2016-2017学年江苏省无锡市惠山区七年级(下)期中数学试卷
2015-2016学年江苏省无锡市惠山区七年级(下)期中数学试卷

17. (2 分)已知多项式 x2+mx+16 是关于 x 的完全平方式,则 m= 18. (2 分)若 a2+b2﹣2a+4b+5=0,则 2a+b= .
.
19. (2 分)三角形 ABC 中,∠ABC 和∠ACB 的角平分线相交于点 P,连接 AP, 若∠BPC=130°,则∠BAP= .
三、解答题(本大题共 8 小题,共 52 分.解答需写出必要的演算过程、解题步骤 或文字说明). 20. (12 分)计算 (1) (2) (﹣a2)3﹣6a2•a4; (3) (x+1)2﹣(﹣x﹣2) (﹣x+2) (4) (2a﹣b﹣3) (2a+b﹣3) 21. (6 分)因式分解: (1)4a2﹣16 (2) (x+2) (x+4)+1.
13. (2 分)已知 x+y=4,x﹣y=﹣2,则 x2﹣y2= 14. (2 分)已知
是二元一次方程 mx+y=3 的解,则 m 的值是
15. (2 分)如图,把△ABC 沿线段 DE 折叠,使点 A 落在点 F 处,BC∥DE,若∠ B=48°,则∠BDF= .
第2页(共18页)
16. (2 分)把一副常用的三角板如图所示拼在一起,点 B 在 AE 上,那么图中∠ ABC= .
2015-2016 学年江苏省无锡市惠山区七年级(下)期中数学试卷
一、精心选一选(本大题共有 8 小题,每小题 3 分,共 24 分.请将正确选项前 的字母代号填在答题纸相应位置上) 1. (3 分)如果一个多边形的内角和是 720°,那么这个多边形是( A.四边形 B.五边形 C.六边形 )
D.七边形
(3)如图 2,四边形 ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线 所在的直线构成的角,若∠A+∠D=230 度,则∠F= .
江苏省无锡市惠山区2016-2017学年七年级(下)期中数学试卷(解析版)

2016-2017学年江苏省无锡市惠山区七年级(下)期中数学试卷一、选择题(每题3分,共30分)1.下列各式计算正确的是()A.a5+a5=a10B.a6•a4=a24C.a6÷a6=1 D.(a4)2=a62.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6 B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)3.若一个多边形的每个内角都为108°,则它的边数为()A.5 B.8 C.6 D.104.10﹣3等于()A.﹣30 B.﹣3 000 C.0.001 D.﹣0.0015.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30°B.60°C.90°D.120°6.在下列各图的△ABC中,正确画出AC边上的高的图形是()A. B. C.D.7.用科学记数法表示0.000034,结果是()A.3.4×10﹣5B.3.4×10﹣4C.0.34×10﹣4D.34×10﹣68.如图,∠1和∠2是同位角的图形有()A.1个 B.2个 C.3个 D.4个9.a,b,c为△ABC的三边,化简|a+b+c|﹣|a﹣b﹣c|的结果()A.2b+2c B.2b﹣2c C.0 D.2a10.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=98°,则∠C的度数为()A.40°B.41°C.42°D.43°二、填空题(每空2分,共16分)11.计算:(﹣2x2y)3=.12.一个等腰三角形的边长分别是4cm和9cm,则它的周长是cm.13.在△ABC中,∠A=100°,∠B=3∠C,则∠B=度.14.(x+2)(3x﹣5)=3x2﹣bx﹣10,则b=.15.若x2﹣ax+9是一个完全平方式,则a=.16.如图,直径为2cm的圆O1平移3cm到圆O2,则图中阴影部分的面积为cm2.17.已知,如图,AB∥CD,则∠α、∠β、∠γ之间的关系为.18.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).三、解答题(8大题,共54分)19.计算:(1)﹣22+30﹣(﹣)﹣1(2)(2a+b)(b﹣2a)(3 )(a﹣3b)2.20.因式分解:(1)a(x﹣y)﹣b(y﹣x)(2)3ax2﹣12ay2(3)(x+y)2+4(x+y+1)21.对于任何实数,我们规定符号=ad﹣bc,例如:=1×4﹣2×3=﹣2(1)按照这个规律请你计算的值;(2)按照这个规定请你计算,当a2﹣3a+1=0时,求的值.22.(1)已知2x=3,2y=5,求:2x﹣2y的值.(2)x﹣2y+1=0,求:2x÷4y×8的值.23.若已知x+y=3,xy=1,试求(1)(x﹣y)2的值(2)x3y+xy3的值.24.如图,DE⊥AB,EF∥AC,∠A=32°,求∠DEF的度数.25.观察以下一系列等式:①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;④;…(1)请按这个顺序仿照前面的等式写出第④个等式;(2)若字母n代表第n个等式,请用字母n表示上面所发现的规律:;(3)请利用上述规律计算:20+21+22+23+ (21000)26.在△ABC中,∠C=90°,BD是△ABC的角平分线,P是射线AC上任意一点(不与A、D、C三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.(1)如图,当点P在线段AC上时,说明∠PDE=∠PED.(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.2016-2017学年江苏省无锡市惠山区七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.下列各式计算正确的是()A.a5+a5=a10B.a6•a4=a24C.a6÷a6=1 D.(a4)2=a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、同底数幂的乘法底数不变指数相加,故B不符合题意;C、同底数幂的除法底数不变指数相减,故C符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:C.2.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6 B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)【考点】51:因式分解的意义.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选D.3.若一个多边形的每个内角都为108°,则它的边数为()A.5 B.8 C.6 D.10【考点】L3:多边形内角与外角.【分析】根据平角的定义,先求出每一个外角的度数,多边形的边数等于360°除以外角的度数,列式计算即可.【解答】解:∵多边形每个内角都为108°,∴多边形每个外角都为180°﹣108°=72°,∴边数=360°÷72°=5.故选A.4.10﹣3等于()A.﹣30 B.﹣3 000 C.0.001 D.﹣0.001【考点】6F:负整数指数幂.【分析】依据负整数指数幂的性质解答即可.【解答】解:10﹣3==0.001.故选:C.5.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30°B.60°C.90°D.120°【考点】JA:平行线的性质.【分析】先根据两直线平行,内错角相等得到∠ADB=∠B=30°,再利用角平分线定义得到∠ADE=2∠B=60°,然后再根据两直线平行,内错角相等即可得到∠DEC 的度数.【解答】解:∵AD∥BC,∴∠ADB=∠B=30°,∵DB平分∠ADE,∴∠ADE=2∠B=60°,∵AD∥BC,∴∠DEC=∠ADE=60°.故选B.6.在下列各图的△ABC中,正确画出AC边上的高的图形是()A. B.C.D.【考点】K2:三角形的角平分线、中线和高.【分析】根据三角形的高的概念判断.【解答】解:AC边上的高就是过B作垂线垂直AC交AC于某点,因此只有C符合条件,故选C.7.用科学记数法表示0.000034,结果是()A.3.4×10﹣5B.3.4×10﹣4C.0.34×10﹣4D.34×10﹣6【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示0.000034,结果是3.4×10﹣5,故选:A.8.如图,∠1和∠2是同位角的图形有()A.1个 B.2个 C.3个 D.4个【考点】J6:同位角、内错角、同旁内角.【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【解答】解:根据同位角定义可得①②⑤是同位角,故选:C.9.a,b,c为△ABC的三边,化简|a+b+c|﹣|a﹣b﹣c|的结果()A.2b+2c B.2b﹣2c C.0 D.2a【考点】K6:三角形三边关系;44:整式的加减.【分析】根据三角形的三边关系判断出a+b+c即a﹣b﹣c的符号,再根据绝对值的性质去掉绝对值符号,合并同类项即可.【解答】解:∵△ABC的三边为a、b、c,∴a+b+c>0,a﹣b﹣c<0,∴原式=a+b+c﹣(b+c﹣a)=a+b+c﹣b﹣c+a=2a,故选D.10.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=98°,则∠C的度数为()A.40°B.41°C.42°D.43°【考点】K7:三角形内角和定理.【分析】如图,连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=98°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°,由此即可解决问题.【解答】解:如图,连接AO、BO.由题意EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°,∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO,∵∠CDO+∠CFO=98°,∴2∠DAO+2∠FBO=98°,∴∠DAO+∠FBO=49°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=139°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣139°=41°,故选B.二、填空题(每空2分,共16分)11.计算:(﹣2x2y)3=﹣8x6y3.【考点】47:幂的乘方与积的乘方.【分析】根据幂的乘方(底数不变,指数相乘)与积的乘方(把每一个因式分别乘方,再把所得的幂相乘)的性质求解即可求得答案.【解答】解:(﹣2x2y)3=﹣8x6y3.故答案为:﹣8x6y3.12.一个等腰三角形的边长分别是4cm和9cm,则它的周长是22cm.【考点】KH:等腰三角形的性质;K6:三角形三边关系.【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当4cm是腰时,4+4<9cm,不符合三角形三边关系,故舍去;当9cm是腰时,周长=9+9+4=22cm.故该三角形的周长为22cm.故答案为:22.13.在△ABC中,∠A=100°,∠B=3∠C,则∠B=60度.【考点】K7:三角形内角和定理.【分析】由已知得100°+3∠C+∠C=180°,所以∠C=20°,∠B=3∠C=60°.【解答】解:设∠C为x.100°+x+3x=180°,∴x=20°,∴∠B=20°×3=60°.14.(x+2)(3x﹣5)=3x2﹣bx﹣10,则b=﹣1.【考点】4B:多项式乘多项式.【分析】根据多项式乘以多项式法则展开后,根据对应项的系数相等即可得出b 的值.【解答】解:(x+2)(3x﹣5)=3x2+x﹣10,∵(x+2)(3x﹣5)=3x2﹣bx﹣10,∴﹣b=1∴b=﹣1,故答案为:﹣1.15.若x2﹣ax+9是一个完全平方式,则a=±6.【考点】4E:完全平方式.【分析】根据完全平方公式得出﹣ax=±2•x•3,求出即可.【解答】解:∵x2﹣ax+9是一个完全平方式,∴﹣ax=±2•x•3,a=±6,故答案为:±6.16.如图,直径为2cm的圆O1平移3cm到圆O2,则图中阴影部分的面积为6 cm2.【考点】Q2:平移的性质.【分析】由平移的性质知,⊙O1与⊙O2是全等的,所以图中的阴影部分的面积与图中的矩形的面积是相等的,故图中阴影部分面积可求.【解答】解:∵⊙O1平移3cm到⊙O2∴⊙O1与⊙O2全等∴图中的阴影部分的面积=图中的矩形的面积∴2×3=6cm2∴图中阴影部分面积为6cm2.故答案为:6.17.已知,如图,AB∥CD,则∠α、∠β、∠γ之间的关系为∠α+∠β﹣∠γ=180°.【考点】JA:平行线的性质.【分析】过E作EF∥AB∥CD,由平行线的质可得∠α+∠AEF=180°,∠FED=∠γ,由∠β=∠AEF+∠FED即可得∠α、∠β、∠γ之间的关系.【解答】解:过点E作EF∥AB∴∠α+∠AEF=180°(两直线平行,同旁内角互补)∵AB∥CD(已知)∴EF∥CD.