2011年内蒙古呼和浩特市中考数学试题(纯word版含答案)_(19)
2011年呼市第一次模拟数学试卷

2011年呼和浩特市初三统考试卷数 学一、选择题(本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1、计算2-1等于( )A 、1B 、-1C 、-2D 、122.如果每人每天节水0.32升,那么100万人每天节水( )A .43.210⨯升 B. 53.210⨯升 C. 63.210⨯升 D. 73.210⨯升 3、六个大小相同的正方体搭成如图所示的几何体,这个几何体的( ) A 、正视图面积最大 B 、左视图面积最大C 、俯视图面积最大D 、三个视图的面积一样大 4、某中学篮球队12名队员年龄情况如下:年龄(单位:岁)14 15 16 17 18 人数14322则这个队队员的年龄的众数和中位数分别是( )A 、15,15B 、15,16C 、15,15.5D 、16,15 5、如图直线1y kx b =+与反比例函数图像2my x=交于A (-1,2),B(2,-1)两点,如果12y y >,这时x 的取值范围是( )A 、x<-1B 、x<-1或0<x<2C 、-1<x<2D 、x>26、在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,⊙A 的半径为2,下列说法中不正确的是( )A 、当a<5时,点B 在⊙A 内 B 、当1<a<5时,点B 在⊙A 内C 、当a<1时,点B 在⊙A 外D 、当a>5时,点B 在⊙A 外 7、如图,ABCD 中,M 为BC 中点,AM ⊥BD 于E ,若=72,AM=9,则AD 长为( ) A 、5 B 、10 C 、313 D 、12第7题图第5题图8、抛物线y=a(x-1)(x-3)(0a ≠)的对称轴是直线( )A 、x=1B 、x=-1C 、x=-3D 、x=39、正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕点D 顺时针方向旋转090后,B 点到达的位置坐标为( ) A 、(-2,2) B 、(4,1) C 、(3,1) D 、(4,0)10、已知下列命题:①若a>0,b>0,则a+b>0 ②若m>1,则一元二次方程21(1)(1)02x m x m -+++=有两个不相等的实数根 ③角平分线上的点到角的两边距离相等 ④相似多边形的对应角相等。
【2011年】中考内蒙古包头市数学卷

2011年内蒙古包头市中考数学试题一、选择题(本大题共12小题,每小题3分,满分36分)1.- 12的绝对值是【 】A .-2B . 1 2C .2D .- 122.3的平方根是【 】A .± 3B .9C . 3D .±93.一元二次方程x 2+x + 14=0根的情况是【 】A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定 4.函数32+-=x x y 中自变量x 的取值范围是【 】 A .x ≥2且x ≠-3 B .x ≥2 C .x >2 D .x ≥2且x ≠05.已知两圆的直径分别为2cm 和4cm ,圆心距为3cm ,则这两个圆的位置关系是【 】 A .相交 B .外切 C .外离 D .内含6.从2008年6月1日起,全国商品零售场所开始实行“塑料购物袋有偿使用制度”,截止到2011年5月底全国大约节约塑料购物袋6.984亿个,这个数用科学记数法表示(保留两个有效数字)约为【 】A .6.9×108个B .6.9×109个C .7×108个D .7.0×108个 7.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中摸出的2个球的颜色相同概率是【 】A . 3 4B . 1 5C . 3 5D . 258.下列几何体各自的三视图中,只有两个视图相同的是【 】A .①③B .②③C .③④D .②④9.菱形ABCD 的对角线AC 、BD 交于点O ,∠BAD =120º,AC =4,则它的面积是【 】 A .16 3 B .16 C .8 3 D .8 10.下列命题中,原命题与逆命题均为真命题的个数是【 】①若a =b ,则a 2=b 2; ②若x >0,则|x |=x ;③一组对边平行且对角线相等的四边形是矩形; ④一组对边平行且不相等的四边形是梯形.A .1个B .2个C .3个D .4个11.已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点,PC 切⊙O 于切点C ,∠APC 的平分线交AC 于点D ,则∠CDP =【 】A .30ºB .60ºC .45ºD .50º12.已知二次函数y =ax 2+bx +c 同时满足下列条件:①对称轴是x =1;②最值是15;③图象与x 轴有两个交点,其横坐标的平方和为15-a ,则b 的值是【 】①正方体 ②圆锥体 ③球体④圆柱体A .4或-30B .-30C .4D .6或-20二、填空题(本大题共8小题,每小题3分,满分24分)13.不等式组⎩⎪⎨⎪⎧ x -3 2-1≥05-(x -3)>0的解集是 .14.如图1,边长为a 的大正方形中有一个边长为b 的小正方形,若将图1中的阴影部分拼成一个长方形如图2,比较图1与图2中的阴影部分的面积,你能得到的公式是 . 15.化简二次根式:27― 12―3―12= .16.随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是 .17.化简: a +2 a 2―1 · a -1 a 2+4a +4 ÷ 1 a +2 + 2a 2―1= .18.如图,点A (-1,m )和B (2,m +33)在反比例函数y = kx的图象上,直线AB 与x 轴的交于点C ,则点C 的坐标是 .19.如图,△ABD 与△AEC 都是等边三角形,AB ≠AC .下列结论中,正确的是 .①BE =CD ;②∠BOD =60º;③△BOD ∽△COE .20.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 、y 轴上,连接AC ,将纸片OABC 沿AC 折叠,使点B 落在点D 的位置.若点B 的坐标为(1,2),则点D 的横坐标是 .三、解答题(本大题共6小题,满分60分)21.(8分)为了了解某水库养殖鱼的有关情况,从该水库多个不同位置捕捞出200条鱼,称得每条的质量(单位:千克),并将所得数据分组,绘制了直方图.(1)根据直方图提供的信息,这组数据的中位数落在 范围内; (2)估计数据落在1.00~1.15中的频率是 ; (3)将上面捕捞的200条鱼分别作一记号后再放回水库,几天后再从水库的多个不同位置捕捞出150条鱼,其中带有记号的鱼有10条.请根据这一情况估算该水库中鱼的总条数.xyO C ABADBCEO yx OA BCD 质量/千克频数 60 5640 30 10 4 1.00 1.05 1.10 1.15 1.20 1.25 1.30 Oaab b图1 图222.(8分)一条船上午8点在A 处望见西南方向有一座灯塔B (如图),此时测得船和灯塔相距362海里,船以每小时20海里的速度向南偏西24º的方向航行到C 处,这时望见灯塔在船的正北方向(参考数据:sin24º≈0.4,cos24º≈0.9). (1)求几点钟船到达C 处;(2)求船到达C 处时与灯塔之间的距离.23.(10分)为了鼓励城市周边农民种菜的积极性,某公司计划新建A 、B 两种温室80栋,将其出售给农民种菜.该公司为建设温室所筹建资金不少于209.6万元,但不超过210.2万元,且A 型B 型 成 本(万元/栋) 2.5 2.8 出售价(万元/栋)3.13.5(1)这两种温室有哪几种建设方案?(2)根据市场调查,每栋A 型温室的售价不会改变,每栋B 型温室的售价可降低m 万元(0<m <0.7),且所建的两种温室可全部售出.为了减轻菜农负担,试问采用什么方案建设温室可使利润最少.ABC D 东北24.(10分)在Rt △ABC 中,AB =BC =5,∠ABC =90º.