。

(5)第二阶段一共要赛________场,可以决出冠军亚军来。

(6)如果这12支球队一支采用单循环制,则一共要赛________场。

如果每天安排3场比赛,全部比赛大约需要________天。

7. (5分)停车站划出一排个停车位置,今有辆不同的车需要停放,若要求剩余的个空车位连在一起,一共有多少种不同的停车方案?8. (5分)“学习改变命运”这六个字要用6种不同颜色来写,现只有6种不同颜色的笔,问共有多少种不同的写法?9. (1分)如图,在京哈铁路线,中途经过秦皇岛、沈阳、长春三站,不考虑其它因素,那么铁路部门应制定________种车票价格。

小学奥数教程:加法原理之分类枚举(一)全国通用(含答案)

小学奥数教程:加法原理之分类枚举(一)全国通用(含答案)

1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类;② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲知识要点教学目标7-1-1.加法原理之分类枚举(一)模块一、分类枚举——数出来的种类【例1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】小宝买一种礼物有三类方法:第一类,买玩具,有8种方法;第二类,买课外书,有20种方法;第三种,买纪念品,有10种方法.根据加法原理,小宝买一种礼物有8+20+10=38种方法.【答案】38【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】根据加法原理,共有6+4+3+2=15种取法.【答案】15【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】解决这个问题有3类办法:从一班、二班、三班男生中任选1人,从一班18名男生中任选1人有18种选法:同理,从二班20名男生中任选1人有20种选法;从三班16名男生中任意选1人有16种选法;根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:18201654++=种.【答案】54【例2】和为15的两个非零自然数共有对。

小学奥数知识名师点拨 例题精讲 加法原理之分类枚举(一).教师版

小学奥数知识名师点拨 例题精讲  加法原理之分类枚举(一).教师版

7-1-1.加法原理之分类枚举(一)教学目标1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.知识要点一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有种不同做法,第二类方法中有种不同做1m 2m 法,…,第k 类方法中有种不同做法,则完成这件事共有种不同方法,这就是加k m 12k N m m m =+++……法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲模块一、分类枚举——数出来的种类【例 1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】小宝买一种礼物有三类方法:第一类,买玩具,有8种方法;第二类,买课外书,有20种方法;第三种,买纪念品,有10种方法.根据加法原理,小宝买一种礼物有8+20+10=38种方法.【答案】38【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】根据加法原理,共有6+4+3+2=15种取法.【答案】15【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】解决这个问题有3类办法:从一班、二班、三班男生中任选1人,从一班18名男生中任选1人有18种选法:同理,从二班20名男生中任选1人有20种选法;从三班16名男生中任意选1人有16种++=选法;根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:种.18201654【答案】54【例 2】和为15的两个非零自然数共有对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7-1-1.加法原理之分类枚举(一)教学目标1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.知识要点一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:1完成这件事的任何一种方法必须属于某一类;2分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲模块一、分类枚举——数出来的种类【例1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】小宝买一种礼物有三类方法:第一类,买玩具,有8种方法;第二类,买课外书,有20种方法;第三种,买纪念品,有10种方法.根据加法原理,小宝买一种礼物有8+20+10=38种方法.【答案】38【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】根据加法原理,共有6+4+3+2=15种取法.【答案】15【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】解决这个问题有3类办法:从一班、二班、三班男生中任选1人,从一班18名男生中任选1人有18种选法:同理,从二班20名男生中任选1人有20种选法;从三班16名男生中任意选1人有16种选法;根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:18201654++=种.【答案】54【例2】和为15的两个非零自然数共有对。

【考点】加法原理之分类枚举【难度】1星【题型】填空【关键词】希望杯,五年级,一试,第11题【解析】,举例为:1与14,2与13,3与12,4与11,5与10,6与9,7与8,共计7对。

【答案】7对【例3】用1至8这八个自然数中的四个组成四位数,从个位到千位的数字依次增大,且任意两个数字的差都不是1,这样的四位数共有人。

【考点】加法原理之分类枚举【难度】2星【题型】填空【关键词】希望杯,五年级,一试,第10题【解析】1357,1358,1368,1468,2468共5个【答案】5个【例4】三张数字卡片0,2,4可以组成______个能被4整除的不同整数。

【考点】加法原理之分类枚举【难度】2星【题型】填空【关键词】希望杯,四年级,二试,第6题【解析】240、204、420共3个【答案】3个【巩固】节目期间,小明将6个彩灯排成一列,其中有2个红灯,4个绿灯,如果两个红灯不相邻,则不同的排法有_________种(其中“红绿红绿绿绿”与“绿绿绿红绿红”类型算作一种)。