∴∠FED=∠EDC(两直线平行,内错角相等)∵∠β=∠AEF+∠FED又∵∠γ=∠EDC(已知)∴∠α+∠β﹣∠γ=180°.18.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).【考点】4G:平方差公式的几何背景.【分析】利用大正方形的面积减去4个小正方形的面积即可求解.【解答】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2﹣4×()2=ab.故答案为:ab.三、解答题(8大题,共54分)19.计算:(1)﹣22+30﹣(﹣)﹣1(2)(2a+b)(b﹣2a)(3 )(a﹣3b)2.【考点】4F:平方差公式;4C:完全平方公式;6E:零指数幂;6F:负整数指数幂.【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用平方差公式计算即可得到结果;(3)原式利用完全平方公式展开即可得到结果.【解答】解:(1)原式=﹣4+1﹣(﹣2)=﹣1;(2)原式=(b+2a)(b﹣2a)=b2﹣4a2;(3)原式=a2﹣2×a×3b+(3b)2=a2﹣6ab+9b2.20.因式分解:(1)a(x﹣y)﹣b(y﹣x)(2)3ax2﹣12ay2(3)(x+y)2+4(x+y+1)【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式变形后,提取公因式即可得到结果;(2)原式提取公因式,再利用平方差公式分解即可;(3)原式整理后,利用完全平方公式分解即可.【解答】解:(1)原式=a(x﹣y)+b(x﹣y)=(x﹣y)(a+b);(2)原式=3a(x2﹣4y2)=3a(x+2y)(x﹣2y);(3)原式=(x+y)2+4(x+y)+4=(x+y+2)2.21.对于任何实数,我们规定符号=ad﹣bc,例如:=1×4﹣2×3=﹣2(1)按照这个规律请你计算的值;(2)按照这个规定请你计算,当a2﹣3a+1=0时,求的值.【考点】4J:整式的混合运算—化简求值;1G:有理数的混合运算.【分析】(1)根据已知展开,再求出即可;(2)根据已知展开,再算乘法,合并同类项,变形后代入求出即可.【解答】解:(1)原式=﹣2×5﹣3×4=﹣22;(2)原式=(a+1)(a﹣1)﹣3a(a﹣2)=a2﹣1﹣3a2+6a=﹣2a2+6a﹣1,∵a2﹣3a+1=0,∴a2﹣3a=﹣1,∴原式=﹣2(a2﹣3a)﹣1=﹣2×(﹣1)﹣1=1.22.(1)已知2x=3,2y=5,求:2x﹣2y的值.(2)x﹣2y+1=0,求:2x÷4y×8的值.【考点】48:同底数幂的除法;47:幂的乘方与积的乘方.【分析】(1)直接利用同底数米的除法运算法则将原式变形求出答案;(2)直接利用同底数米的除法运算法则将原式变形求出答案.【解答】解:(1)∵2x=3,2y=5,∴2x﹣2y=2x÷(2y)2,=3÷52=;(2)∵x﹣2y+1=0,∴x﹣2y=﹣1,∴2x÷4y×8=2x﹣2y×8=2﹣1×8=4.23.若已知x+y=3,xy=1,试求(1)(x﹣y)2的值(2)x3y+xy3的值.【考点】59:因式分解的应用.【分析】(1)原式利用完全平方公式变形,将已知等式代入计算即可求出值;(2)原式提取公因式,再利用完全平方公式变形,将各自的值代入计算即可求出值.【解答】解:(1)∵x+y=3,xy=1;∴(x﹣y)2=(x+y)2﹣4xy=9﹣4=5;(2)∵x+y=3,xy=1,∴x3y+xy3=xy[(x+y)2﹣2xy]=9﹣2=7.24.如图,DE⊥AB,EF∥AC,∠A=32°,求∠DEF的度数.【考点】JA:平行线的性质.【分析】先根据DE⊥AB可知∠ADE=90°,再由三角形外角的性质求出∠DGC的度数,根据平行线的性质即可得出结论.【解答】解:∵DE⊥AB,∴∠ADE=90°,∵∠DGC是△ADG的外角,∠A=32°,∴∠DGC=∠A+∠ADG=32°+90°=122°,∵EF∥AC,∴∠DEF=∠DGC=122°.25.观察以下一系列等式:①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;④24﹣23=16﹣8=23;…(1)请按这个顺序仿照前面的等式写出第④个等式;24﹣23=16﹣8=23(2)若字母n代表第n个等式,请用字母n表示上面所发现的规律:2n﹣2n ﹣1=2n﹣1;(3)请利用上述规律计算:20+21+22+23+ (21000)【考点】37:规律型:数字的变化类.【分析】(1)根据已知等式的指数与序数的关系即可得;(2)观察各等式得到2的相邻两个正整数幂的差等于2的较小的正整数次幂,即2n﹣2n﹣1=2n﹣1(n为正整数);(3)由(1)(2)得20=21﹣20,21=22﹣21,22=22﹣21,…,21000=21001﹣21000,代入待求等式,两两相消即可得.【解答】解:(1)∵①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;∴第④个等式为:24﹣23=16﹣8=23,故答案为:24﹣23=16﹣8=23;(2)由(1)知,第n个等式为:2n﹣2n﹣1=2n﹣1,故答案为:2n﹣2n﹣1=2n﹣1;(3)∵20=21﹣20,21=22﹣21,22=22﹣21,…,21000=21001﹣21000,∴20+21+22+23+…+21000=(21﹣20)+(22﹣21)+(22﹣21)+…+=21001﹣20=21001﹣1.26.在△ABC中,∠C=90°,BD是△ABC的角平分线,P是射线AC上任意一点(不与A、D、C三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.(1)如图,当点P在线段AC上时,说明∠PDE=∠PED.(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.【考点】K7:三角形内角和定理;J9:平行线的判定.【分析】(1)由PQ与AB垂直,得到一对直角相等,理由直角三角形的两锐角互余得到两对角互余,再BD为角平分线,利用角平分线定义得到一对角相等,再由对顶角相等,利用等量代换即可得证;(2)分两种情况,当P在线段AC上时,如图1所示,可得出PF与BD平行,由第一问的结论利用等角对等边得到PD=PE,利用角平分线定义及外角性质得到一对内错角相等,利用内错角相等两直线平行即可得证;当P在AC延长线时,PF垂直于BD,由PD=PE,利用三线合一即可得证.【解答】解:(1)∵PQ⊥AB,∴∠EQB=∠C=90°,∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°,∵BD为∠ABC的平分线,∴∠CBD=∠EBQ,∵∠PED=∠BEQ,∴∠PDE=∠PED;(2)当P在线段AC上时,如图1所示,此时PF∥BD,理由为:∵∠PDE=∠PED,∴PD=PE,∵PF为∠CPQ的平分线,∠CPQ为△PDE的外角,∴∠CPF=∠QPF=∠PDE=∠PED,∴PF∥BD;当P在线段AC延长线上时,如图2所示,PF⊥BD,理由为:∵∠PDE=∠PED,∴PD=PE,∵PM为∠CPQ的平分线,∴PF⊥BD.2017年5月23日。
无锡市惠山区2016-2017学年七年级下数学期末试卷(含答案)

2016~2017学年第二学期初一数学期末试卷 2017.6一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号填写在题后的括号内)1.下列运算中,正确的是( )A .22x x x =⋅B .22)(xy xy = C .632)(x x = D .422x x x =+2.如果,下列各式中正确的是( )a b <A . B .C .D .22ac bc <11a b >33a b ->-44a b >3.不等式组 的解集在数轴上可以表示为( )24357x x >-⎧⎨-≤⎩4.已知是二元一次方程的一个解,则的值为( )21x y =⎧⎨=-⎩21x my +=m A .3 B .-5 C .-3 D .55.如图,不能判断l 1∥l 2的条件是( )A .∠1=∠3B .∠2+∠4=180°C .∠4=∠5D .∠2=∠36.下列长度的四根木棒,能与长度分别为2cm 和5cm 的木棒构成三角形的是( ) A .3 B .4 C .7 D .107.下列命题是真命题的是( )A .同旁内角互补B .三角形的一个外角等于两个内角的和C .若a 2=b 2,则a =bD .同角的余角相等8.如图,已知太阳光线AC 和DE 是平行的,在同一时刻两根高度相同的木杆竖直插在地面上,在太阳光照射下,其影子一样长.这里判断影长相等利用了全等图形的性质,其中判断△ABC ≌△DFE 的依据是( )A .SASB .AASC .HLD .ASA9.若关于的不等式组的所有整数解的和是10,则m 的取值范围是( )x 0321x m x -<⎧⎨-≤⎩ A . B . C . D .45m <<45m <≤45m ≤<45m ≤≤10.设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等份,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;……, 依此类推,则S 5的值为( )(第5题图)(第8题图)(第15题图)(第17题图)A .B .8191二、填空题(本大题共有8小题,每小题2分,共16分.不需要写出解答过程,请把答案直接填写在题中的横线上)11.肥皂泡额泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 mm .12.分解因式:= .23105x x -13.若,则= .4,9nnx y ==()nxy 14.内角和是外角和的2倍的多边形是 边形.15.如图,A 、B 两点分别位于一个池塘的两端,C 是AD 的中点,也是BE 的中点,若DE =20米,则AB 的长为____________米.16.若多项式是一个完全平方式,则的值为 .9)1(2+-+x k x k 17.如图,将△ABC 沿DE 、EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO +∠CFO =88°,则∠C 的度数为= .18.若二元一次方程组的解,的值恰好是一个等腰三角形两边的长,⎩⎨⎧=++=+my x m y x 232x y 且这个等腰三角形的周长为7,则的值为____________.m 三、解答题(本大题共有8小题,共54分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题共有2小题,满分8分)计算:(1) (2)201701)1()2017()21(---+-π32423)2()(a a a a ÷+⋅-20.(本题共有2小题,满分8分)因式分解:(1) (2)a a a +-23214-x1FEDCB A 21.(本题共有2小题,满分8分)(1)解方程组: (2)求不等式的最大整数解.⎩⎨⎧=++=18223y x y x 241312+<--x x 22.(本题满分5分)先化简,再求值: ,其中.22(3)(2)(2)2x x x x +++--1x =-23.(本题满分5分)已知.63=-y x (1)用含的代数式表示的形式为 ;x y (2)若,求的取值范围.31≤<-y x 24.(本题满分6分)如图,在△ABC 和△DEF 中,已知AB = DE ,BE = CF ,∠B =∠1,求证:AC ∥DF .25.(本题满分7分)规定两数a ,b 之间的一种运算,记作(a ,b ):如果,那么(a ,b )=c .b a c=例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=_______,(5,1)=_______,(2,)=_______.41(2)小明在研究这种运算时发现一个现象:(3n ,4n )=(3,4)小明给出了如下的证明:设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)25.(本题满分7分)9岁的小芳身高1.36米,她的表姐明年想报考北京的大学.表姐的父母打算今年暑假带着小芳及其表姐先去北京旅游一趟,对北京有所了解.他们四人7月31日下午从无锡出发,1日到4日在北京旅游,8月5日上午返回无锡.无锡与北京之间的火车票和飞机票价如下:火车 (高铁二等座) 全票524元,身高1.1~1.5米的儿童享受半价票;飞机(普通舱) 全票1240元,已满2周岁未满12周岁的儿童享受半价票.他们往北京的开支预计如下:住宿费(2人一间的标准间)伙食费市内交通费旅游景点门票费(身高超过1.2米全票)每间每天x元每人每天100元每人每天y元每人每天120元假设他们四人在北京的住宿费刚好等于上表所示其他三项费用之和,7月31日和8月5日合计按一天计算,不参观景点,但产生住宿、伙食、市内交通三项费用.(1)他们往返都坐火车,结算下来本次旅游总共开支了13668元,求x,y的值;(2)若去时坐火车,回来坐飞机,且飞机成人票打五五折,其他开支不变,他们准备了14 000元,是否够用?如果不够,他们准备不再增加开支,而是压缩住宿的费用,请问他们预定的标准间房价每天不能超过多少元?2016~2017学年第二学期初一数学期末试卷答案 2017.6一、选择题:1.C 2.C 3.B 4.A 5.D6.B 7.D 8.B 9.B 10.D二、填空题:11. 12. 13.36 14.六4107-⨯)2(52-xx15.20 16.7或-5 17.46° 18.2三、解答题:19.(1)原式= (2分) )1(12--+ = (4分)4(2)原式= (2分)3854a a a ÷+- = (4分)53a 20.(1)原式= (2分))12(2+-a a a = (4分)2)1(-a a (2)原式= (2分))1)(1(22-+x x = (4分))1)(1)(1(2-++x x x 21.(1)(解对一个得2分,共4分)⎩⎨⎧==28y x (2)(3分),的最大整数解是19(4分)20<x x 22.化简得(2分),求值得(4分) 56+x 1-23.(1)(2分)63-=x y (2)(5分)335≤<x 24. 证得:BC=EF (1分)证得:△ABC ≌△DEF (3分)证得:∠ACB =∠F (4分) 证得:AC ∥DF (6分)25.(1)3,0,-2(每空1分) (2)(具体情况具体给分,满分4分)设(3,4)=x ,(3,5)=y则,=543=xy3 ∴20333=⋅=+y x yx∴(3,20)=x+y∴(3,4)+(3,5)=(3,20)26.(1)往返高铁费:(524×3+524÷2)×2=3668元 ⎩⎨⎧++++=++⨯⨯=⨯1920202000103668136681920204510052y x y x 解得: (3分)⎩⎨⎧==54500y x (2)往返交通费:524×3+524÷2+1240×0.55×3+1240÷2=45004500+5000+2000+1080+1920=14500>14000,不够;(5分) 设预定的房间房价每天a 元则4500+2000+1080+1920+10a ≤14000,解得a ≤450,答:标准间房价每日每间不能超过450元.(7分)。