一块等腰直角三角板的直角顶点放在斜边AC 的中点O 处,将三角板绕点O 旋转,三角板的两直角边分别交AB 、BC 或其延长线于点E 、F ,图①、②是旋转三角板所得图形的两种情况. (1)三角板绕点O 旋转,△COF 能否成为等腰直角三角形?若能,指出所有情况(即给出△COF 是等腰直角三角形时BF 的长);若不能,请说明理由.(2)三角板绕点O 旋转,线段OE 和OF 之间有什么数量关系?用图①或图②加以证明. (3)若将三角板的直角顶点放在斜边上的点P 处(如图③),当AP ∶AC =1∶4时,PE 和PF 有怎样的数量关系?证明你发现的结论.25.(12分)如图,已知∠ABC =90º,AB =BC ,直线l 与以BC 为直径的⊙O 相切于点C ,点F 是⊙O 上异于B 、C 的动点,直线BF 与l 相交于点E ,AF ⊥FD 交BC 于点D . (1)如果BE =15,CE =9,求EF 的长.(2)证明:①△CDF ∽△BAF ;②CD =CE .(3)探求动点F 在什么位置时,相应的点D 位于线段BC 的 延长线上,且使BC =3CD ,请说明你的理由.A A ABB BO OP CFCEFECEF图①图②图③OD A BCEF l26.(12分)如图,已知抛物线y=ax2+bx+c经过点A(2,3)、B(6,1)、C(0,-2).(1)求此抛物线的解析式,并用配方法把解析式化为顶点式.(2)点P是抛物线对称轴上的动点,当AP⊥CP时,求点P的坐标.(3)设直线BC与x轴交于点D,点H是抛物线与x轴的一个交点,点E(t,n)是抛物线上的动点,四边形OEDC的面积为S.当S取何值时,满足条件的E只有一个?当S取何值时,满足条件的E有两个?。
2011年中考数学试题及答案(Word版)

A OBCD A B C ED 中考数学试题一、选择题(本题共32分,每小题4分)1.- 34的绝对值是【 】A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为【 】A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是【 】A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为【 】 A . 1 2 B . 1 3 C . 1 4 D . 195则这10个区县该日最高气温的人数和中位数分别是【 】A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为【 】 A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为【 】A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是【 】二、填空题(本题共16分,每小题4分)9.若分式x ―8x的值为0,则x 的值等于________. 10.分解因式:a 3―10a 2+25a =______________.11.若右图是某几何体的表面展开图,则这个几何体是__________.12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a =a =1.按此规定,a =_____;表中的25个数中,共有_____A .B .C .D .FE x13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx 的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?A B C D19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨? 北京市2001~2010年私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图A E F 图3 22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为三边长的三角形的面积等于_______.24.(7分)在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.B BADADC C EE G FABC DE GF 图1图2图3BBCADOADCEO图2图1数学试卷答案及评分参考13、解:()0122730221π-++-⎪⎭⎫⎝⎛- cos=1332322++⨯- =13332++- =332+.14、解:去括号,得6544->-x x移项, 得6454->-x x合并, 得2->-x 解得 2<x所以原不等式的解集是2<x . 15、解:()()()b a b a b a a 224-+-+ =()22244b a ab a --+ =244b ab +∵0222=++b ab a ∴0=+b a∴原式=()b a b +4=0. 16、证明:∵BE ∥DF , ∴∠ABE=∠D .在△ABE 和△FDC 中,∴△ABE ≌△FDC . ∴AE =FC .17、解(1)∵A (-1,n )在一次函数x y 2-=∴n =2-×(1-)=2.∴点A 的坐标为(-1,2).∵点A 在反比例函数xky =的图象上,∴2-=k .∴反比例函数的解析式为xy 2-=. ∠ABE=∠D AB=FD∠A=∠F18、解:设小王用自驾车方式上班平均每小时行使x 千米. 依题意,得xx 18739218⨯=+ 解得 27=x .经检验,27=x 是原方程的解,且符合题意. 答;小王用自驾车方式上班平均每小时行使27千米. 四、解答题19、解:∵∠ACB=90°,DE ⊥BC , ∴AC ∥DE .又∵CE ∥AD ,∴四边形ACED 的是平行四边形. ∴DE=AC=2.在Rt △CDE 中,由勾股定理得3222=-=DE CE CD . ∵D 是BC 的中点, ∴BC=2CD=34.在Rt △ABC 中,由勾股定理得13222=+=BC AC AB . ∵D 是BC 的中点,DE ⊥BC , ∴EB=EC=4.∴四边形ACEB 的周长= AC+CE+EB+BA=10+132. 21、解(1)146×(1+19%) =173.74≈174(万辆).∴2008年北京市私人轿车拥有量约是174万辆.(2)如右图. (3)276×15075×2.7=372.6(万吨) 估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为372.6万吨.22、解:△BDE 的面积等于1 . (1)如图.以AD 、BE 、CF 的长度为三边长的一个三角形是 △CFP . (2)以AD 、BE 、CF 的长度为三边长的三角形的面积等于43. . 24、(1)证明:如图1. ∵AF 平分∠BAD , ∴∠BAF=∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴∠DAF=∠CEF ,∠BAF=∠F .E∴CE =CF .(2)∠BDG =45°.(3)分别连结GB 、GE 、GC (如图2) ∵AB ∥DC ,∠ABC =120°, ∴∠ECF=∠ABC=120°.∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF , ∴□CEGF 是菱形.∴EG =EC ,∠GCF=∠GCE=21∠ECF= 60°.∴△ECG 是等边三角形.∴EG =CG , ① ∠GEC=∠EGC=60°. ∴∠GEC=∠GCF .∴∠BEG=∠DCG . ②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB . ∴AB=BE .在□ABCD 中,AB=DC . ∴BE=DC . ③ 由①②③得△BEG ≌△DCG . ∴BG=DG ,∠1=∠2.∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°. ∴∠BDG=2180BGD∠- =60°.图2。
内蒙古呼和浩特市中考数学试题(含解析)

