小学一年级数学 奥数名师精编试题 枚举法(扫描版)

合集下载

枚举算法经典例题

枚举算法经典例题

枚举算法经典例题一、以下哪个问题适合使用枚举算法解决?A. 查找一个无序数组中的最大值B. 求解旅行商问题(TSP)的最短路径C. 生成一个集合的所有子集D. 对一个有序数组进行二分查找(答案)C二、在使用枚举算法生成一个长度为n的二进制串的所有可能组合时,时间复杂度为多少?A. O(n)B. O(n!)C. O(2n)D. O(n2)(答案)C三、枚举算法在解决以下哪个问题时,可能会因为问题规模过大而变得不实际?A. 找出一个字符串中的所有字符排列B. 计算一个数的阶乘C. 验证一个数是否为素数D. 求解一个50x50的棋盘上的骑士周游问题(答案)D四、以下哪个不是枚举算法的特点?A. 简单易实现B. 适用于所有问题C. 可能产生大量计算D. 通常用于小规模问题(答案)B五、在使用枚举算法解决排列问题时,如果要对n个元素进行排列,总共会有多少种不同的排列方式?A. nB. n!C. 2nD. n2(答案)B六、以下哪个问题不适合直接使用枚举算法解决,因为其解空间太大?A. 找出一个数组中所有元素的和B. 求解一个密码的所有可能组合(密码长度为10,字符集为大小写字母和数字)C. 找出一个字符串中的最长回文子串D. 计算一个数的平方根(精确到小数点后10位)(答案)B七、枚举算法在解决组合问题时,如果要从n个元素中选出k个元素,总共会有多少种不同的组合方式?A. nkB. k!C. C(n, k) = n! / (k!(n-k)!)D. 2n(答案)C八、以下哪个场景是枚举算法的典型应用?A. 大规模数据的排序B. 图的遍历C. 查找一个数是否在有序数组中D. 生成并检查所有可能的解以找到满足条件的解(答案)D。

小学奥数 加法原理之分类枚举(一) 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  加法原理之分类枚举(一) 精选练习例题 含答案解析(附知识点拨及考点)

1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类;② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲知识要点教学目标7-1-1.加法原理之分类枚举(一)2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲模块一、分类枚举——数出来的种类【例1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】小宝买一种礼物有三类方法:第一类,买玩具,有8种方法;第二类,买课外书,有20种方法;第三种,买纪念品,有10种方法.根据加法原理,小宝买一种礼物有8+20+10=38种方法.【答案】38【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】根据加法原理,共有6+4+3+2=15种取法.【答案】15【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】解决这个问题有3类办法:从一班、二班、三班男生中任选1人,从一班18名男生中任选1人有18种选法:同理,从二班20名男生中任选1人有20种选法;从三班16名男生中任意选1人有16种选法;根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:18201654++=种.【答案】54【例2】和为15的两个非零自然数共有对。

小学数学《常规应用题的解法——枚举法》练习题(含答案)

小学数学《常规应用题的解法——枚举法》练习题(含答案)

小学数学《常规应用题的解法——枚举法》练习题(含答案)小学数学《常规应用题的解法——枚举法》练习题(含答案)在小学数学中,常规应用题是我们在学习数学的过程中经常会遇到的一种题型。

而枚举法则是解决常规应用题的一种常见方法。

本文将通过一系列练习题,帮助小学生们更好地理解和掌握枚举法的解题技巧。

练习题一:小明买苹果小明从超市买了6个苹果,每个苹果的重量都不相同。

他想从中选择两个苹果,使得这两个苹果的重量之和恰好等于10克。

请问小明有多少种选择的可能性?解法:首先我们需要列举出所有的可能情况:(1, 9), (2, 8), (3, 7), (4, 6), (5, 5)共有5种选择的可能性。