江苏省无锡七年级(下)期中数学试卷(含答案)

七年级(下)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D. 2.若A是五次多项式,B是三次多项式,则A+B一定是()A. 五次整式B. 八次多项式C. 三次多项式D. 次数不能确定3.下列计算正确的是()A. B. C. D. 4.9x2-mxy+16y2是一个完全平方式,那么m的值是()A. 12B. C. D. 5.下列各式从左到右的变形,是因式分解的是()A. B. C. D. 6.根据篮球比赛规则:赢一场得2分,输一场得1分,在某次中学生篮球联赛中,某球队赛了12场,赢了x场输了y场,得20分,则可以列出方程组()A. B. C. D. 7.已知三角形的周长小于13,各边长均为整数且三边各不相等,那么这样的三角形个数共有()A. 2B. 3C. 4D. 58.关于x、y的方程组的解是方程3x+2y=17的一个解,那么m的值是()A. 2B. C. 1D. 9.如图,AB∥CD,直线EF分别交AB,CD于E,F两点,∠BEF的平分线交CD于点G,若∠EFG=72°,则∠EGF等于()A. B. C. D. 10.如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=132°,∠BGC=118°,则∠A的度数为()A. B. C. D. 二、填空题(本大题共8小题,共16.0分)第1页,共19页11. 计算: = ______ .12. 遗传物质脱氧核糖核酸(DNA )的分子直径为0.000 0002cm ,用科学记数法表示为______cm . 13. 已知一个五边形的4个内角都是100°,则第5个内角的度数是______ 度.度.14. 已知2n =a ,3n =b ,则6n= ______ .15. 已知s +t =4,则s 2-t 2+8t =______.16. 如图,小明从点A 向北偏东75°方向走到B 点,又从B点向南偏西30°方向走到点C ,则∠ABC 的度数为______ .17. 若关于x 、y 的二元一次方程组的二元一次方程组 的解是的解是 ,则关于x 、y 的二元一次方程组次方程组 的解是______ .18. 将1,2,3,…,100这100个自然数,任意分为50组,每组两个数,现将每组的两个数中任一数值记作a ,另一个记作b ,代入代数式 中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是______. 三、计算题(本大题共1小题,共6.0分)19. 先化简,再求值 (x -2)2+2(x +2)(x -4)-(x -3)(x +3),其中x =-1.四、解答题(本大题共8小题,共58.0分) 20. 计算:计算:(1)(-3)2-2-3+30; (2).21. 把下列各式分解因式:把下列各式分解因式:(1)2x 2-8xy +8y 2 (2)4x 3-4x 2y -(x -y )22. 解方程组:解方程组:(1) ; (2) .23. 如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助于网格):,按要求进行下列作图(只能借助于网格):(1)画出△ABC 中BC 边上的高(需写出结论);边上的高(需写出结论);(2)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF ;(3)画一个锐角△MNP (要求各顶点在格点上),使其面积等于△ABC 的面积.的面积.24. 利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.我们刚学过的《从面积到乘法公式》就很好地体现了这一思想方法,你能利用数形结合的思想解决下列问题吗?就很好地体现了这一思想方法,你能利用数形结合的思想解决下列问题吗?如图,一个边长为1的正方形,依次取正方形的,,,,根据图示我们可以知道:第一次取走后还剩,即=1-;前两次取走 +后还剩,即 +=1-;前三次取走 + +后还剩,即 + +=1-;…前n 次取走后,还剩______ ,即______ = ______ . 利用上述计算:利用上述计算:(1) = ______ .(2) = ______ .(3)2-22-23-24-25-26-…-22011+22012(本题写出解题过程)(本题写出解题过程)25.某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?年需节约多少立方米才能实现目标?26.如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC=______;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由.关系,并说明理由.27.某次初中数学竞赛试题中,有16道5分题和10道7分题,满分为150分.批改时分,没有其它分值.每道题若答对得满分,答错得0分,没有其它分值.(1)如果晓敏同学答对了m道7分题和n道5分题,恰好得分为70分,列出关于m、n的方程,并写出这个方程符合实际意义的所有的解.的方程,并写出这个方程符合实际意义的所有的解.(2)假设某同学这份竞赛试卷的得分为k(0≤k≤150),那么k的值有多少种不同大小?请直接写出答案.大小?请直接写出答案.答案和解析1.【答案】D【解析】解:A 、能通过其中一个四边形平移得到,错误;B 、能通过其中一个四边形平移得到,错误;C 、能通过其中一个四边形平移得到,错误;D 、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,正确. 故选:D .根据平移与旋转的性质得出.本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,导致误选. 2.【答案】A【解析】解:若A 是五次多项式,B 是三次多项式,则A+B 一定是五次整式; 故选:A .利用合并同类项法则判断即可得到结果.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 3.【答案】C【解析】解:A 、a 2•a 3=a 5,错误; B 、a 6÷a 3=a 3,错误; C 、(a 2)3=a 6,正确; D 、(2a )3=8a 3,错误; 故选:C .根据同底数幂的乘法、同底数幂的除法、幂的乘方和积的乘方计算判断即可.此题考查同底数幂的乘法、同底数幂的除法、幂的乘方和积的乘方,关键是根据法则进行计算. 4.【答案】D【解析】解:∵(3x±3x±4y 4y )2=9x 2±24xy+16y 2, ∴在9x 2-mxy+16y 2中,m=±m=±2424. 故答案为D .根据(3x±3x±4y4y )2=9x 2±24xy+16y 2可以求出m 的值. 本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 5.【答案】B【解析】解:A 、右边不是积的形式,故本选项错误;B 、是运用完全平方公式,x 2-8x+16=(x-4)2,故本选项正确; C 、是多项式乘法,不是因式分解,故本选项错误; D 、6ab 不是多项式,故本选项错误. 故选:B .根据因式分解就是把一个多项式化为几个整式的积的形式的定义,利用排除法求解.本题考查了因式分解的定义,牢记定义是解题的关键. 6.【答案】C【解析】解:设赢了x 场输了y 场,可得:,故选:C .根据此题的等量关系:①共12场;②赢了x 场输了y 场,得20分列出方程组解答即可.此题考查方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.7.【答案】B【解析】解:根据三角形的两边之和大于第三边以及三角形的周长小于13,则其中的任何一边不能超过6.5;再根据两边之差小于第三边,则这样的三角形共有3,4,2;4,5,2;3,4,5三个.故选B.首先根据三角形的两边之和大于第三边以及三角形的周长,得到三角形的三边都不能大于6.5;再结合三角形的两边之差小于第三边进行分析出所有符合条件的整数.本题考查三角形的三边关系,且涉及分类讨论的思想.解答的关键是找到三边的取值范围及对三角形三边的理解把握.8.【答案】C【解析】解:解方程组,得:,∵方程组的解是方程3x+2y=17的一个解,∴21m-4m=17,解得:m=1,故选:C.将m看做已知数求出方程组的解得到x与y,代入已知方程计算即可求出m 的值.此题考查二元方程组的解及其解法,其最基本的方法是先消元,然后再代入求解,能得出关于m的方程是解此题的关键.9.【答案】B【解析】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180-72=108°;∵EG平分∠BEF,∴∠BEG=54°;∵AB∥CD,∴∠EGF=∠BEG=54°.根据平行线及角平分线的性质解答.平行线有三个性质,其基本图形都是两条平行线被第三条直线所截,解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用其性质和已知条件计算.10.【答案】C【解析】解:∵∠ABC、∠ACB的三等分线交于点E、D,∴∠CBG=∠EBG=∠ABE=∠ABC,∠BCF=∠ECF=∠ACE=∠ACB,在△BCG中,∠BGC=118°,∴∠CBG+∠BCE=180°BCE=180°--∠BGC,∴∠CBG+∠2∠BCF=62°①在△BCF中,∠BFC=132°,∴∠BCF+∠CBF=180°CBF=180°--∠BFC,∴∠BCF+2∠CBG=48°②,①+②得,3∠BCF+3∠CBG=110°,∴∠A=180°A=180°--(∠BCF+∠CBG)=70°,故选C.先根据三等份角得出结论,再利用三角形的内角和列出方程,两方程相加即可求出∠ABC+∠ACB即可.本题考查的是三角形内角和定理,求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.用方程的思想解几何问题.11.【答案】【解析】解:=(-)2004×32003×3 =(-)2003×32003×(-)=(-×3)2003×(-)=(-1)2003×(-)=. 故答案为:.先算幂的乘方,再根据积的乘方逆运算求解即可.考查了幂的乘方与积的乘方,关键是根据幂的乘方,积的乘方逆运算得到原式=(-×3)2003×(-).12.【答案】2×2×1010-7 【解析】解:0.0000002=2×0.0000002=2×1010-7. 故答案为:2×2×1010-7. 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×a×1010-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,小数点移动的位数的相反数即是n 的值.此题主要考查用科学记数法表示较小的数,一般形式为a×a×1010-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 13.【答案】140 【解析】解:因为五边形的内角和是(5-2)×180°180°=540°=540°,4个内角都是100°, 所以第5个内角的度数是540°540°-100°-100°-100°××4=140°, 故答案为:140.利用多边形的内角和定理即可求出答案.