内蒙古呼和浩特市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣2的倒数是()A.2B.﹣2 C.D.2.如图,已知a∥b,∠1=65°,则∠2的度数为()A.65°B.125°C.115°D.25°3.在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外,其余都相同,则随机从口袋中摸出一个球为红色的概率是()A.B.C.D.4.下列各因式分解正确的是()A.﹣x2+(﹣2)2=(x﹣2)(x+2)B.x2+2x﹣1=(x﹣1)2C.4x2﹣4x+1=(2x﹣1)2D.x2﹣4x=x(x+2)(x﹣2)5.已知:x1,x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a、b的值分别是()A.a=﹣3,b=1 B.a=3,b=1 C.,b=﹣1 D.,b=16.如图,在一长方形内有对角线长分别为2和3的菱形,边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是()A.落在菱形内B.落在圆内C.落在正六边形内D.一样大7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x﹣2y=2的解是()A.B.C.D.8.已知:在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面积是()A.25 B.50 C.D.9.已知:M,N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=﹣abx2+(a+b)x()A.有最大值,最大值为B.有最大值,最大值为C.有最小值,最小值为D.有最小值,最小值为10.下列命题中,真命题的个数有()①一个图形无论经过平移还是旋转,变换后的图形与原来图形的对应线段一定平行②函数图象上的点P(x,y)一定在第二象限③正投影的投影线彼此平行且垂直于投影面④使得|x|﹣y=3和y+x2=0同时成立的x的取值为.A.3个B.1个C.4个D.2个二、填空题(本大题共6个小题,每小题3分,共18分,本题要求把正确结果填在答题纸规定的横线上,不需要解答过程)11.函数y=中,自变量x的取值范围是_________.12.太阳的半径约为696 000千米,用科学记数法表示为_________千米.13.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_________.14.实数a,b在数轴上的位置如图所示,则的化简结果为_________.15.一组数据﹣1,0,2,3,x,其中这组数据的极差是5,那么这组数据的平均数是_________.16.如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为_________cm.三、解答题(本大题包括9个小题,共72分,解答应写出必要的演算步骤、证明过程或文字说明)17.(1)计算:.(2)先化简,再求值:,其中.18.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.19.如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(n,3)两点.(1)求一次函数的解析式;(2)根据图象直接写出时x的取值范围.20.如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于E,BF∥DE,交AG于F.(1)求证:AF﹣BF=EF;(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F′,若正方形边长为3,求点F′与旋转前的图中点E之间的距离.21.如图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时)(1)找出该样本数据的众数和中位数;(2)计算这些车的平均速度;(结果精确到0.1)(3)若某车以50.5千米/时的速度经过该路口,能否说该车的速度要比一半以上车的速度快?并说明判断理由.22.如图,线段AB,DC分别表示甲、乙两建筑物的高.某初三课外兴趣活动小组为了测量两建筑物的高,用自制测角仪在B外测得D点的仰角为α,在A处测得D点的仰角为β.已知甲、乙两建筑物之间的距离BC为m.请你通过计算用含α、β、m的式子分别表示出甲、乙两建筑物的高度.23.如图,某化工厂与A,B两地有公路和铁路相连,这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),这两次运输共支出公路运费15 000元,铁路运费97 200元,请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲,乙两名同学所列方程组,请你分别指出未知数x,y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示_________,y表示_________乙:x表示_________,y表示_________(2)甲同学根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.24.如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.(1)求证:∠PAC=∠B,且PA•BC=AB•CD;(2)若PA=10,sinP=,求PE的长.25.如图,抛物线y=ax2+bx+c(a<0)与双曲线相交于点A,B,且抛物线经过坐标原点,点A的坐标为(﹣2,2),点B在第四象限内,过点B作直线BC∥x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍,记抛物线顶点为E.(1)求双曲线和抛物线的解析式;(2)计算△ABC与△ABE的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABE的面积的8倍?若存在,请求出点D的坐标;若不存在,请说明理由.内蒙古呼和浩特市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣2的倒数是()A.2B.﹣2 C.D.考点:倒数。
2011年内蒙古包头市中考数学试卷

2011年内蒙古包头市中考数学试卷一、选择题(共12小题,每小题3分,满分36分) 11. ( 3分)一丄的绝对值是()2c1 1 A . _2B. -C . 2D.—222. ( 3分)3的平方根是()A . _ 3B . 9C . 3D . _9一 2 13.( 3分)一兀二次方程 x x 0的根的情况是()4A •有两个不等的实数根B •有两个相等的实数根C •无实数根D •无法确定4. ( 3分)函数2中自变量x 的取值范围是()x +3A . x …2 且 x 工 3B . x …2C . x 2D . x …2 且 x = 06.(3分)2008年6月1日起全国商品零售场所实行 塑料购物袋有偿使用制度”, 截止到2011年5月底全国大约节约塑料购物袋 6.984亿个,这个数用科学记 数法表示约为(保留两个有效数字)( )7. ( 3分)一个袋子中装有 3个红球和2个黄球,这些球的形状、大小.质地完全相同,在& ( 3分)下列几何体各自的三视图中,只有两个视图相同的是( )5. (3分)已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关玄阜A .相交B .外切C .外离D .内含A . 6.9 105B . 6.9 109C. 7 108D . 7.0 108看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是 (①正②II锥体③球体④圆柱B .②③C.③④D.②④9. (3分)已知菱形ABCD中,对角线AC与BD交于点0 , . BAD =120 , AC =4,则该菱形的面积是()A . 16 3B . 