【考点】加法原理之分类枚举【难度】2星【题型】填空【关键词】希望杯,六年级,二试,第5题【解析】红灯看作“1”,绿灯看作“0”则有:000101、001001、001010、010001、010010、100001这六种【答案】6【例5】从1、2、3、4、5、6这些数中,任取两个数,使其和不能被3整除,则有_______种取法。

【考点】加法原理之分类枚举【难度】3星【题型】填空【关键词】走美杯,四年级,初赛,第10题【解析】共有选1和3、1和4、1和6、2和3、2和5、2和6、3和4、3和5、4和6以及5和6共10种选法。

【答案】10种【巩固】从l ~9这9个数码中取出3个,使它们的和是3的倍数,则不同取法有_______种。

【考点】加法原理之分类枚举【难度】3星【题型】填空【关键词】希望杯,五年级,一试,第13题【解析】(1)3个数都是3的倍数,有1种情况(2)3个数除以3都余1,有1种情况(3)3个数除以3都余2,有1种情况(4)一个除以3余1,一个除以3余2,一个是3的倍数,有:3×3×3=27种情况所以,一共有1+1+1+27=30种不同取法。

【答案】30种【例6】小明的两个口袋中各有6张卡片,每张卡片上分别写着1,2,3,……,6。

从这两个口袋中各拿出一张卡片来计算上面所写两数的乘积,那么,其中能被6整除的不同乘积有_____个。

【考点】加法原理之分类枚举【难度】3星【题型】填空【关键词】希望杯,五年级,一试,第22题【解析】乘积中最小1,最大为36,能被6整除的有6、12、18、24、30、36共6个【答案】6个【解析】【例7】老师带着佳佳、芳芳和明明做计算练习.老师先分别给他们一个数,然后让他们每人取3张写有数的卡片.佳佳取的是3、6、7,芳芳取的是4、5、6,明明取的是4、5、8.这时老师让他们分别取自己卡片上的两个数相乘,再加上开始老师给他们的数.如果老师开始时给他们的数依次是234、235、236,而且他们计算都正确,那么可能算出_________个不同的数.【考点】加法原理之分类枚举【难度】4星【题型】填空【关键词】迎春杯,中年级,复试,7题佳佳可以得到的乘积是18,21,42,芳芳可以得到的乘积是20,24,30,明明可以得到的乘积是20,32,40,那么佳佳可以得到的数是252,255,276,芳芳可以得到的数是255,259,265,明明可以得到的数是256,268,276所以一共可以得到7个不同的数。

【答案】7个【例8】如果三位数m 同时满足如下条件:⑴m 的各位数字之和是7;⑵2m 还是三位数,且各位数字之和为5.那么这样的三位数m 共有个.【考点】加法原理之分类枚举【难度】4星【题型】填空【关键词】迎春杯,高年级,复赛,2题【解析】三位数2m 可以是500,410,320,230,140,302,212,122,104;得到m 可以是250,205,160,115,70,157,106,61,52,两位数的均舍去,所以符合条件的共有6个.【答案】6个【例9】把数1,2,3,4,5,6分为三组(不考虑组内数的顺序也不考虑组间的顺序),每组两个数,每组的数之和互不相等且都不等于6,共有____________________种分法.【考点】加法原理之分类枚举【难度】4星【题型】填空【关键词】学而思杯,4年级,第7题【解析】枚举法:()()()()()()1,2,3,4,5,6;1,2,3,5,4,6,()()()()()()1,3,2,5,4,6;1,3,2,6,4,5()()()1,4,2,5,3,6;()()()1,6,2,3,4,5共有6种。

【答案】6种【例10】自然数12,456,1256这些数有一个共同的特点,相邻两个数字,左边的数字小于右边的数字.我们取名为“上升数”.用3,6,7,9这四个数,可以组成个“上升数”.【考点】加法原理之分类枚举【难度】4星【题型】填空【关键词】学而思杯,1年级,第6题【解析】这样的“上升数“是36,37,39,67,69,79,367,369,379,679,3679一共有11个.【答案】11个【巩固】自然数21,654,7521这些数有一个共同的特点,相邻两个数字,左边的数字大于右边的数字.我们取名为“下降数”.用4,6,7,9这四个数,可以组成个“下降数”.【考点】加法原理之分类枚举【难度】4星【题型】填空【关键词】学而思杯,2年级,第5题【解析】这样的“下降数“是9764,976,974,964,764,97,96,94,76,74,64,一共有11个.<考点>数学方法之枚举【答案】11个【例11】将左下图中20张扑克牌分成10对,每对红心和黑桃各一张。