本题主要考查了多边形的内角和公式,是一个比较简单的问题. 14.【答案】ab【解析】解:∵2n =a ,3n=b ,∴6n=2n•3n=ab .故答案为:ab .利用幂的乘方与积的乘方的法则求解即可.本题主要考查了幂的乘方与积的乘方,解题的关键是熟记幂的乘方与积的乘方法则. 15.【答案】16 【解析】解:∵s+t=4, ∴s 2-t 2+8t =(s+t )(s-t )+8t =4(s-t )+8t =4(s+t ) =16. 故答案为:16.根据平方差公式可得s 2-t 2+8t=(s+t )(s-t )+8t ,把s+t=4代入可得原式=4(s-t )+8t=4(s+t ),再代入即可求解.考查了平方差公式,以及整体思想的运用. 16.【答案】45°【解析】解:如图,∠1=75°, ∵N 1A ∥N 2B ,∴∠1=∠2+∠3=75°, ∵∠3=30°, ∴∠2=75°2=75°--∠3=75°3=75°-30°-30°-30°=45°=45°, 即∠ABC=45°.根据题意画出方位角,利用平行线的性质解答.解答此类题需要从运动的角度,正确画出方位角,根据平行线的性质解答即可.17.【答案】 【解析】解:把代入二元一次方程组,解得:,把代入二元一次方程组,解得:,故答案为:.本题先代入解求出得,再将其代入二元一次方程组,解出即可.本题主要考查二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法.18.【答案】3775 【解析】解:①若a≥b,则代数式中绝对值符号可直接去掉,∴代数式等于a,②若b>a则绝对值内符号相反,∴代数式等于b 由此可见输入一对数字,可以得到这对数字中大的那个数(这跟谁是a谁是b 无关)既然是求和,那就要把这五十个数加起来还要最大,我们可以枚举几组数,找找规律,如果100和99一组,那么99就被浪费了,因为输入100和99这组数字,得到的只是100,如果我们取两组数字100和1一组,99和2一组,则这两组数字代入再求和是199,如果我们这样取100和99 2和1,则这两组数字代入再求和是102,这样,可以很明显的看出,应避免大的数字和大的数字相遇这样就可以使最后的和最大,由此一来,只要100个自然数里面最大的五十个数字从51到100任意俩个数字不同组,这样最终求得五十个数之和最大值就是五十个数字从51到100的和, 51+52+53+…+100=3775. 故答案为:3775.先分别讨论a 和b 的大小关系,分别得出代数式的值,进而举例得出规律,然后以此规律可得出符合题意的组合,求解即可.本题考查了整数问题的综合运用,有一定的难度,解答本题的关键是利用举例法得出组合规律,这在一些竞赛题的解答中经常用到,要注意掌握. 19.【答案】解:原式=x 2-4x +4+2x 2-4x -16-x 2+9=2x 2-8x -3, 当x =-1时,原式=2+8-3=7. 【解析】原式利用完全平方公式,平方差公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)(-3)2-2-3+30=9- +1= (2)=.【解析】(1)根据零指数幂和负整数指数幂计算即可; (2)根据单项式与多项式的乘方计算即可.此题考查整式的混合计算,关键是根据整式的混合计算顺序解答.21.【答案】解:(1)2x 2-8xy +8y 2=2(x 2-4xy +4y 2)=2(x -2y )2; (2)4x 3-4x 2y -(x -y )=4x 2(x -y )-(x -y )=(x -y )(4x 2-1)=(x -y )(2x +1)(2x -1).).【解析】(1)首先提取公因式2,再利用完全平方公式进行二次分解即可. (2)首先把前两项组合提取公因式4x 2,然后再提取公因式(x-y )进行二次分解,最后利用平方差公式进行三次分解即可.此题主要考查了公因式法与公式法的综合运用,解题关键是注意分解因式的步骤:①首先考虑提取公因式,②再考虑公式法,③观察是否分解彻底. 22.【答案】解:(1),①×2-②得,x =-5,把x =-5代入①得,-10-y =0,解得y =-10,故方程组的解为故方程组的解为 ;(2)原方程组可化为,①+②得,6x =18,解得x =3,把x =3代入①得,9-2y =8,解得y =, 故方程组的解为故方程组的解为 .【解析】(1)先用加减消元法求出x 的值,再用代入消元法求出y 的值即可; (2)先把方程组中的方程化为不含分母及括号的方程,再用加减消元法或代入消元法求解即可.本题考查的是解二元一次方程组,熟知解二元一次方程的加减消元法和代入消元法是解答此题的关键.23.【答案】解:解:如图所示,AG 就是所求的△ABC 中BC 边上的高.边上的高.【解析】(1)过点A 作AG ⊥BC ,交CB 的延长线于点G ,AG 就是所求的△ABC 中BC 边上的高;(2)把△ABC 的三个顶点向右平移6格,再向上平移3格即可得到所求的△DEF ;(3)画一个面积为3的锐角三角形即可.用到的知识点为:一边上的高为这边所对的顶点向这边所引的垂线段;图形的平移要归结为各顶点的平移;各个角都是锐角的三角形叫做锐角三角形.24.【答案】;+++…;1-;1-;1-【解析】解:∵第一次取走后还剩,即=1-;前两次取走+后还剩,即+=1-;前三次取走++后还剩,即++=1-;∴前n次取走后,还剩,即+++…=1-;故答案为:,+++…=1-;(1)如图所示:由图可知,+++…+=1-.故答案为:1-;(2)如图是一个边长为1的正方形,根据图示由图可知,+++…+=1-,故答案为:1-;(3)2-22-23-24-25-26-…-22011+22012=2-22012(2-2010+2-2009+2-2008+…+2-1)+22012=2-22012(1-2-2010)+22012=2-22012+4+22012=6.(1)根据题意画出图形,依次取正方形面积的,,…找出规律即可; (2)根据题意画出图形,依次取正方形面积的,,…找出规律即可;(3)根据同底数幂的乘法进行计算即可.本题考查的是整式的加减,根据题意画出图形,利用数形结合求解是解答此题的关键.25.【答案】解:(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,由题意,得题意,得,解得:解得: 答:年降水量为200万立方米,每人年平均用水量为50立方米.立方米.(2)设该城镇居民年平均用水量为z 立方米才能实现目标,由题意,得立方米才能实现目标,由题意,得 12000+25×12000+25×200=20×200=20×200=20×2525z , 解得:z =34 则50-34=16(立方米).(立方米).答:该城镇居民人均每年需要节约16立方米的水才能实现目标.立方米的水才能实现目标. 【解析】(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,根据储水量+降水量=总用水量建立方程求出其解就可以了;(2)设该城镇居民年平均用水量为z 立方米才能实现目标,同样由储水量+25年降水量=25年20万人的用水量为等量关系建立方程求出其解即可. 本题是一道生活实际问题,考查了列二元一次方程组解实际问题的运用,列一元一次方程解实际问题的运用,解答时根据储水量+降水量=总用水量建立方程是关键.26.【答案】180°【解析】(1)解:∵OM ⊥ON , ∴∠MON=90°,在四边形OBCD 中,∠C=∠BOD=90°, ∴∠OBC+∠ODC=360°ODC=360°-90°-90°-90°-90°-90°-90°=180°=180°; 故答案为180°;(2)证明:延长DE 交BF 于H ,如图1,∵∠OBC+∠ODC=180°, 而∠OBC+∠CBM=180°, ∴∠ODC=∠CBM ,∵DE 平分∠ODC ,BF 平分∠CBM , ∴∠CDE=∠FBE , 而∠DEC=∠BEH , ∴∠BHE=∠C=90°, ∴DE ⊥BF ;(3)解:DG ∥BF .理由如下: 作CQ ∥BF ,如图2, ∵∠OBC+∠ODC=180°, ∴∠CBM+∠NDC=180°,∵BF 、DG 分别平分∠OBC 、∠ODC 的外角, ∴∠GDC+∠FBC=90°, ∵CQ ∥BF ,∴∠FBC=∠BCQ ,而∠BCQ+∠DCQ=90°, ∴∠DCQ=∠GDC , ∴CQ ∥GD , ∴BF ∥DG .(1)先利用垂直定义得到∠MON=90°,然后利用四边形内角和求解;(2)延长DE 交BF 于H ,如图,由于∠OBC+∠ODC=180°,∠OBC+∠CBM=180°,根据等角的补角相等得到∠ODC=∠CBM ,由于DE 平分∠ODC ,BF 平分∠CBM ,则∠CDE=∠FBE ,然后根据三角形内角和可得∠BHE=∠C=90°,于是DE ⊥BF ;(3)作CQ ∥BF ,如图2,由于∠OBC+∠ODC=180°,则∠CBM+∠NDC=180°,再利用BF 、DG 分别平分∠OBC 、∠ODC 的外角,则∠GDC+∠FBC=90°,根据平行线的性质,由CQ ∥BF 得∠FBC=∠BCQ ,加上∠BCQ+∠DCQ=90°,则∠DCQ=∠GDC ,于是可判断CQ ∥GD ,所以BF ∥DG .本题考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.也考查了平行线的判定与性质. 27.【答案】解:(1)根据题意得:7m +5n =70,∴m =10-n .∵m 、n 均为非负整数,均为非负整数,∴n =0时,m =10;n =7时,m =5;n =14时,m =0,∴这个方程符合实际意义的所有的解为:这个方程符合实际意义的所有的解为: , , ;(2)设答对x 道5分题和答对y 道7分题时分数相等,分题时分数相等, 则5x =7y ,当x =7时,y =5;当x =14时,y =10.∴当y =5时,重复的分数有16-7+1=10(种);当x =7时,重复的分数有10-5=5(种);当y =10时,重复的分数有16-7+1+16-14+1=13(种);当x =14时,重复的分数有10-5+10-10=5(种);(种); ∴16×16×10-10-5-13-5=12710-10-5-13-5=127(种).(种). ∴k 的值有127种不同大小.种不同大小. 【解析】(1)根据总分=分值×答对题目数即可得出7m+5n=70,即m=10-n ,再根据m 、n 均为非负整数,即可得出二元一次方程的解;(2)设答对x 道5分题和答对y 道7分题时分数相等,即5x=7y ,解之即可得出x 、y 的值,利用k=16×k=16×10-10-重复种数即可求出结论.本题考查了二元一次方程的应用以及排列与组合问题,解题的关键是:(1)根据m、n的取值范围结合7m+5n=70找出所以可能解;(2)利用排列和组合的知识找出分值相等的重复次数.。
2017-2018学年无锡市惠山区七年级下期中数学试卷(有答案)-最佳版

2017-2018学年江苏省无锡市惠山区七年级(下)期中数学试卷一、选择题(每题3分,共24分)1.如图,不一定能推出a∥b的条件是()A.∠1=∠3 B.∠2=∠4 C.∠1=∠4 D.∠2+∠3=180°2.已知三角形的两边分别为3和9,则此三角形的第三边可能是()A.5 B.6 C.9 D.133.下列计算正确的是()A.x2+x2=2x4B.x2•x3=x6C.(2x3)2=2x6D.(﹣x)8÷x2=x64.下列各式从左到右的变形,是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6xB.(x+5)(x﹣2)=x2+3x﹣10C.x2﹣8x+16=(x﹣4)2D.6ab=2a•3b5.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5 B.6 C.7 D.86.如图,直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为()A.15°B.20°C.25°D.30°7.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需130元钱,购甲1件、乙2件、丙3件共需210元钱,那么购甲、乙、丙三种商品各一件共需()A.105元B.95元C.85 元D.88元8.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°二、填空题(每空2分,共20分)9.将数0.000000076用科学记数法表示为.10.若(a﹣2)x|a|﹣1+3y=1是二元一次方程,则a=.11.若3x=24,3y=6,则3x﹣y的值为.12.若多项式x2+(m+1)x+9是一个完全平方式,则m=.13.在△ABC中,∠C=80°,∠B﹣∠A=40°,则∠A=.14.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n=.15.计算:若(2x﹣y+7)2+|x+y﹣1|=0,则y x=.16.学生问老师:“您今年多大?”教师风趣地说:“我像你这么大时,你才5岁;你到我这么大时,我已经44岁了.”教师今年岁.17.如图,有三种卡片,其中边长为a的正方形卡片1张,边长分别为a、b的矩形卡片6张,边长为b的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为.18.如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF的度数是.