练习题二:小华的生日礼物小华过生日了,他爸爸送给他3个盒子作为礼物,里面分别装着红、黄、蓝三种颜色的贴纸。

小华每次可以从一个或多个盒子中任意选择贴纸,但是每种颜色的贴纸只能拿一次,问小华一共有多少种选择的方式?解法:对于每个盒子,小华可以选择拿或不拿,所以对于三个盒子就有2^3种选择的方式。

但是,每个盒子至少要拿一个贴纸,所以我们需要减去只拿空盒子的情况,剩下的就是不同选择的方式。

2^3 - 1 = 7小华一共有7种选择的方式。

练习题三:买水果小明去水果店买水果,他买了6个苹果,4个橙子和3个香蕉。

他打算把这些水果分给他的两个朋友,每人至少分到一个水果,并且每个人分到的水果数目不能相同。

请问他有多少种分法?解法:首先,我们先找出所有可能的分法。

(1, 1, 6, 4, 3)(1, 2, 5, 4, 3)(1, 2, 6, 3, 4)(1, 3, 4, 2, 6)(1, 3, 4, 6, 2)(1, 3, 6, 2, 4)(1, 4, 3, 2, 6)(1, 4, 3, 6, 2)共有8种分法。

练习题四:座位安排现在有6个小朋友,他们要坐在一张圆桌周围,每个位置只能坐一个人。

其中小明和小华是好朋友,他们希望他们之间至少有一个空位。

小学奥数题目及解析分类枚举

小学奥数题目及解析分类枚举

小学奥数题目及解析:分类枚举分类枚举,就是依据一定的标准把题目的答案分为几种类型,一一列举出来。

分类枚举的方法主要用来解决一些排列组合的问题,列举时要有序分类,保证答案既不遗漏又不重复,其中分类标准的确定是解题的关键,同一题因标准不同可能有不同的分类方法,好的分类方法会使解题过程变得更加简单。

学会分类枚举,不仅可以解决本讲的问题,遇到更复杂问题时,我们也可以用列举的方法找出部分答案,然后在已有答案中发现规律,从而进一步寻求解题方案。

【题目】:把10只鸽子关在3个同样的笼子里,使得每个笼子里都有鸽子,可以有多少种不同的放法?【解析】:这里笼子都是同样的,因此3只笼子是无序的。

因为10÷3=3……1,根据题中条件,可得鸽子最少的那个笼子里的鸽子不多于3只,不少于1只,我们可以这样分为三类:一、鸽子最少的那个笼子里有1只鸽子,共有4种放法:①1只、1只、8只;②1只、2只、7只;③1只、3只、6只;④1只、4只、5只。

二、鸽子最少的那个笼子里有2只鸽子,共有3种放法:①2只、2只、6只;②2只、3只、5只;③2只、4只、4只。

三、鸽子最少的那个笼子里有3只鸽子,共有1种放法:①3只、3只、4只。

所以共有放法:4+3+1=8(只)。

【题目】:有一架天平和三只重量分别为1克,3克,6克的砝码,你知道用这架天平和这些砝码共能称出多少种重量吗?【解析】:这一题要在孩子学习了三上第三单元,认识了常见的称和质量单位后,再学习比较合适。

如果超前完成,需要对孩子介绍一下天平的用法。

因为1克+3克+6克=10克,所以这架天平最重能称出10克,最轻能称出1克。

因此这架天平最多能称出1克到10克之间的10种不同重量的物体,然后我们再对这10类情况进行验证:①天平左边:物体右边:1克砝码能称出1克重的物体;②天平左边:物体+1克砝码右边:3克砝码能称出2克重的物体;③天平左边:物体右边:3克砝码能称出3克重的物体;④天平左边:物体右边:3克砝码+1克砝码能称出4克重的物体;⑤天平左边:物体+1克砝码右边:6克砝码能称出5克重的物体;⑥天平左边:物体右边:6克砝码能称出6克重的物体;⑦天平左边:物体右边:6克砝码+1克砝码能称出7克重的物体;⑧天平左边:物体+1克砝码右边:6克砝码+3克砝码能称出8克重的物体;⑨天平左边:物体右边:6克砝码+3克砝码能称出9克重的物体;⑩天平左边:物体右边:6克砝码+3克砝码+1克砝码能称出10克重的物体。