16 C. 8 .3 D. 810. (3分)已知下列命题:①若 a =b,则a2二b2;②若x 0,则|x|=x ;③一组对边平行且对角线相等的四边形是矩形;④一组对边平行且不相等的四边形是梯形.其中原命题与逆命题均为真命题的个数是()A . 1个B . 2个C . 3个D . 4个11. (3分)已知AB是L O的直径,点P是AB延长线上的一个动点,过P作L O的切线,切点为C , . APC的平分线交AC于点D,则.CDP等于()212. (3分)已知二次函数y二ax bx c同时满足下列条件:对称轴是x =1 ;最值是15;二次函数的图象与x轴有两个交点,其横坐标的平方和为15-a,则b的值是()A . 4 或-30B . -30 C. 4 D . 6 或-20二、填空题(共8小题,每小题3分,满分24分)x -3 1・• 013. (3分)不等式组________ 2 的解集是.5-(x -3)014. (3分)如图,边长为a的正方形中有一个边长为b的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是___________ .厂C. 45D. 50E2化简二次根式: 727 -一—屁= ________ .2 _丿3 随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是 a * 2 a -1 12化简厂号4a 4“厂•厂,其结果是如图,已知 A (-1,m )与B (2,m 3.3)是反比例函数y 二兰的图象上的两个点,点 xC 是直线AB 与x 轴的交点,则点 C 的坐标是20. ( 3分)如图,把矩形纸片 OABC 放入平面直角坐标系中,使0A ,OC 分别落在x 轴、y 轴上,连接AC ,将矩形纸片OABC 沿AC 折叠,使点B 落在点D 的位置,若B (1,2),15(3分) 16. (3 分) 17. (3 分) 18(3 分)19. (3分)如图,■ ABD 与=AEC 都是等边三角形, AB= AC ,下列结论中:①BE 二 DC :② BOD =60 :③ BOD ^ COE .正确的序号是三、解答题(共6小题,满分60 分)21. (8分)为了了解某水库养殖鱼的有关情况,从该水库多个不同位置捕捞出200条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,绘制了直方图(1 )根据直方图提供的信息,这组数据的中位数落在_______ 范围内;(2) ______________________________________ 估计数据落在1.00~1.15中的频率是;(3)将上面捕捞的200条鱼分别作一记号后再放回水库•几天后再从水库的多处不同的位置捕捞150条鱼,其中带有记号的鱼有10条,请根据这一情况估算该水库中鱼的总条数.22. (8分)一条船上午8点在A处望见西南方向有一座灯塔B,此时测得船和灯塔相距36传海里,船以每小时20海里的速度向南偏西24的方向航行到C处,此时望见灯塔在船的正北方向.(参考数据sin24、\=0.4 , cos24、\0.9)(1 )求几点钟船到达C处;(2)当船到达C处时,求船和灯塔的距离.23. (10分)为了鼓励城市周边的农民的种菜的积极性,某公司计划新建 A , B两种温室80栋,将其中售给农民种菜.该公司建设温室所筹资金不少于209.6万元,但不超过210.2万元.且所筹资金全部用于新建温室.两种温室的成本和出售价如下表:A型B型成本(万元/栋) 2.5 2.8(2)根据市场调查,每栋A型温室的售价不会改变,每栋B型温室的售价可降低m万元(0 ::: m ::: 0.7)且所建的两种温室可全部售出. 为了减轻菜农负担,试问采用什么方案建设温室可使利润最少.24. (10分)在Rt ABC中,AB二BC=5 , ■ B=90,将一块等腰直角三角板的直角顶点放在斜边AC的中点O处,将三角板绕点O旋转,三角板的两直角边分别交AB,BC或其延长线于E,F两点,如图(1)与(2)是旋转三角板所得图形的两种情况.(1)三角板绕点O旋转,OFC是否能成为等腰直角三角形?若能,指出所有情况(即给出也OFC是等腰直角三角形时BF的长);若不能,请说明理由;(2)三角板绕点O旋转,线段OE和OF之间有什么数量关系?用图(1)或(2)加以证明;(3)若将三角板的直角顶点放在斜边上的点P处(如图(3)),当AP AC =1:4时,PE和PF有怎样的数量关系?证明你发现的结论.C C25 . (12分)如图,已知.ABC =90,AB =BC .直线I与以BC为直径的圆O相切于点C •点F是圆O上异于B、C的动点,直线BF与I相交于点E,过点F作AF的垂线交直线BC与点D .(1)如果BE =15,CE =9,求EF 的长;(2)证明:① ACDF s.iBAF ;② CD =CE ;(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=』3C D,请说明你的理由.226. (12 分)如图,已知抛物线y=ax bx c 经过点A(2,3) , B(6,1), C(0, -2).(1)求此抛物线的解析式,并用配方法把解析式化为顶点式;(2 )点P是抛物线对称轴上的动点,当AP_CP时,求点P的坐标;(3)设直线BC与x轴交于点D,点H是抛物线与x轴的一个交点,点E(t, n)是抛物线上的动点,四边形OEDC的面积为S .当S取何值时,满足条件的点E只有一个?当S取2011年内蒙古包头市中考数学试卷参考答案与试题解析、选择题(共12小题,每小题3分,满分36分)1. ( 3 分) 1的绝对值是(2A.—C. 【解答】解:根据负数的绝对值等于它的相反数,得故选:B .2. (3分)3的平方根是(A .十:疥C. _9【解答】解:;(—3)2 =3 ,■ 3的平方根是为一3 .故选:A.2 13. (3分)一元二次方程x2 x 0的根的情况是4A •有两个不等的实数根有两个相等的实数根D.无法确定C •无实数根【解答】解―二b2"—-壮>0 ,.原方程有两个相等的实数根.故选:B .4. (3分)函数y = x -2中自变量x的取值范围是C.【解答】解:依题意得f x -2・・0x 3 =0,解之得x--2 .故选:B .5. (3分)已知两圆的直径分别是2厘米与4厘米, 圆心距是3厘米,则这两个圆的位置关系是()A .相交B .外切C.外离 D .内含【解答】解:•.-两圆的直径分别是2厘米与4厘米,.两圆的半径分别是1厘米与2厘米,圆心距是3厘米,1 • 2 =3 ,.这两个圆的位置关系是外切.故选:B .6.(3分)2008年6月1日起全国商品零售场所实行塑料购物袋有偿使用制度”, 截止到2011年5月底全国大约节约塑料购物袋 6.984亿个,这个数用科学记数法D. 7.0 108A. 6.9 105B. 6.9 109C. 7 108表示约为(保留两个有效数字)()【解答】解:6.984 亿=6.984 108 : 7.0 108.故选:D .7. (3分)一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是(C..其中2个球的颜色相同的概率是:20【解答】解:丁一个袋子中装有3个红球和2个黄球,随机从袋子里同时摸出2个球,& (3分)下列几何体各自的三视图中,只有两个视图相同的是()10. (3分)已知下列命题: ① 若 a = b ,则 a 2 =b 2 ;CD 正方体②圆锥③球体④圆柱B .②③C .③④D .②④【解答】 解:①正方形的主、左和俯视图都是正方形;② 圆锥的主、左视图是三角形,俯视图是圆;③ 球体的主、左和俯视图都是圆形;④ 圆柱的主、左视图是长方形,俯视图是圆;只有两个视图相同的几何体是圆锥和圆柱. 故选:D .9. ( 3分)已知菱形ABCD 中,对角线 AC 与BD 交于点0 ,.BAD =120 , AC =4,则该 菱形的面积是(A . 16.3B . 16C . 8.3【解答】 解:丁四边形ABCD 是菱形,.AC _ BD , OA =OC J AC 21F 120 =60 ,.AC =4,乙AOB =90 , .■ ABO =30 ,.AB =2OA =4 , OB =2 3 ,.