问:你能分出几对这样的牌,两张牌上的数的乘积除以10的余数是1?(将A看成1)【考点】加乘原理之综合运用【难度】1星【题型】填空【关键词】华杯赛,初赛,第6题【解析】本题实际上是求1到10这些数中,取出2个数(可以重复)相乘,能组成几个个位是1的数.显然,双数不成.所以只能是1×1,3×7,7×3和9×9,共4对.【答案】4对模块二、分类枚举——分类【例12】甲、乙、丙三个工厂共订300份报纸,每个工厂至少订了99份,至多101份,问:一共有多少种不同的订法?【考点】加法原理之分类枚举【难度】3星【题型】解答【关键词】分类讨论思想【解析】甲厂可以订99、100、101份报纸三种方法.如果甲厂订99份,乙厂有订100份和101份两种方法,丙厂随之而定.如果甲厂订100份,乙厂有订99份、100份和101份三种方法,丙厂随之而定.如果甲厂订101份,乙厂有订99份和100份两种方法,丙厂随之而定.根据加法原理,一共有2327++=种订报方法.【答案】7【巩固】大林和小林共有小人书不超过9本,他们各自有小人书的数目有多少种可能的情况?【考点】加法原理之分类枚举【难度】3星【题型】解答【关键词】分类讨论思想【解析】大林和小林共有9本的话,有10种可能;共有8本的话,有9种可能,……,共有0本的话,有1种可能,所以根据加法原理,一共有10+9+……+3+2+1=55种可能.【答案】55【例13】从1~10中每次取两个不同的数相加,和大于10的共有多少种取法?【考点】加法原理之分类枚举【难度】3星【题型】解答【解析】根据第一个数的大小,将和大于10的取法分为9类:因此,根据加法原理,共有:1+2+3+4+5+4+3+2+1=25种取法使和大于10.【答案】25【巩固】从1~8中每次取两个不同的数相加,和大于10的共有多少种取法?【考点】加法原理之分类枚举【难度】3星【题型】解答【关键词】分类讨论思想【解析】两个数和为11的一共有3种取法;两个数和为12的一共有2种取法;两个数和为13的一共有2种取法;两个数和为14的一共有1种取法;两个数和为15的一共有1种取法;一共有3+2+2+1+1=9种取法.【答案】9【例14】思思想将3个相同的小球放入A、B、C三个盒中,那么一共有________种不同的放法.【考点】加法原理之分类枚举【难度】4星【题型】填空【关键词】学而思杯,3年级,第3题【解析】3个球全放在一个盒子中,3种,2个球放在一个盒子中,还有1个球单放,326⨯=种,一个盒子一个球,因为球是一样的,所以就1种,共有36110++=种【答案】10种【例15】四个学生每人做了一张贺年片,放在桌子上,然后每人去拿一张,但不能拿自己做的一张.问:一共有多少种不同的方法?【考点】加法原理之分类枚举【难度】4星【题型】解答【关键词】分类讨论思想【解析】设四个学生分别是A,B,C,D,他们做的贺年片分别是a,b,c,d.先考虑A拿B做的贺年片b的情况(如下表),一共有3种方法.同样,A拿C或D做的贺年片也有3种方法.一共有3+3+3=9(种)不同的方法.【答案】9【例16】一次,齐王与大将田忌赛马.每人有四匹马,分为四等.田忌知道齐王这次比赛马的出场顺序依次为一等,二等,三等,四等,而且还知道这八匹马跑的最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等,自己的四等.田忌有________种方法安排自己的马的出场顺序,保证自己至少能赢两场比赛.【考点】加法原理之分类枚举【难度】4星【题型】解答【关键词】分类讨论思想,第六届,走美杯【解析】第一场不管怎么样田忌都必输,田忌只可能在接下来的三场里赢得比赛,若三场全胜,则只有一种出场方法;若胜两场,则又分为三种情况:二,三两场胜,此时只能是田忌的一等马赢得齐王的二等马,田忌的二等马赢齐王的三等马,只有这一种情况;二,四两场胜,此时有三种情况;三,四两场胜,此时有七种情况;所以一共有113712+++=种方法.【答案】12【例17】给定三种重量的砝码(每种数量都有足够多个)3kg ,11kg ,17kg ,将它们组合凑成100kg 有种,不同的方法(每种砝码至少用一块。

相关文档
最新文档