奥数-枚举法

奥数-枚举法

枚举法例1 如下图所示,已知长方形的周长为20厘米,长和宽都是整厘米数,这个长方形有多少种可能形状?哪种形状的长方形面积最大?(边长为1厘米的正方形的面积叫做1平方厘米).解:由于长方形的周长是20厘米,可知它的长与宽之和为10厘米.下面列举出符合这个条件的各种长方形.(注意,正方形可以说成是长与宽相等的长方形).下面把5种长方形按实际尺寸大小一一画出来,见下面图(1)~(5).例2 如右图所示,ABCD是一个正方形,边长为2厘米,沿着图中线段从A到C的最短长度为4厘米.问这样的最短路线共有多少条?请一一画出来.解:将各种路线一一列出,可知共6条,见下图.注意,如果题中不要求将路径一一画出,可采用如右图所示方法较为便捷.图中交点处的数字表示到达该点的路线条数,如O点处的数字2,表示由A到O有2条不同的路径,见上图中的(1)和(2);又H点处的数字3的意义也如此,见上图中的(1)、(2)、(3)可知有3条路径可由A到H.仔细观察,可发现各交点处的数字之间的关系,如O点的2等于F点和E点的数字相加之和,即1+1=2,又如,C点的6等于G点和H点的数字相加之和,即3+3=6.例3 在10和31之间有多少个数是3的倍数?解:由尝试法可求出答案:3×4=12 3×5=15 3×6=18 3×7=213×8=24 3×9=27 3×10=30可知满足条件的数是 12、15、18、21、24、27和30共7个.注意,倘若问10和1000之间有多少个数是3的倍数,则用上述一一列举的方法就显得太繁琐了,此时可采用下述方法:10÷3=3余1,可知10以内有3个数是3的倍数;1000÷3=333余1,可知1000以内有333个数是3的倍数;333-3=330,则知10~1000之内有330个数是3的倍数.由上述这些例题可体会枚举法的优点和缺点及其适用范围.例4 两个整数之积为144,差为10,求这两个数?解:列出两个数积为144的各种情况,再寻找满足题目条件的一对出来:1 2 3 4 6 8 9 12144 72 48 36 24 18 16 12可见其中差是10的两个数是8和18,这一对数即为所求.例5 12枚硬币的总值是1元,其中只有5分和1角的两种,问每种硬币各多少个?解:列举出两种硬币的可能搭配:可见满足题目要求的搭配是:四个5分币,八个1角币.例6 小虎给4个小朋友写信.由于粗心,在把信纸装入信封时都给装错了.4个好朋友收到的都是给别人的信.问小虎装错的情况共有多少种可能?解:把4封信编号:1,2,3,4.把小朋友编号,友1,友2,友3,友4.并假定1号信是给友1写的,2号信是给友2写的,3号信是给友3的,4号信是给友4写的:再把各种可能的错装情况列成下表:说明:如第一种错收情况是友1得2号信,友2得了1号信,友3得了4号信,友4得了3号信.。