三、解答题19.(10分)化简或计算(1)(2﹣π)0+()﹣2+(﹣2)3(2)(﹣3a6)2﹣a2•2a10+(﹣2a2)3•a3(3)(x+1)2﹣(1﹣2x)(1+2x)(4)(x+2)(x﹣3)﹣x(x+1)20.(6分)把下列各式因式分解:(1)4a2﹣16;(2)(x2+4)2﹣16x2.21.(8分)解方程组:(1)(2)22.(6分)已知x+y=4,xy=1,求下列各式的值:(1)x2y+xy2;(2)(x2﹣1)(y2﹣1).23.(6分)在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.24.(6分)如图,∠1=80°,∠2=100°,∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.25.(8分)列方程组解应用题,为了保护环境,深圳某公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万汽油,求购买这批混合动力公交车需要多少万元?26.(6分)(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行,并说明理由;(2)如图2,直线EF上有两点A、C,分别引两条射线AB、CD.已知∠BAF=150°,∠DCF=80°,射线AB、CD分别绕点A、点C以1度/秒和3度/秒的速度同时顺时针转动,设时间为t秒,当射线CD转动一周时,两条射线同时停止.则当直线CD与直线AB互相垂直时,t=秒.2017-2018学年江苏省无锡市惠山区七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.如图,不一定能推出a∥b的条件是()A.∠1=∠3 B.∠2=∠4 C.∠1=∠4 D.∠2+∠3=180°【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∵∠1和∠3为同位角,∠1=∠3,∴a∥b,故A选项正确;B、∵∠2和∠4为内错角,∠2=∠4,∴a∥b,故B选项正确;C、∵∠1=∠4,∠3+∠4=180°,∴∠3+∠1=180°,不符合同位角相等,两直线平行的条件,故C选项错误;D、∵∠2和∠3为同位角,∠2+∠3=180°,∴a∥b,故D选项正确.故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2.已知三角形的两边分别为3和9,则此三角形的第三边可能是()A.5 B.6 C.9 D.13【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:9﹣3=6,而小于:3+9=12.则此三角形的第三边可能是:9.故选:C.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.3.下列计算正确的是()A.x2+x2=2x4B.x2•x3=x6C.(2x3)2=2x6D.(﹣x)8÷x2=x6【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减分别计算.【解答】解:A、x2+x2=2x2,故A选项错误;B、x2•x3=x5,故B选项错误;C、(2x3)2=4x6,故C选项错误;D、(﹣x)8÷x2=x6,故D选项正确;故选:D.【点评】此题主要考查了合并同类项,同底数幂的乘法,积的乘方,同底数幂的除法,关键是掌握计算法则.4.下列各式从左到右的变形,是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6xB.(x+5)(x﹣2)=x2+3x﹣10C.x2﹣8x+16=(x﹣4)2D.6ab=2a•3b【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义,利用排除法求解.【解答】解:A、右边不是积的形式,故A选项错误;B、是多项式乘法,不是因式分解,故B选项错误;C、是运用完全平方公式,x2﹣8x+16=(x﹣4)2,故C选项正确;D、不是把多项式化成整式积的形式,故D选项错误.故选:C.【点评】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.这类问题的关键在于能否正确应用因式分解的定义来判断.5.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5 B.6 C.7 D.8【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:B.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.6.如图,直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为()A.15°B.20°C.25°D.30°【分析】先延长AE交CD于F,根据AB∥CD,∠A=115°,即可得到∠AFD=65°,再根据∠AED 是△DEF的外角,∠E=80°,即可得到∠CDE=80°﹣65°=15°.【解答】解:延长AE交CD于F,∵AB∥CD,∠A=115°,∴∠AFD=65°,又∵∠AED是△DEF的外角,∠E=80°,∴∠CDE=80°﹣65°=15°.故选:A.【点评】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.7.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需130元钱,购甲1件、乙2件、丙3件共需210元钱,那么购甲、乙、丙三种商品各一件共需()A.105元B.95元C.85 元D.88元【分析】设出购甲、乙、丙三种商品各一件的未知数,建立方程组,整体求解.【解答】解:设购甲、乙、丙三种商品各一件,分别需要x元、y元、z元,根据题意有:,把这两个方程相加得:4x+4y+4z=340,4(x+y+z)=340,x+y+z=85.即购甲、乙、丙三种商品各一件共需85元钱.故选:C.【点评】本题考查了三元一次方程组的应用,解题时认真审题,弄清题意,再列方程组解答,此题难度不大,考查方程思想.8.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°【分析】设∠GBC=x,∠DCB=y,在△BFC和△BGC中,根据三角形内角和定理列方程,相加可得:3x+3y的值,即可求得∠A的度数.【解答】解:设∠GBC=x,∠DCB=y,在△BFC中,2x+y=180°﹣120°=60°①,在△BGC中,x+2y=180°﹣102°=78°②,解得:①+②:3x+3y=138°,∴∠A=180°﹣(3x+3y)=180°﹣138°=42°,故选:C.【点评】本题考查了三角形的内角和定理、三等分线的定义,利用整体的思想解决问题比较简便.二、填空题(每空2分,共20分)9.将数0.000000076用科学记数法表示为7.6×10﹣8.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000076=7.6×10﹣8,故答案为:7.6×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.若(a﹣2)x|a|﹣1+3y=1是二元一次方程,则a=﹣2 .【分析】根据二元一次方程的定义知,未知数x的次数|a|﹣1=1,且系数a﹣2≠0.【解答】解:∵(a﹣2)x|a|﹣1+3y=1是二元一次方程,∴|a|﹣1=1且a﹣2≠0,解得,a=﹣2;故答案是:﹣2.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.11.若3x=24,3y=6,则3x﹣y的值为 4 .【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:∵3x=24,3y=6,∴3x﹣y=3x÷3y=24÷6=4.故答案为:4.【点评】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.12.若多项式x2+(m+1)x+9是一个完全平方式,则m=5或﹣7 .【分析】根据完全平方公式即可求出答案.【解答】解:∵(x±3)2=x2±6x+9,∴﹣(m+1)=±6解得:m=5或﹣7故答案为:5或﹣7;【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.在△ABC中,∠C=80°,∠B﹣∠A=40°,则∠A=30°.【分析】先根据三角形内角和等于180°求出∠B+∠A的度数,然后与∠B﹣∠A=40°两式相加即可求出∠A.【解答】解:∵∠C=80°,∴∠B+∠A=180°﹣80°=100°①,∵∠B﹣∠A=40°②,∴①﹣②得,2∠A=140°,解得∠A=30°.故答案为:30°.【点评】本题考查了三角形的内角和定理与加减消元法,先求出∠B+∠C的度数是解题的关键.14.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n= 3 .【分析】把m﹣n=﹣1看作一个整体,代入代数式(m﹣n)2﹣2m+2n求得数值即可.【解答】解:∵m﹣n=﹣1,∴(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n)=(﹣1)2﹣2×(﹣1)=1+2=3.故答案为:3.【点评】此题考查代数式求值,注意整体代入求得问题.15.计算:若(2x﹣y+7)2+|x+y﹣1|=0,则y x=.【分析】先根据绝对值与平方的非负性,求出x与y的值,然后代入求值即可.【解答】解:∵(2x﹣y+7)2+|x+y﹣1|=0,∴,解得,∴y x=3﹣2=.故答案为:.【点评】此题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.16.学生问老师:“您今年多大?”教师风趣地说:“我像你这么大时,你才5岁;你到我这么大时,我已经44岁了.”教师今年31 岁.【分析】设教师今年x岁,学生今年y岁,根据“我像你这么大时,你才5岁;你到我这么大时,我已经44岁了”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设教师今年x岁,学生今年y岁,根据题意得:,解得:.故答案为:31.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.如图,有三种卡片,其中边长为a的正方形卡片1张,边长分别为a、b的矩形卡片6张,边长为b的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为a+3b.【分析】1张边长为a的正方形卡片的面积为a2,6张边长分别为a、b的矩形卡片的面积为6ab,9张边长为b的正方形卡片面积为9b2,∴16张卡片拼成一个正方形的总面积=a2+6ab+9b2=(a+3b)2,∴大正方形的边长为:a+3b.【解答】解:由题可知,16张卡片总面积为a2+6ab+9b2,∵a2+6ab+9b2=(a+3b)2,∴新正方形边长为a+3b.【点评】本题考查了完全平方公式几何意义的理解,利用完全平方公式分解因式后即可得出大正方形的边长.18.如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF的度数是20°.【分析】先根据平行线的性质,设∠DEF=∠EFB=a,图2中根据图形折叠的性质得出∠AEF的度数,再由平行线的性质得出∠GFC,图3中根据∠CFE=∠GFC﹣∠EFG即可列方程求得a的值.【解答】解:∵AD∥BC,∴设∠DEF=∠EFB=a,图2中,∠GFC=∠BGD=∠AEG=180°﹣2∠EFG=180°﹣2a,图3中,∠CFE=∠GFC﹣∠EFG=180°﹣2a﹣a=120.解得a=20.即∠DEF=20°,故答案为:20°.【点评】本题考查图形的翻折变换以及平行线的性质,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.三、解答题19.(10分)化简或计算(1)(2﹣π)0+()﹣2+(﹣2)3(2)(﹣3a6)2﹣a2•2a10+(﹣2a2)3•a3(3)(x+1)2﹣(1﹣2x)(1+2x)(4)(x+2)(x﹣3)﹣x(x+1)【分析】(1)先计算零指数幂、负整数指数幂和乘方,再计算加减可得;(2)先计算乘方,再计算乘法,最后合并同类项即可得;(3)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(4)先根据多项式乘多项式、单项式乘多项式法则计算,再合并同类项即可得.【解答】解:(1)原式=1+4﹣8=﹣3;(2)原式=9a12﹣2a12﹣8a9=7a12﹣8a9;(3)原式=x2+2x+1﹣(1﹣4x2)=x2+2x+1﹣1+4x2=5x2+2x;(4)原式=x2﹣3x+2x﹣6﹣x2﹣x=﹣2x﹣6.【点评】本题主要考查实数和整式的混合运算,解题的关键是掌握实数和整式的混合运算顺序和运算法则.20.(6分)把下列各式因式分解:(1)4a2﹣16;(2)(x2+4)2﹣16x2.