该菱形的面积是:1 ACLBD 」4 4 3 =8.3 .2 2②若x 9,则|x|=x ;③一组对边平行且对角线相等的四边形是矩形;④一组对边平行且不相等的四边形是梯形•其中原命题与逆命题均为真命题的个数是()A. 1个B. 2个C. 3个D. 4个【解答】解:①若a=b,则a2二b2,其逆命题为若a2二b2,则a二b,故本选项错误,②若x 0,则|x |= X,其逆命题为若|x|= X,则x 0,故本选项错误,③例如等腰梯形,满足一组对边平行且两条对角线相等,但它不是矩形,故本选项错误,④一组对边平行且不相等的四边形是梯形,其逆命题为若四边形是梯形,则它的对边平行且不相等,故本选项正确.故选:A .11. (3分)已知AB是L O的直径,点P是AB延长线上的一个动点,过P作L O的切线,切点为C,乙APC的平分线交AC于点D,则乙CDP等于(7OC =OA,PD 平分.APC,ZCPD ZDPA,乙A ZACO,V PC为L O的切线,.OC _ PC,;-CPO COP =90,.(CPD DPA) ( A • ACO) =90 ,C. 45 D. 50【解答】解:如图,连接0C,乙DPA /A =45 ,即匕CDP =45 .2(15 a)22故选:C .212. (3分)已知二次函数 y 二ax bx c 同时满足下列条件:对称轴是x=1 ;最值是15 ;二次函数的图象与x 轴有两个交点,其横坐标的平方和为 15 _a ,则b 的值是()A . 4 或-30B . -30C . 4D . 6 或-20【解答】 解:解法一::・x 轴上点的纵坐标是 0,.由题可设抛物线与 x 轴的交点为(1 -t , 0) , ( 1 t , 0),其中t 0 , T 两个交点的横坐标的平方和等于15-a 即:(1 _t )2 •(1,t )2=15-a ,可得,由顶点为(1,15),可设解析式为:y =a (x —1)2 *15 ,将(1 一' 1^_a ,0)代入可得a =「2或a =15 (不合题意,舍去) 2 2.y = -2(x -1) 15 = —2x 4x 13 , .b =4 ;解法二:丁对称轴是x =1,最值是15,.设 y =ax 2 bx c=a(x —1)2 15, .y =ax 2 —2ax 15 a , 设方程ax -2ax +15 +a =0的两个根是 x , x 2, 贝卩 x ! • x 2 二 2a =2 , x,Ux 2 二 _aa a■■■二次函数的图象与x 轴有两个交点,其横坐标的平方和为 15「a ,222(X 1) (X 2)=(X 1 X 2)-2X 1X 2 =15-a ,=15 - a ,第11页(共26页)2a - 13a -30 = 0,印=15 (不合题意,舍去),a ^-2 ,2 2.y = -2(x _1) 15 = -2x 4x 13 ;.不等式组的解集是 5, x : 8, 故答案为:5, x ::8 .14. (3分)如图,边长为a 的正方形中有一个边长为 b 的小正方形,若将图1的阴影部分拼成一个长方形,如图 2,比较图1和图2的阴影部分的面积,你能得到的公式是2 2a -b =(a b)(a -b)—.【解答】解:根据题意得::两图形阴影面积相等,■可以得到的结论是:a-b =(a b)(a - b).故答案 2O2二、填空题(共8小题,每小题3分,满分24 分)13. (3 分)不等式组字一 j 。
内蒙包头2011年中考数学试题解析版

内蒙古包头市2011年中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1、(2011•包头)﹣错误!未找到引用源。
的绝对值是()A、﹣2B、错误!未找到引用源。
C、2D、﹣错误!未找到引用源。
考点:绝对值。
专题:计算题。
分析:根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数﹣a,解答即可;解答:解:根据负数的绝对值等于它的相反数,得|﹣错误!未找到引用源。
|=错误!未找到引用源。
.故选B.点评:此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是0.2、(2011•包头)3的平方根是()A、±错误!未找到引用源。
B、9C、错误!未找到引用源。
D、±9考点:平方根。
专题:计算题。
分析:直接根据平方根的概念即可求解.解答:解:∵(错误!未找到引用源。
)2=3,∴3的平方根是为错误!未找到引用源。
.故选A.点评:本题主要考查了平方根的概念,比较简单.3、(2011•包头)一元二次方程x2+x+错误!未找到引用源。
=0的根的情况是()A、有两个不等的实数根B、有两个相等的实数根C、无实数根D、无法确定考点:根的判别式。
专题:计算题。
分析:先计算△=b2﹣4ac,然后根据△的意义进行判断根的情况.解答:解:∵△=b2﹣4ac=12﹣4•1•错误!未找到引用源。
=0,∴原方程有两个相等的实数根.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的根判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4、(2011•包头)函数y=错误!未找到引用源。
中自变量x的取值范围是()A、x≥2且x≠3B、x≥2C、x>2D、x≥2且x≠0考点:函数自变量的取值范围。
专题:计算题。
分析:由于分子是二次根式,由此得到x﹣2是非负数,x+3是分母,由此得到x+3≠0,根据这些即可求解.解答:解:依题意得错误!未找到引用源。
内蒙古呼和浩特市2011年中考数学真题试卷(解析版)

2011年内蒙古呼和浩特市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把该选项的序号填入题干后面的括号内)1、(2011•呼和浩特)如果a的相反数是2,那么a等于()A、﹣2B、2C、D、考点:相反数。
分析:因为绝对值相等且符号不同的两个数互为相反数,根据题意可求得a的绝对值,再根据相反数的概念不难求得a的值.解答:解:∵a的相反数是2,∴|a|=|2|=2,∴a=﹣2.故选A.点评:此题主要考查学生对相反数的概念的理解及掌握情况.2、(2006•重庆)计算2x2•(﹣3x3)的结果是()A、﹣6x5B、6x5C、﹣2x6D、2x6考点:同底数幂的乘法;单项式乘单项式。
分析:根据单项式乘单项式的法则和同底数幂相乘,底数不变,指数相加计算后选取答案.解答:解:2x2•(﹣3x3),=2×(﹣3)•(x2•x3),=﹣6x5.故选A.点评:本题主要考查单项式相乘的法则和同底数幂的乘法的性质.3、(2011•呼和浩特)已知圆柱的底面半径为1,母线长为2,则圆柱的侧面积为()A、2B、4C、2πD、4π考点:圆柱的计算。
专题:计算题。
分析:圆柱侧面积=底面周长×高.解答:解:圆柱沿一条母线剪开,所得到的侧面展开图是一个矩形,它的长是底面圆的周长,即2π,宽为母线长为2cm,所以它的面积为4πcm2.故选D.点评:本题考查了圆柱的计算,掌握特殊立体图形的侧面展开图的特点,是解决此类问题的关键.4、(2011•呼和浩特)用四舍五入法按要求对0.05049分别取近似值,其中错误的是()A、0.1(精确到0.1)B、0.05(精确到百分位)C、0.05(精确到千分位)D、0.050(精确到0.001)考点:近似数和有效数字。
专题:探究型。
分析:根据近似数与有效数字的概念对四个选项进行逐一分析即可.解答:解:A、0.05049精确到0.1应保留一个有效数字,故是0.1,故本选项正确;B、0.05049精确到百分位应保留一个有效数字,故是0.05,故本选项正确;C、0.05049精确到千分位应是0.050,故本选项错误;D、0.05049精确到0.001应是0、050,故本选项正确.故选C.点评:本题考查的是近似数与有效数字,即从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.5、(2011•呼和浩特)将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A、B、C、D、考点:几何体的展开图。