小学奥数精讲与测试目录

小学奥数精讲与测试目录

第1讲比一比第2讲几与第几第3讲简单分类第4讲认识图形第5讲数与数数第6讲变与不变第7讲位置与顺序第8讲找规律填数第9讲数图形第10讲图形填数第11讲找规律画图形第12讲图形的拼搭第13讲玩火柴棒第14讲单数与双数第15讲简单推理第16讲排列与搭配第17讲数的大小与多少第18讲有趣的排队第19讲简单应用第20讲趣味问题第1讲混合运算第2讲等式的加减法第3讲速算与巧算第4讲比长短第5讲找规律填数第6讲找规律填图第7讲位置与顺序第8讲横式迷第9讲时间问题第10讲简单的周期问题第11讲年龄问题第12讲简单推理第13讲数数与计数第14讲一笔画第15讲两步计算应用题第16讲用尝试法解题第17讲利用图形解题第18讲巧解应用题第19讲火柴棒游戏第20讲数学趣题奥数精讲与测试(三年级)第1讲速算与巧算第2讲平均数第3讲简单数列求和第4讲植树问题第5讲方阵问题第6讲年龄问题第7讲消元问题第8讲逆推问题第9讲简单的逻辑推理问题第10讲奇数与偶数第11讲除法与余数第12讲数线段第13讲数图形第14讲巧求周长第15讲定义新运算第16讲混合运算与应用题第17讲归一问题第18讲盈亏问题第19讲最大与最小第20讲幻方奥数精讲与测试(四年级)第1讲速算与巧算第2讲和倍问题第3讲差倍问题第4讲和差问题第5讲年龄问题第6讲相遇问题第7讲追击问题第8讲火车行程问题第9讲流水问题第10讲植树问题第11讲鸡兔同笼问题第12讲数阵图第13讲长方形的面积第14讲数谜问题第15讲图形的拼切与面积计算第16讲巧算24点第17讲逻辑问题第18讲定义新运算第19讲加法原理与乘法原理第20讲奇数与偶数奥数精讲与测试(五年级)第1讲小数的巧算与大小比较第2讲等差数列第3讲列方程解应用题第4讲平均数第5讲鸡兔同笼问题第6讲平面图形的周长与面积第7讲等积变形第8讲图形的割补与切拼第9讲数的整除特征第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数第13讲数阵问题第14讲周期问题第15讲盈亏问题第16讲完全平方数第17讲相遇和追击问题第18讲流水行船问题第19讲有余数的除法第20讲长方体和正方体THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。

小学数学《常规应用题的解法——枚举法》练习题(含答案)

小学数学《常规应用题的解法——枚举法》练习题(含答案)

小学数学《常规应用题的解法——枚举法》练习题(含答案)知识要点我们在课堂上遇到的数学问题,有一些需要计算总数或种类的趣题,因其数量关系比较隐蔽,很难利用计算的方法解决。

我们可以抓住对象的特征,按照一定的顺序,选择恰当的标准,把问题分为不重复、不遗漏的有限种情形,通过一一列举或计数,最终达到解决目的。

这就是枚举法,也叫做列举法或穷举法。

解题指导11.枚举法在数字组合中的应用。

按照一定的组合规律,把所有组合的数一一列举出来。

【例1】用数字1,2,3组成不同的三位数,分别是哪几个数?【思路点拨】根据百位上的数字的不同分为3类。

第一类:百位上为1的有:123 132第二类:百位上为2的有:213 231第三类:百位上为3的有:312 321答:可以组成123,132,213 ,231,312 ,321六个数。

【变式题1】用0、6、7、8、9这五个数字组成各个数位上数字不相同的两位数共有多少个?解题指导22.骰子中的点数掷骰子是生活中常见的游戏玩法,既可以掷一个骰子,比较掷出的点数大小,也可以掷两个骰子,把两个骰子的点数相加,再比较点数的大小。

一个骰子只有6个点数,而两个骰子的点数经过组合最小是2,最大是12。

在解决有关掷两个骰子的问题时,要全面考虑所有出现的点数情况。

【例2】小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。

若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。

试判断他们两人谁获胜的可能性大。

【思路点拨】将两枚骰子的点数和分别为7与8的各种情况都列举出来,就可得到问题的结论。

用a+b表示第一枚骰子的点数为a,第二枚骰子的点数是b的情况。

出现7的情况共有6种,它们是:1+6,2+5,3+4,4+3,5+2,6+1。

出现8的情况共有5种,它们是:2+6,3+5,4+4,5+3,6+2。

所以,小明获胜的可能性大。

注意,本题中若认为出现7的情况有1+6,2+5,3+4三种,出现8的情况有2+6,3+5,4+4也是三种,从而得“两人获胜的可能性一样大”,那就错了。

小学奥林匹克数学(一年级)