【分析】(1)先提取公因式4,再对余下的多项式利用平方差公式继续分解;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解.【解答】解:(1)4a2﹣16,=4(a2﹣4),=4(a+2)(a﹣2);(2)(x2+4)2﹣16x2,=(x2+4+4x)(x2+4﹣4x),=(x﹣2)2(x+2)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.21.(8分)解方程组:(1)(2)【分析】(1)利用加减消元法求解可得;(2)利用加减消元法求解可得.【解答】解:(1),将①代入②,得:﹣6y+4y=6,解得:y=﹣3,将y=﹣3代入①,得:x=6,则方程组的解为;(2),①+②×2,得:4x=16,解得:x=4,将x=4代入②,得:2+y=6,解得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(6分)已知x+y=4,xy=1,求下列各式的值:(1)x2y+xy2;(2)(x2﹣1)(y2﹣1).【分析】(1)将x+y、xy的值代入x2y+xy2=xy(x+y)计算可得;(2)将原式变形为(xy)2﹣(x+y)2+2xy+1,再把x+y、xy的值代入计算可得.【解答】解:(1)当x+y=4、xy=1时,x2y+xy2=xy(x+y)=1×4=4;(2)当x+y=4、xy=1时,原式=x2y2﹣x2﹣y2+1=x2y2﹣(x2+y2)+1=(xy)2﹣(x+y)2+2xy+1=1﹣16+2+1=﹣12.【点评】本题主要考查代数式的求值,解题的关键是熟练掌握多项式乘多项式运算法则、因式分解及完全平方公式.23.(6分)在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是平行且相等;(3)求△DEF的面积.【分析】(1)将点B、C均向右平移4格、向上平移1格,再顺次连接可得;(2)根据平移的性质可得;(3)割补法求解即可.【解答】解:(1)如图所示,△DEF即为所求;(2)由图可知,线段AD与BE的关系是:平行且相等,故答案为:平行且相等;=3×3﹣×2×3﹣×1×2﹣×1×3=.(3)S△DEF【点评】本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.24.(6分)如图,∠1=80°,∠2=100°,∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.【分析】(1)根据平行线的性质得出∠ABD=∠C,求出∠D=∠ABD,根据平行线的判定得出AC∥DF;(2)根据平行线的性质和三角形内角和解答即可;【解答】解:(1)AC∥DF,理由如下:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF;(2)∵AC∥DF,∴∠A=∠F,∠ABD=∠D,∵∠C=∠D,∠1=80°,∴∠A+∠ABD=180°﹣80°=100°,即∠A+∠C=100°,∵∠C比∠A大20°,∴∠A=40°,∴∠F=40°.【点评】本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.25.(8分)列方程组解应用题,为了保护环境,深圳某公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万汽油,求购买这批混合动力公交车需要多少万元?【分析】(1)根据“购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B 型车少60万元.”即可列出关于a、b的二元一次方程组,解之即可得出结论;(2)设A型车购买x台,则B型车购买(10﹣x)台,根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量即可得出关于x的一元一次方程,解之即可得出x值,再根据总费用=120×A 型车购买的数量+100×B型车购买的数量即可算出购买这批混合动力公交车的总费用.【解答】解:(1)根据题意得:,解得:.(2)设A型车购买x台,则B型车购买(10﹣x)台,根据题意得:2.4x+2(10﹣x)=22.4,解得:x=6,∴10﹣x=4,∴120×6+100×4=1120(万元).答:购买这批混合动力公交车需要1120万元.【点评】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)根据A、B型车价格间的关系列出关于a、b的二元一次方程组;(2)根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量列出关于x的一元一次方程.26.(6分)(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行,并说明理由;(2)如图2,直线EF上有两点A、C,分别引两条射线AB、CD.已知∠BAF=150°,∠DCF=80°,射线AB、CD分别绕点A、点C以1度/秒和3度/秒的速度同时顺时针转动,设时间为t秒,当射线CD转动一周时,两条射线同时停止.则当直线CD与直线AB互相垂直时,t=20或110 秒.【分析】(1)依据题意得出∠1+∠5=∠2+∠6,即可得到a∥b;(2)分两种情况讨论:当BA⊥CD于G时,∠BAE=30°+t°=∠CAG,∠ACG=180°﹣80°﹣3t°=100°﹣3t°;当D'C⊥AB于H时,∠BAE=30°+t°,∠ACH=3t°﹣180°﹣100°,分别依据角的和差关系进行计算即可.【解答】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b;(2)如图,当BA⊥CD于G时,∠BAE=30°+t°=∠CAG,∠ACG=180°﹣80°﹣3t°=100°﹣3t°,∵∠CAG+∠ACG=90°,∴30°+t°+100°﹣3t°=90°,解得t=20;如图,当D'C⊥AB于H时,∠BAE=30°+t°,∠ACH=3t°﹣180°﹣100°,∵∠BAE=∠ACH+∠AHC,∴30°+t°=3t°﹣180°﹣100°+90°,解得t=110,综上所述,当直线CD与直线AB互相垂直时t的值为20或110.故答案为:20或110.【点评】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.。
初级中学16—17学年下学期七年级期中考试数学试题(附答案)

54D 3E21C B A2016-2017学年第二学期期中考试七年级数学试卷(问卷)(卷面分值:100分;考试时间:100分钟)同学们,半个学期的勤奋,今天将展现在试卷上,老师相信你一定会把诚信答满试卷,......................................也一定会让努力书写成功,答题时记住细心和耐心。
.......................注意事项:本卷由问卷和答卷两部分组成,其中问卷共4页,答卷共2页,在问卷上答题无效。
一.选择题(本大题共8小题,每小题3分,共24分)1. 4的平方根是( )A . ±2B .2C .±D .2.点P (-1,5)所在的象限是( )A .第一象限B .第二象限C.第三象限 D.第四象限3.下列各组图形,可由一个图形平移得到另一个图形的是( )A B C D4.如图,直线AB 、CD 相交于点O,若∠1+∠2=100°,则∠BOC 等于 ( )A.130°B.140°C.150°D.160 (第4题图)5.已知是二元一次方程4x+ay=7的一组解,则a 的值为( )A .﹣5B .5C .D .﹣6.如右图,下列能判定AB ∥CD 的条件有( )个. (第6题图) (1) ︒=∠+∠180BCD B (2)21∠=∠(3) 43∠=∠ (4) 5∠=∠B A . 1 B .2 C .3D.4 7.下列各组数中,互为相反数的组是( )A .﹣2与B .﹣2和C .﹣与2D .|﹣2|和28.下列命题:①两直线平行,内错角相等;②如果m 是无理数,那么m 是无限小数;③64的立方根是8;④同旁内角相等,两直线平行;⑤如果a 是实数,那么a 是无理数.其中正确的有( )A .1个B .2个C .3个D .4个二.填空(本大题共6小题,每小题3分,共18分)9.若32123=---n m y x 是二元一次方程,则m=____,n=____.10.计算:|3﹣π|+的结果是 .11.已知点P(0,a)在y 轴的负半轴上,则点Q(-2a -1,-a+1)在第 象限.12.已知a 、b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a b +的值为 . (第13题图) 13.如图,一张宽度相等的纸条,折叠后,若∠ABC=120°,则∠1的度数为 .14.在平面直角坐标系中,点A 的坐标为(﹣1,3),线段AB ∥x 轴,且AB =4,则点B 的坐标为 .三、计算解答题 (每小题5分,共20分)15.计算:364+2)3(--31- 16.1+2)451(- .17.解二元一次方程组:18.已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.四、解答题:(19题6分,20题8分,21题6分,22题8分,23题10分共38分)19. 某工程队承包了修建隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了50米.求甲、乙两个班组平均每天各掘进多少米?20.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.证明:∵∠1=∠2 (已知)∴∥()∴∠E=∠()又∵∠E=∠3 (已知)∴∠3=∠()∴AD∥BE.()21.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.22.如图,已知△ABC平移后得到△A1B1C1,点A(﹣1,3)平移后得到A1(﹣4,2),(1)写出B,C的坐标:B(,),C(,).(2)画出△ABC,并指出平移规律;(3)求△ABC的面积.A PB 1l 2l 3l 1 2 323如图,已知直线 1l ∥2l ,且 3l 和1l 、2l 分别交于A 、B 两点,点P 在直线AB 上.(1)试找出∠1、∠2、∠3之间的关系并说明理由;(2)当点P 在A 、B 两点间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(只写结论)(3)如果点P 在A 、B 两点外侧运动时,试探究∠1、∠2、∠3 之间的关系。
2017-2018学年江苏省无锡市惠山区锡山高中七年级(下)期中数学试卷(解析版)

2017-2018学年江苏省无锡市惠山区锡山高中七年级 (下)期中数学试、选择题:(每小题 3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的区域内)F 列长度的三根木棒首尾相接,不能做成三角形框架的是(2x - 9+6x =( x+3) ( x - 3) +6x2 2x 2 - 8x+16 =( x - 4)6ab = 2a?3b5.如图,要得到 AB // CD ,只需要添加一个条件,这个条件不可以是()A . Z 1 = Z 3B Z B+ Z BCD = 180 °C .Z 2=Z 4D .Z D+ Z BAD = 180 °6.下列各式能用平方差公式计算的是( )A . ( 2a+b )( 2b - a )B . (1 1-..x+1)(- ,. x - 1)1.如图所示的图案是一些汽车的车标,可以看做由 “基本图案”经过平移得到的是( 2. A . "..AiF 列计算正确的是( A . a 2?a 3= a 6C .D . ( 2a ) 3= 6a 33. 4. A . 5cm 、7cm 、2cm C . 5cm 、7cm 、11cmF 列各式从左到右的变形,是因式分解的是(B .7cm 、 D . 5cm 、 13cm 、 10cm 、10cm 13cmC .(x+5)( x -2)= x 2+3x - 10 C . B . D .(a ) =aC. ( a+b)( a - 2b)D.( 2 x- 1)( - 2 x+1)7.根据篮球比赛规则:赢一场得2分,输一场得1分、,在某次中学生篮球联赛中,某球队赛了12、解答题:(本场,赢了 x 场输了 y 场,得20分,则可以列出方程组(\+y=20 2计y 二 12 \+y=12 2x+y=20C . 1折叠并压平,若图 3中/ CFE = 18°,则图2中/ AEF 的度数为()D、填空题:(每小题 2分,共16分,把你的答案填在答题卷相应的横线上) 11.遗传物质脱氧核糖核酸(DNA )的分子直径为0.000 0002cm ,用科学记数法表示为 12 .十边形的外角和是 _________ ° .2 213 .分解因式:9x - 4y = __________ .14 .已知 a m = 6, a n = 3,则 a m+n = __________ , a m -n = _________ . 15 .已知4x 2-mxy+y 2是完全平方式,则 m 的值是 ____________ .2 216 .已知 a 、b 满足 a +b - 6a - 4b+13 = 0,则 a+b 的值是 _________C 剪去后,/ 1+ / 2等于x+y=12 x+2y=20 2x+y=12 x+2y^208 .