内蒙古呼和浩特市中考数学真题试题(含解析)

内蒙古呼和浩特市xx年中考数学真题试题一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣52.(3.00分)二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据如图,在下列选项中指出白昼时长低于11小时的节气()A.惊蛰 B.小满 C.立秋 D.大寒3.(3.00分)已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形4.(3.00分)下面是几个一样的小正方体摆出的立体图形的三视图,由三视图可知小正方体的个数为()A.6个B.5个C.4个D.3个5.(3.00分)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9 6.(3.00分)若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b ﹣l上,则常数b=()A.B.2 C.﹣1 D.17.(3.00分)随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去的年收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.8万D.前年年收入不止①②③三种农作物的收入8.(3.00分)顺次连接平面上A、B、C、D四点得到一个四边形,从①AB∥CD②BC=AD③∠A=∠C④∠B=∠D四个条件中任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况共有()A.5种B.4种C.3种D.1种9.(3.00分)下列运算及判断正确的是()#ERR1A.﹣5×÷(﹣)×5=1B.方程(x2+x﹣1)x+3=1有四个整数解C.若a×5673=103,a÷103=b,则a×b=D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限10.(3.00分)若满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,则实数m的取值范围是()A.m<﹣1 B.m≥﹣5 C.m<﹣4 D.m≤﹣4二、填空题(本题共6小题,每题3分,共18分)11.(3.00分)分解因式:a2b﹣9b= .12.(3.00分)同一个圆的内接正方形和正三角形的边心距的比为.13.(3.00分)文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.14.(3.00分)已知函数y=(2k﹣1)x+4(k为常数),若从﹣3≤k≤3中任取k值,则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为.15.(3.00分)若不等式组的解集中的任意x,都能使不等式x﹣5>0成立,则a的取值范围是.16.(3.00分)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M 位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为.三、解答题(本题共9题,72分)17.(10.00分)计算(1)计算:2﹣2+(3﹣)÷﹣3sin45°;(2)解方程:+1=.18.(6.00分)如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.19.(8.00分)下表是随机抽取的某公司部分员工的月收入资料.月收入45000 18000 10000 5500 5000 3400 3000 2000 /元人数 1 1 1 3 6 1 11 2 (1)请计算以上样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;(3)指出谁的推断比较科学合理,能真实地反映公司全体员工月收入水平,并说出另一个人的推断依据不能真实反映公司全体员工月收入水平的原因.20.(8.00分)如图,已知A(6,0),B(8,5),将线段OA平移至CB,点D在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.(1)求对角线AC的长;(2)设点D的坐标为(x,0),△ODC与△ABD的面积分别记为S1,S2.设S=S1﹣S2,写出S 关于x的函数解析式,并探究是否存在点D使S与△DBC的面积相等?如果存在,用坐标形式写出点D的位置;如果不存在,说明理由.21.(7.00分)如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B到D时,其升高的高度与水平前进的距离之比).已知在地面B处测得山顶A的仰角为33°,在斜坡D处测得山顶A的仰角为45°.求山顶A到地面BC的高度AC是多少米?(结果用含非特殊角的三角函数和根式表示即可)22.(6.00分)已知变量x、y对应关系如下表已知值呈现的对应规律.x …﹣4 ﹣3 ﹣2 ﹣1 1 2 3 4 …y … 1 2 ﹣2 ﹣1 ﹣﹣…(1)依据表中给出的对应关系写出函数解析式,并在给出的坐标系中画出大致图象;(2)在这个函数图象上有一点P(x,y)(x<0),过点P分别作x轴和y轴的垂线,并延长与直线y=x﹣2交于A、B两点,若△PAB的面积等于,求出P点坐标.23.(7.00分)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,请用配方法探索有实数根的条件,并推导出求根公式,证明x1•x2=.24.(10.00分)如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且=.(1)求证:PD是⊙O的切线;(2)若AD=12,AM=MC,求的值.25.(10.00分)某市计划在十二年内通过公租房建设,解决低收入人群的住房问题.已知前7年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系构成一次函数,(1≤x≤7且x为整数),且第一和第三年竣工投入使的公租房面积分别为和百万平方米;后5年每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系是y=﹣x+(7<x≤12且x为整数).(1)已知第6年竣工投入使用的公租房面积可解决20万人的住房问题,如果人均住房面积,最后一年要比第6年提高20%,那么最后一年竣工投入使用的公租房面积可解决多少万人的住房问题?(2)受物价上涨等因素的影响,已知这12年中,每年竣工投入使用的公租房的租金各不相同,且第一年,一年38元/m2,第二年,一年40元/m2,第三年,一年42元/m2,第四年,一年44元/m2……以此类推,分析说明每平方米的年租金和时间能否构成函数,如果能,直接写出函数解析式;(3)在(2)的条件下,假设每年的公租房当年全部出租完,写出这12年中每年竣工投入使用的公租房的年租金W关于时间x的函数解析式,并求出W的最大值(单位:亿元).如果在W取得最大值的这一年,老张租用了58m2的房子,计算老张这一年应交付的租金.参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣5【分析】直接利用有理数的减法运算法则计算得出答案.【解答】解:﹣3﹣(﹣2)=﹣3+2=﹣1.故选:A.【点评】此题主要考查了有理数的减法运算,正确掌握运算法则是解题关键.2.(3.00分)二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据如图,在下列选项中指出白昼时长低于11小时的节气()A.惊蛰 B.小满 C.立秋 D.大寒【分析】根据函数的图象确定每个节气白昼时长,然后即可确定正确的选项.