小学奥林匹克数学(一年级)

小学奥林匹克数学思维方法训练大全九龙坡区教师进修校邓永富编给读者的话在人生漫长的学习过程中有几个重要的分化期,其中小学阶段,尤其是小学三四年级是第一个也是最重要的一个分化期。

如果说智慧是成功大厦的基石,数学则是开启智慧大门的金钥匙。

愿每一位小朋友用奥林匹克的拼搏精神,从一年级开始学好数学的思维方法, 亲自动手摆一摆,认真动脑想一想,开启智慧大门,成为一个聪明的人!目录第一讲摆一摆想一想 (1)第二讲折一折分一分 (3)第三讲速算与巧算 (5)第四讲统计与计数 (7)第五讲身边数学 (10)第六讲数字游戏 (12)第七讲火柴棍游戏(一) (14)第八讲火柴棍游戏(二) (16)第九讲找出不同 (18)第十讲寻找规律 (20)第十一讲小发明家 (22)第一讲摆一摆想一想例1 用两根火柴棍,摆成一个锐角、一个直角、一个钝角。

用两根火柴棍,你还能摆出一个什么?例2 用四根火柴棍摆出两条平行直线,再摆出两条相交直线。

用四根火柴棍,你还能摆出一个什么?例3 用火柴棍摆出一个三角形、一个正方形、一个菱形、一个长方形、一个平行四边形、一个等腰梯形、一个五边形、一个六边形、一个八边形。