关于x 、y 的方程组x+y=9mc 的解是方程 3x+2y = 24的一个解,那么 m 的值是(29.若用十字相乘法分解因式: x +mx - 12= (x+2)( x+a ),贝U a 、m 的值分别是( A . - 6, 4 B . - 4,- 610 .如图1是AD // BC 的一张纸条,按图1 T 图2~图3,把这一纸条先沿 EF 折叠并压平,再沿 BF cm.19. ( 8分)计算或化简:(1) ( )「3- 2016°- 5|;2(2) ( - 3a 2) 2- a 2?2a 2+(a 3) 2十 a 2. 20. ( 8分)解二元一次方程组:x-2y=1321. ( 6分)分解因式:(1) m ( a - b ) - n (b - a );32(2) y 3- 6y 2+9y . 22. ( 6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ ABC 的三个顶点的位置如图所示.现将△ ABC 平移,使点A 变换为点D ,点E 、F 分别是B 、C 的对应点.(1)请画出平移后的厶 DEF ;23. (5 分)先化简,再求值:x (2x - y )-( x+y ) ( x - y ) + ( x - y ),其中 x +y = 5, xy =- 2.24. ( 7分)某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手 绘设计后出售,并将所获利润全部捐给山区困难孩子•已知该学校从批发市场花 3600元购买了黑白两种颜色的文化衫 200件•每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫 20 35 白色文化衫1525假设通过手绘设计后全部售出,求该校这次义卖活动所获利润.25. ( 6 分)如图,△ ABC 中,/ C = 90°, AC = 12, BC = 9, AB = 15,若动点 P 从点 C 开始,按(2)f2x-3y='4 4/-^=-3 (2)若连接AD 、CF ,则这两条线段之间的关系是 ____________C T A T B T C的路径运动,且速度为每秒3个单位,设运动的时间为t 秒.(1) ____________ 当t = 时,CP把厶ABC的面积分成相等的两部分;(2) __________________________________________________________________ 当t = 5时,CP 把厶ABC分成的两部分面积之比是S^ARC: S^BRC= _______________________________(3) ____________ 当t = 时,△ BPC的面积为18.26. ( 8分)初一(10)班数学学习小组“孙康映雪”在学习了第七章平面图形的认识(二)后对几何学习产生了浓厚的兴趣.请你认真研读下列三个片断,并完成相关问题.如图1,直线OM丄ON,垂足为0,三角板的直角顶点C落在/ MON的内部,三角板的另两条直角边分别与ON、0M交于点D和点B.【片断一】(1)小孙说:由四边形内角和知识很容易得到/ OBC + Z ODC的值•如果你是小孙,得到的正确答案应是:'一 OBC+ Z ODC = ° .【片断二】(2)小康说:连结BD (如图2),若BD平分Z OBC,那么BD也平分Z ODC •请你说明当BD 平分Z OBC时,BD也平分Z ODC的理由.(备用图)【片断三】(3)小雪说:若DE平分Z ODC、BF平分Z MBC,我发现DE与BF具有特殊的位置关系.请你先在备用图中补全图形,再判断DE与BF有怎样的位置关系并说明理由.。
2016—2017学年度第二学期期中考试七年级数学试卷及答案

2016--2017学年度第二学期期中考试七年级数学试卷、选择题(本题有 5小题目,每小题 3分,共15分;请你将正确答案的代号填入答题卷相应的括号x 3 4、若是方程2x ay 3的一组解,则a 的值是A1 B2 C3 D4y 15、如图,如果 所在位置的坐标为(1, 1),所在位置的坐标为士 (1, 1),那么 所在馬位置的坐标是()"A (0,0)B ( 1,1)C (2,1)D (1,2)、、填空题(本题共有 5小题,每小题3分,共20分) 6、如图,直线 a , b 相交于点 O ,/ 1=43o ,则/ 2= _______ o ,/ 3=— o ;15、如图,四边形 ABCD 是正方形,点 A 的坐标是(1,0),点D 的坐标是(1, 0),在图 中建立一个适当的平面直角坐标系,从你建立的坐标系中,写出点B 、C 的坐标。
中)1、如图,直线 a / b,/ 1=37o ,则/ 2的度数是A57o B37o C143oD53ox y 3 x 2 x 3 x 3 x 12、下列个组数中,是方程的解的是 ABCDx y 1y 1y 1y1 y 2/|/蜃JJJ厂」 L ' 1 T厂■"TJ'\ 八 7 j! 1LAf ■2-2 c7请你写出方程1的一组整数解8、点A ( 5,3)在第 ___ 象限,点B (1, 3)在第 ___ 象限;9、 如图,若/ 10、 把点 A (- 4, 2) 把点B (-4, 2)向下平移3个单位长度得B2的坐标是 三、解答题(本题共 5题,每小题6分,共30分)如图,直线 1 = / 2, 则互相平行的线段是 ________________ ; 向右平移3个单位长度得A1的坐标是 11、a 、b 被直线c 所截若/仁30 °,/ 2=150。
,试说明a 与b 的位置关系。
12、解方程组 2x 3y 92 y13、解17、解方程组2x 3y3x 4y 1217Ac /Z ]/h / /14、 如图,AD // BC ,A D 平分/ EAC , / EAD=50 °,求/B 和/C 的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年江苏省无锡市惠山区七年级(下)期中数学试卷一、选择题(每题3分,共30分)1.(3分)下列各式计算正确的是()A.a5+a5=a10B.a6•a4=a24C.a6÷a6=1 D.(a4)2=a62.(3分)下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6 B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)3.(3分)若一个多边形的每个内角都为108°,则它的边数为()A.5 B.8 C.6 D.104.(3分)10﹣3等于()A.﹣30 B.﹣3 000 C.0.001 D.﹣0.0015.(3分)如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°6.(3分)在下列各图的△ABC中,正确画出AC边上的高的图形是()A. B. C.D.7.(3分)用科学记数法表示0.000034,结果是()A.3.4×10﹣5B.3.4×10﹣4C.0.34×10﹣4D.34×10﹣68.(3分)如图,∠1和∠2是同位角的图形有()A.1个 B.2个 C.3个 D.4个9.(3分)a,b,c为△ABC的三边,化简|a+b+c|﹣|a﹣b﹣c|的结果()A.2b+2c B.2b﹣2c C.0 D.2a10.(3分)如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA 与EB重合于线段EO,若∠CDO+∠CFO=98°,则∠C的度数为()A.40°B.41°C.42°D.43°二、填空题(每空2分,共16分)11.(2分)计算:(﹣2x2y)3=.12.(2分)一个等腰三角形的边长分别是4cm和9cm,则它的周长是cm.13.(2分)在△ABC中,∠A=100°,∠B=3∠C,则∠B=度.14.(2分)(x+2)(3x﹣5)=3x2﹣bx﹣10,则b=.15.(2分)若x2﹣ax+9是一个完全平方式,则a=.16.(2分)如图,直径为2cm的圆O1平移3cm到圆O2,则图中阴影部分的面积为cm2.17.(2分)已知,如图,AB∥CD,则∠α、∠β、∠γ之间的关系为.18.(2分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).三、解答题(8大题,共54分)19.(9分)计算:(1)﹣22+30﹣(﹣)﹣1(2)(2a+b)(b﹣2a)(3 )(a﹣3b)2.20.(9分)因式分解:(1)a(x﹣y)﹣b(y﹣x)(2)3ax2﹣12ay2(3)(x+y)2+4(x+y+1)21.(5分)对于任何实数,我们规定符号=ad﹣bc,例如:=1×4﹣2×3=﹣2(1)按照这个规律请你计算的值;(2)按照这个规定请你计算,当a2﹣3a+1=0时,求的值.22.(6分)(1)已知2x=3,2y=5,求:2x﹣2y的值.(2)x﹣2y+1=0,求:2x÷4y×8的值.23.(6分)若已知x+y=3,xy=1,试求(1)(x﹣y)2的值(2)x3y+xy3的值.24.(5分)如图,DE⊥AB,EF∥AC,∠A=32°,求∠DEF的度数.25.(6分)观察以下一系列等式:①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;④;…(1)请按这个顺序仿照前面的等式写出第④个等式;(2)若字母n代表第n个等式,请用字母n表示上面所发现的规律:;(3)请利用上述规律计算:20+21+22+23+ (21000)26.(8分)在△ABC中,∠C=90°,BD是△ABC的角平分线,P是射线AC上任意一点(不与A、D、C三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.(1)如图,当点P在线段AC上时,说明∠PDE=∠PED.(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.2016-2017学年江苏省无锡市惠山区七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列各式计算正确的是()A.a5+a5=a10B.a6•a4=a24C.a6÷a6=1 D.(a4)2=a6【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、同底数幂的乘法底数不变指数相加,故B不符合题意;C、同底数幂的除法底数不变指数相减,故C符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:C.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.2.(3分)下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6 B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选:D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.3.(3分)若一个多边形的每个内角都为108°,则它的边数为()A.5 B.8 C.6 D.10【分析】根据平角的定义,先求出每一个外角的度数,多边形的边数等于360°除以外角的度数,列式计算即可.【解答】解:∵多边形每个内角都为108°,∴多边形每个外角都为180°﹣108°=72°,∴边数=360°÷72°=5.故选:A.【点评】本题考查了正多边形的内角与相邻外角互补的性质,以及正多边形的外角与边数的关系.4.(3分)10﹣3等于()A.﹣30 B.﹣3 000 C.0.001 D.﹣0.001【分析】依据负整数指数幂的性质解答即可.【解答】解:10﹣3==0.001.故选:C.【点评】本题主要考查的是负整数指数幂的性质,熟练掌握负整数指数幂的性质是解题的关键.5.(3分)如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°【分析】根据平行线的性质:两条直线平行,内错角相等及角平分线的性质,三角形内角和定理解答.【解答】解:∵AD∥BC,∴∠ADB=∠B=30°,再根据角平分线的概念,得:∠BDE=∠ADB=30°,再根据两条直线平行,内错角相等得:∠DEC=∠ADE=60°,故选:B.【点评】考查了平行线的性质、角平分线的概念,要熟练掌握.6.(3分)在下列各图的△ABC中,正确画出AC边上的高的图形是()A. B. C.D.【分析】根据三角形的高的概念判断.【解答】解:AC边上的高就是过B作垂线垂直AC交AC于某点,因此只有C符合条件,故选C.【点评】本题考查了利用基本作图作三角形高的方法.7.(3分)用科学记数法表示0.000034,结果是()A.3.4×10﹣5B.3.4×10﹣4C.0.34×10﹣4D.34×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示0.000034,结果是3.4×10﹣5,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.(3分)如图,∠1和∠2是同位角的图形有()A.1个 B.2个 C.3个 D.4个【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【解答】解:根据同位角定义可得①②⑤是同位角,故选:C.