【解答】解:A、惊蛰白昼时长为11.5小时,高于11小时,不符合题意;B、小满白昼时长为14.5小时,高于11小时,不符合题意;C、秋分白昼时长为12.2小时,高于11小时,不符合题意;D、大寒白昼时长为9.8小时,低于11小时,符合题意,故选:D.【点评】考查了函数的图象的知识,解题的关键是能够读懂函数的图象并从中整理出进一步解题的有关信息,难度不大.3.(3.00分)已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:B.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4.(3.00分)下面是几个一样的小正方体摆出的立体图形的三视图,由三视图可知小正方体的个数为()A.6个B.5个C.4个D.3个【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.根据三视图的知识,该几何体的底层应有3个小正方体,第二层应有1个小正方体.【解答】解:综合三视图,这个立体图形的底层应该有3个,第二层应该有1个小正方体,因此构成这个立体图形的小正方体的个数是3+1=4个.故选:C.【点评】本题考查了学生对三视图的理解和运用能力,同时也考查了空间想象能力.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.(3.00分)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9 【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意;故选:D.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.6.(3.00分)若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b ﹣l上,则常数b=()A.B.2 C.﹣1 D.1【分析】直线解析式乘以2后和方程联立解答即可.【解答】解:因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b ﹣l上,直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0所以﹣b=﹣2b+2,解得:b=2,故选:B.【点评】此题考查一次函数与二元一次方程问题,关键是直线解析式乘以2后和方程联立解答.7.(3.00分)随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去的年收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.8万D.前年年收入不止①②③三种农作物的收入【分析】根据扇形统计图中各项目的圆心角即可得出每部分占总体的百分比,据此对各选项逐一判断即可得.【解答】解:A、前年①的收入为60000×=19500,去年①的收入为80000×=26000,此选项错误;B、前年③的收入所占比例为×100%=30%,去年③的收入所占比例为×1005=32.5%,此选项错误;C、去年②的收入为80000×=28000=2.8(万元),此选项正确;D、前年年收入即为①②③三种农作物的收入,此选项错误;故选:C.【点评】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.8.(3.00分)顺次连接平面上A、B、C、D四点得到一个四边形,从①AB∥CD②BC=AD③∠A=∠C④∠B=∠D四个条件中任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况共有()A.5种B.4种C.3种D.1种【分析】根据平行四边形的判定定理可得出答案.【解答】解;当①③时,四边形ABCD为平行四边形;当①④时,四边形ABCD为平行四边形;当③④时,四边形ABCD为平行四边形;故选:C.【点评】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.9.(3.00分)下列运算及判断正确的是()#ERR1A.﹣5×÷(﹣)×5=1B.方程(x2+x﹣1)x+3=1有四个整数解C.若a×5673=103,a÷103=b,则a×b=D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限【分析】依据有理数的乘除混合运算法则、零指数幂、同底数幂的乘法法则以及点的坐标,进行判断即可得出结论.【解答】解:A.﹣5×÷(﹣)×5=﹣1×(﹣5)×5=25,故错误;B.方程(x2+x﹣1)x+3=1有四个整数解:x=1,x=﹣2,x=﹣3,x=﹣1,故正确;C.若a×5673=103,a÷103=b,则a×b=×=,故错误;D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限或第四象限或x轴正半轴上,故错误;故选:B.【点评】本题主要考查了点的坐标,有理数的混合运算以及零指数幂的综合运用,解题时注意:坐标平面内的点与有序实数对是一一对应的关系.10.(3.00分)若满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,则实数m的取值范围是()A.m<﹣1 B.m≥﹣5 C.m<﹣4 D.m≤﹣4【分析】根据题意可以得到关于m的不等式,再根据二次函数和反比例函数的性质可以去的m的取值范围.【解答】解:∵满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,∴m<,∴m≤﹣4故选:D.【点评】本题考查二次函数的性质、反比例函数的性质、不等式的性质,解答本题的关键是明确题意,求出相应的m的取值范围.二、填空题(本题共6小题,每题3分,共18分)11.(3.00分)分解因式:a2b﹣9b= b(a+3)(a﹣3).【分析】首先提取公因式b,进而利用平方差公式分解因式即可.【解答】解:a2b﹣9b=b(a2﹣9)=b(a+3)(a﹣3).故答案为:b(a+3)(a﹣3).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练掌握公式法分解因式是解题关键.12.(3.00分)同一个圆的内接正方形和正三角形的边心距的比为:1 .【分析】先化成同一个圆的内接正方形和内接正三角形,设⊙O的半径为R,求出正方形的边心距和正三角形的边心距,再求出比值即可.【解答】解:设⊙O的半径为r,⊙O的内接正方形ABCD,如图,过O作OQ⊥BC于Q,连接OB、OC,即OQ为正方形ABCD的边心距,∵四边形BACD是正方形,⊙O是正方形ABCD的外接圆,∴O为正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=R;设⊙O的内接正△EFG,如图,过O作OH⊥FG于H,连接OG,即OH为正△EFG的边心距,∵正△EFG是⊙O的外接圆,∴∠OGF=∠EGF=30°,∴OH=OG×sin30°=R,∴OQ:OH=(R):(R)=:1,故答案为::1.【点评】本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质解直角三角形等知识点,能综合运用知识点进行推理和计算是解此题的关键.13.(3.00分)文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款486 元.【分析】设小华购买了x个笔袋,根据原单价×购买数量(x﹣1)﹣打九折后的单价×购买数量(x)=节省的钱数,即可得出关于x的一元一次方程,解之即可求出小华购买的数量,再根据总价=单价×0.9×购买数量,即可求出结论.【解答】解:设小华购买了x个笔袋,根据题意得:18(x﹣1)﹣18×0.9x=36,解得:x=30,∴18×0.9x=18×0.9×30=486.答:小华结账时实际付款486元.故答案为:486.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.