你还能摆出什么图形?例4 用三根火柴棍可以摆出一个三角形,如图。

(1)再加两根火柴棍,摆出两个三角形(2)再加两根,摆出三个三角形来。

(3)再加两根,摆出五个三角形来。

(1)(2)(3)说一说:你发现了什么?1习题一1.用两根小木棍,摆成一个很小的锐角,然后慢慢地挪动一根,使锐角渐渐变大。

如果继续转动小棍,将会出现什么角?2.如右图所示,用火柴棍摆了五个三角形。

(1)拿掉哪三根,就可以变成一个三角形?(2)拿掉哪两根,就可变成两个三角形?(3)拿掉哪一根,就可变成三个三角形?3.如右图所示,用火柴棍摆了五个正方形。

(1)请你拿掉两根,剩下三个正方形。

(2)请你拿掉两根,剩下两个正方形。

4.如图所示,用火柴棍摆了六个三角形。

如果拿掉三根火柴棍就变成了三个三角形,应该拿掉哪三根?试试看。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二年级奥数题及答案:枚举法
二年级奥数题及答案:枚举法
1.一个长方形的周长是22米,如果它的长和宽都是整米数,问:
①这个长方形的面积有多少可能值?
②面积最大的长方形的长和宽是多少?
2.有四种不同面值的硬币各一枚,它们的形状也不相同,用它们共能组成多少种不同钱数?
3.三个自然数的乘积是24,问由这样的三个数所组成的数组有多少个?如(1,2,12)就是其中的一个,而且要注意数组中数字相同但顺序不同的算作同一数组,如(1,2,12)和(2,12,1)是同一数组.
4.小虎给3个小朋友写信,由于粗心,把信装入信封时都给装错了,结果3个小朋友收到的都不是给自己的信,请问小虎错装的情况共有多少种可能?
5.一个学生假期往A、B、C三个城市游览.他今天在这个城市,明天就到另一个城市.假如他第一天在A市,第五天又回到A市.问他的游览路线共有几种不同的方案?
6.下图中有6个点,9条线段,一只甲虫从A点出发,要沿着某几条线段爬到F点.行进中甲虫只能向右、向下或向右下方运动.问这只甲虫有多少种不同的走法?
7.小明有一套黄色数字卡片、、,有一套蓝色数字卡片、、.一天他偶然用卡片做了下面的游戏:把不同色的卡片交叉配对,一次配成3对,然后把每对卡片上的黄蓝数字相乘之后再相加求和,你知道他共找到了多少种配对相乘求和的方式吗?比如说下面是其中一种:
黄蓝黄蓝黄蓝
8.五个学生友1,友2,友3,友4,友5一同去游玩,他们将各自的书包放在了一处.分手时友1带头开了个玩笑,他把友2小朋友的书包拿走了,后来其他的小朋友也都拿了别人的书包.试问在这次玩笑中故意错拿书包的情形有多少种不同方式?
习题解答
1.解:这个长方形的长和宽之和是22÷2=11(米),由长方形的面积=长×宽,可知:
由上表可见面积最大的长方形的长是6米、宽是5米,面积是30平方米.
猜想:由本讲的例1和习题1这两题来看,周长一定的所有长方形中,长和宽相等或相近那个长方形面积最大.这是有名的“等周问题”的特例.
2.解:把各种不同的组合及其对应的钱数列表枚举如下:
数一数可知,能组成15种不同的钱数.注意它们是从1到15的15个自然数:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15.
3.解:不计数组中数的顺序,所有乘积为24的三个数所组成的数组共有6组,枚举如下:
(1,1,24),(1,2,12),(1,3,8),
(1,4,6),(2,2,6),(2,3,4).
4.解:把三封信编号为1号、2号、3号;
把三个小朋友编号为友1、友2、友3;1号、2号、3号信应该分别发给友1、友2、友3。

按题意,友1没有收到给自己的1号信,他只可能收到2号或3号信.
当友1收到2号信时,友2只可能收到3号信,则友3收到1号信;
当友1收到3号信时,友2只可能收到1号信,则友3收到2号信.
可见共有2种可能的错装情况,列表更为清楚,
5.解:请看下面的树形图.
可见他第五天回到A市的不同游览路线共有6种,分别是:
①A→B→A→B→A ④A→C→A→B→A
②A→B→A→C→A ⑤A→C→A→C→A
③A→B→C→B→A ⑥A→C→B→C→A.
6.解:经过E点的有3条路线,不经过E点的有2条路线,共有5条不同的路线,见下图.
7.解:可以按下面的方法找出所有不同的配对相乘求和方式:
可见共有6种不同的配对相乘求和方式,其中第①种情况(可叫做同序配对)各乘积之和最大,第⑥种情况(可叫做逆序配对)各乘积之和最小.
如果你感兴趣,可以进一步问,这个结果有普遍性吗?我们再进一步探讨一下:
结果和上述相同.
2.假如黄蓝卡片各有4张,不同的配对方式有很多.
(4×3×2×1=24种,这点同学们以后就会明白!)
我们找几种情况试一试:
①同序配对:
②逆序配对
③交叉配对
交叉配对
交叉配对
可见:同序配对,各乘积之和最大:30
逆序配对,各乘积之和最小:20
交叉配对,各乘积之和居中:大于20小于30.
猜想:两个项数相同的数列配对相乘积之和,同序配对时最大,逆序配对时最小,交叉配对时在最小值和最大值之间.
8.解:设友1、友2、友3、友4、友5的书包分别是1号、2号、3号、4号、5号.因为友1拿了2号书包,那么友2就有拿1号、3号、4号和5号书包的四种可能.如果友2拿了1号书包,友3拿了4号书包,友4拿了5号书包,友5拿了3号书包,这就是一种错拿方式.其他方式看如下的树形图.
数一数,共有11种不同的错拿方式.。

相关文档
最新文档