【点评】此题主要考查了同位角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.9.(3分)a,b,c为△ABC的三边,化简|a+b+c|﹣|a﹣b﹣c|的结果()A.2b+2c B.2b﹣2c C.0 D.2a【分析】根据三角形的三边关系判断出a+b+c即a﹣b﹣c的符号,再根据绝对值的性质去掉绝对值符号,合并同类项即可.【解答】解:∵△ABC的三边为a、b、c,∴a+b+c>0,a﹣b﹣c<0,∴原式=a+b+c﹣(b+c﹣a)=a+b+c﹣b﹣c+a=2a,故选:D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.10.(3分)如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA 与EB重合于线段EO,若∠CDO+∠CFO=98°,则∠C的度数为()A.40°B.41°C.42°D.43°【分析】如图,连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=98°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°,由此即可解决问题.【解答】解:如图,连接AO、BO.由题意EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°,∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO,∵∠CDO+∠CFO=98°,∴2∠DAO+2∠FBO=98°,∴∠DAO+∠FBO=49°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=139°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣139°=41°,故选:B.【点评】本题考查三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.二、填空题(每空2分,共16分)11.(2分)计算:(﹣2x2y)3=﹣8x6y3.【分析】根据幂的乘方(底数不变,指数相乘)与积的乘方(把每一个因式分别乘方,再把所得的幂相乘)的性质求解即可求得答案.【解答】解:(﹣2x2y)3=﹣8x6y3.故答案为:﹣8x6y3.【点评】此题考查了幂的乘方与积的乘方.此题比较简单,注意掌握符号与指数的变化是解此题的关键.12.(2分)一个等腰三角形的边长分别是4cm和9cm,则它的周长是22cm.【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当4cm是腰时,4+4<9cm,不符合三角形三边关系,故舍去;当9cm是腰时,周长=9+9+4=22cm.故该三角形的周长为22cm.故答案为:22.【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.(2分)在△ABC中,∠A=100°,∠B=3∠C,则∠B=60度.【分析】由已知得100°+3∠C+∠C=180°,所以∠C=20°,∠B=3∠C=60°.【解答】解:设∠C为x.100°+x+3x=180°,∴x=20°,∴∠B=20°×3=60°.【点评】本题考查的是三角形内角和定理.三角形的内角和是180°.14.(2分)(x+2)(3x﹣5)=3x2﹣bx﹣10,则b=﹣1.【分析】根据多项式乘以多项式法则展开后,根据对应项的系数相等即可得出b 的值.【解答】解:(x+2)(3x﹣5)=3x2+x﹣10,∵(x+2)(3x﹣5)=3x2﹣bx﹣10,∴﹣b=1∴b=﹣1,故答案为:﹣1.【点评】本题考查了多项式乘以多项式的法则的应用,主要考查学生的化简能力.15.(2分)若x2﹣ax+9是一个完全平方式,则a=±6.【分析】根据完全平方公式得出﹣ax=±2•x•3,求出即可.【解答】解:∵x2﹣ax+9是一个完全平方式,∴﹣ax=±2•x•3,a=±6,故答案为:±6.【点评】本题考查了对完全平方公式的应用,注意:完全平方公式有:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.16.(2分)如图,直径为2cm的圆O1平移3cm到圆O2,则图中阴影部分的面积为6cm2.【分析】由平移的性质知,⊙O1与⊙O2是全等的,所以图中的阴影部分的面积与图中的矩形的面积是相等的,故图中阴影部分面积可求.【解答】解:∵⊙O1平移3cm到⊙O2∴⊙O1与⊙O2全等∴图中的阴影部分的面积=图中的矩形的面积∴2×3=6cm2∴图中阴影部分面积为6cm2.故答案为:6.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.解题的关键是要知道图中的阴影部分的面积=图中的矩形的面积.17.(2分)已知,如图,AB∥CD,则∠α、∠β、∠γ之间的关系为∠α+∠β﹣∠γ=180°.【分析】过E作EF∥AB∥CD,由平行线的质可得∠α+∠AEF=180°,∠FED=∠γ,由∠β=∠AEF+∠FED即可得∠α、∠β、∠γ之间的关系.【解答】解:过点E作EF∥AB∴∠α+∠AEF=180°(两直线平行,同旁内角互补)∵AB∥CD(已知)∴EF∥CD.∴∠FED=∠EDC(两直线平行,内错角相等)∵∠β=∠AEF+∠FED又∵∠γ=∠EDC(已知)∴∠α+∠β﹣∠γ=180°.【点评】本题考查了平行线的性质,正确作出辅助线是解题的关键.18.(2分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).【分析】利用大正方形的面积减去4个小正方形的面积即可求解.【解答】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2﹣4×()2=ab.故答案为:ab.【点评】本题考查了平方差公式的几何背景,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.三、解答题(8大题,共54分)19.(9分)计算:(1)﹣22+30﹣(﹣)﹣1(2)(2a+b)(b﹣2a)(3 )(a﹣3b)2.【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用平方差公式计算即可得到结果;(3)原式利用完全平方公式展开即可得到结果.【解答】解:(1)原式=﹣4+1﹣(﹣2)=﹣1;(2)原式=(b+2a)(b﹣2a)=b2﹣4a2;(3)原式=a2﹣2×a×3b+(3b)2=a2﹣6ab+9b2.【点评】此题考查了平方差公式,完全平方公式,以及实数的运算,熟练掌握公式及法则是解本题的关键.20.(9分)因式分解:(1)a(x﹣y)﹣b(y﹣x)(2)3ax2﹣12ay2(3)(x+y)2+4(x+y+1)【分析】(1)原式变形后,提取公因式即可得到结果;(2)原式提取公因式,再利用平方差公式分解即可;(3)原式整理后,利用完全平方公式分解即可.【解答】解:(1)原式=a(x﹣y)+b(x﹣y)=(x﹣y)(a+b);(2)原式=3a(x2﹣4y2)=3a(x+2y)(x﹣2y);(3)原式=(x+y)2+4(x+y)+4=(x+y+2)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21.(5分)对于任何实数,我们规定符号=ad﹣bc,例如:=1×4﹣2×3=﹣2(1)按照这个规律请你计算的值;(2)按照这个规定请你计算,当a2﹣3a+1=0时,求的值.【分析】(1)根据已知展开,再求出即可;(2)根据已知展开,再算乘法,合并同类项,变形后代入求出即可.【解答】解:(1)原式=﹣2×5﹣3×4=﹣22;(2)原式=(a+1)(a﹣1)﹣3a(a﹣2)=a2﹣1﹣3a2+6a=﹣2a2+6a﹣1,∵a2﹣3a+1=0,∴a2﹣3a=﹣1,∴原式=﹣2(a2﹣3a)﹣1=﹣2×(﹣1)﹣1=1.【点评】本题考查了整式的混合运算和求值的应用,解此题的关键是能根据整式的运算法则展开,难度适中.22.(6分)(1)已知2x=3,2y=5,求:2x﹣2y的值.(2)x﹣2y+1=0,求:2x÷4y×8的值.【分析】(1)直接利用同底数米的除法运算法则将原式变形求出答案;(2)直接利用同底数米的除法运算法则将原式变形求出答案.【解答】解:(1)∵2x=3,2y=5,∴2x﹣2y=2x÷(2y)2,=3÷52=;(2)∵x﹣2y+1=0,∴x﹣2y=﹣1,∴2x÷4y×8=2x﹣2y×8=2﹣1×8=4.【点评】此题主要考查了同底数幂的除法运算,正确将原式变形是解题关键.23.(6分)若已知x+y=3,xy=1,试求(1)(x﹣y)2的值(2)x3y+xy3的值.【分析】(1)原式利用完全平方公式变形,将已知等式代入计算即可求出值;(2)原式提取公因式,再利用完全平方公式变形,将各自的值代入计算即可求出值.【解答】解:(1)∵x+y=3,xy=1;∴(x﹣y)2=(x+y)2﹣4xy=9﹣4=5;(2)∵x+y=3,xy=1,∴x3y+xy3=xy[(x+y)2﹣2xy]=9﹣2=7.【点评】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.24.(5分)如图,DE⊥AB,EF∥AC,∠A=32°,求∠DEF的度数.【分析】先根据DE⊥AB可知∠ADE=90°,再由三角形外角的性质求出∠DGC的度数,根据平行线的性质即可得出结论.【解答】解:∵DE⊥AB,∴∠ADE=90°,∵∠DGC是△ADG的外角,∠A=32°,∴∠DGC=∠A+∠ADG=32°+90°=122°,∵EF∥AC,∴∠DEF=∠DGC=122°.【点评】本题考查的是平行线的性质及三角形外角的性质,用到的知识点为:两直线平行,同位角相等.25.(6分)观察以下一系列等式:①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;④24﹣23=16﹣8=23;…(1)请按这个顺序仿照前面的等式写出第④个等式;24﹣23=16﹣8=23(2)若字母n代表第n个等式,请用字母n表示上面所发现的规律:2n﹣2n ﹣1=2n﹣1;(3)请利用上述规律计算:20+21+22+23+ (21000)【分析】(1)根据已知等式的指数与序数的关系即可得;(2)观察各等式得到2的相邻两个正整数幂的差等于2的较小的正整数次幂,即2n﹣2n﹣1=2n﹣1(n为正整数);(3)由(1)(2)得20=21﹣20,21=22﹣21,22=22﹣21,…,21000=21001﹣21000,代入待求等式,两两相消即可得.【解答】解:(1)∵①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;∴第④个等式为:24﹣23=16﹣8=23,故答案为:24﹣23=16﹣8=23;(2)由(1)知,第n个等式为:2n﹣2n﹣1=2n﹣1,故答案为:2n﹣2n﹣1=2n﹣1;(3)∵20=21﹣20,21=22﹣21,22=22﹣21,…,21000=21001﹣21000,∴20+21+22+23+…+21000=(21﹣20)+(22﹣21)+(22﹣21)+…+(21001﹣21000)=21001﹣20=21001﹣1.【点评】本题主要考查数字的变化类,解决此类问题的关键是找到序号和变化数字的关系,另外题目涉及证明和运算,对学生的考查能力有了更高的要求,题目整体艰难,适合课后培优训练.26.(8分)在△ABC中,∠C=90°,BD是△ABC的角平分线,P是射线AC上任意一点(不与A、D、C三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.(1)如图,当点P在线段AC上时,说明∠PDE=∠PED.(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.【分析】(1)由PQ与AB垂直,得到一对直角相等,理由直角三角形的两锐角互余得到两对角互余,再BD为角平分线,利用角平分线定义得到一对角相等,再由对顶角相等,利用等量代换即可得证;(2)分两种情况,当P在线段AC上时,如图1所示,可得出PF与BD平行,由第一问的结论利用等角对等边得到PD=PE,利用角平分线定义及外角性质得到一对内错角相等,利用内错角相等两直线平行即可得证;当P在AC延长线时,PF垂直于BD,由PD=PE,利用三线合一即可得证.【解答】解:(1)∵PQ⊥AB,∴∠EQB=∠C=90°,∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°,∵BD为∠ABC的平分线,∴∠CBD=∠EBQ,∵∠PED=∠BEQ,∴∠PDE=∠PED;(2)当P在线段AC上时,如图1所示,此时PF∥BD,理由为:∵∠PDE=∠PED,∴PD=PE,∵PF为∠CPQ的平分线,∠CPQ为△PDE的外角,∴∠CPF=∠QPF=∠PDE=∠PED,∴PF∥BD;当P在线段AC延长线上时,如图2所示,PF⊥BD,理由为:∵∠PDE=∠PED,∴PD=PE,∵PM为∠CPQ的平分线,∴PF⊥BD.【点评】此题考查了平行线的判定,以及直角三角形的性质,熟练掌握平行线的判定是解本题的关键.。