(3.00分)已知函数y=(2k﹣1)x+4(k为常数),若从﹣3≤k≤3中任取k值,则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为.【分析】直接利用一次函数增减性结合k的取值范围进而得出答案.【解答】解:当2k﹣1>0时,解得:k>,则<k≤3时,y随x增加而增加,故﹣3≤k<时,y随x增加而减小,则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为:=.故答案为:.【点评】此题主要考查了概率公式以及一次函数的性质,关键是掌握概率的计算方法.15.(3.00分)若不等式组的解集中的任意x,都能使不等式x﹣5>0成立,则a的取值范围是a≤﹣6 .【分析】先求出每个不等式的解集,再根据已知得出关于a的不等式,求出不等式的解集,再判断即可.【解答】解:∵解不等式①得:x>﹣2a,解不等式②得:x>﹣a+2,又∵不等式x﹣5>0的解集是x>5,∴﹣2a≥5或﹣a+2≥5,解得:a≤﹣2.5或a≤﹣6,经检验a≤﹣2.5不符合,故答案为:a≤﹣6.【点评】本题考查了解一元一次不等式和解一样一次不等式组,能得出关于a的不等式是解此题的关键.16.(3.00分)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M 位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为①②③.【分析】先判定△MEH≌△DAH(SAS),即可得到△DHM是等腰直角三角形,进而得出DM=HM;依据当∠DHC=60°时,∠ADH=60°﹣45°=15°,即可得到Rt△ADM中,DM=2AM,即可得到DM=2BE;依据点M是边BA延长线上的动点(不与点A重合),且AM<AB,可得∠AHM<∠BAC=45°,即可得出∠CHM>135°.【解答】解:由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确;故答案为:①②③.【点评】本题考查的是正方形的性质、全等三角形的判定和性质、等腰直角三角形的判定与性质的综合运用,掌握正方形的性质、全等三角形的判定定理和性质定理是解题的关键.三、解答题(本题共9题,72分)17.(10.00分)计算(1)计算:2﹣2+(3﹣)÷﹣3sin45°;(2)解方程:+1=.【分析】(1)根据实数混合运算顺序和运算法则计算可得;(2)根据解分式方程的步骤依次计算可得.【解答】解:(1)原式=﹣+(9﹣)÷﹣3×=﹣++﹣=3;(2)两边都乘以x﹣2,得:x﹣3+x﹣2=﹣3,解得:x=1,检验:x=1时,x﹣2=﹣1≠0,所以分式方程的解为x=1.【点评】本题主要考查实数的混合运算与解分式方程的能力,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.18.(6.00分)如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.【分析】(1)根据SAS即可证明.(2)解直角三角形求出DF、OE、OF即可解决问题;【解答】(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC,即AC=DF,∵AB=DE,∴△ABC≌△DEF.(2)如图,连接AB交AD于O.在Rt△EFD中,∵∠DEF=90°,EF=3,DE=4,∴DF==5,∵四边形EFBC是菱形,∴BE⊥CF,'∴EO==,∴OF=OC==,∴CF=,∴AF=CD=DF﹣FC=5﹣=.【点评】本题考查全等三角形的判定和性质、菱形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.19.(8.00分)下表是随机抽取的某公司部分员工的月收入资料.45000 18000 10000 5500 5000 3400 3000 2000 月收入/元人数 1 1 1 3 6 1 11 2 (1)请计算以上样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;(3)指出谁的推断比较科学合理,能真实地反映公司全体员工月收入水平,并说出另一个人的推断依据不能真实反映公司全体员工月收入水平的原因.【分析】(1)要求平均数只要求出各个数据之和再除以数据个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;(2)甲从员工平均工资水平的角度推断公司员工月收入,乙从员工中间工资水平的角度推断公司员工的收入;(3)推断的合理性取决于数据的极差、某些数据的集中程度等因素.【解答】解:(1)样本的平均数为:=6150;这组数据共有26个,第13、14个数据分别是3400、3000,所以样本的中位数为:=3200.(2)甲:由样本平均数6150元,估计公司全体员工月平均收入大约为6150元;乙:由样本中位数为3200元,估计公司全体员工约有一半的月收入超过3200元,约有一半的月收入不足3200元.(3)乙的推断比较科学合理.由题意知样本中的26名员工,只有3名员工的收入在6150元以上,原因是该样本数据极差较大,所以平均数不能真实的反映实际情况.【点评】本题考查了计算平均数和中位数,并用中位数和平均数说明具体问题.题目难度不大,有的问题的答案不唯一.20.(8.00分)如图,已知A(6,0),B(8,5),将线段OA平移至CB,点D在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.(1)求对角线AC的长;(2)设点D的坐标为(x,0),△ODC与△ABD的面积分别记为S1,S2.设S=S1﹣S2,写出S 关于x的函数解析式,并探究是否存在点D使S与△DBC的面积相等?如果存在,用坐标形式写出点D的位置;如果不存在,说明理由.【分析】(1)根据平移的性质可以求得点C的坐标,然后根据两点间的距离公式即可求得AC的长;(2)根据题意,可以分别表示出S1,S2,从而可以得到S关于x的函数解析式,由图和题目中的条件可以求得△CDB的面积,从而可以求得满足条件的点D的坐标,本题得以解决.【解答】解:(1)∵A(6,0),B(8,5),线段OA平移至CB,∴点C的坐标为(2,5),∴AC==;(2)当点D在线段OA上时,S1==,S2==,∴S=S1﹣S2==5x﹣15,当点D在OA的延长线上时,S1==,S2==,∴S=S1﹣S2==15,由上可得,S=,∵S△DBC==15,∴点D在OA的延长线上的任意一点都满足条件,∴点D的坐标为(x,0)(x>6).【点评】本题考查一元一次方程的应用、平移的性质、两点间的距离公式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和分类讨论的数学思想解答.21.(7.00分)如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B到D时,其升高的高度与水平前进的距离之比).已知在地面B处测得山顶A的仰角为33°,在斜坡D处测得山顶A的仰角为45°.求山顶A到地面BC的高度AC是多少米?(结果用含非特殊角的三角函数和根式表示即可)【分析】作DH⊥BC于H.设AE=x.在Rt△ABC中,根据tan∠ABC=,构建方程即可解决问题;【解答】解:作DH⊥BC于H.设AE=x.∵DH:BH=1:3,在Rt△BDH中,DH2+(3DH)2=6002,∴DH=60,BH=180,在Rt△ADE中,∵∠ADE=45°,∴DE=AE=x,∵又HC=ED,EC=DH,∴HC=x,EC=60,在Rt△ABC中,tan33°=,∴x=,∴AC=AE+EC=+60=.答:山顶A到地面BC的高度AC是米【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.解此题的关键是掌握数形结合思想与方程思想的应用.22.(6.00分)已知变量x、y对应关系如下表已知值呈现的对应规律.x …﹣4 ﹣3 ﹣2 ﹣1 1 2 3 4 …y … 1 2 ﹣2 ﹣1 ﹣﹣…(1)依据表中给出的对应关系写出函数解析式,并在给出的坐标系中画出大致图象;(2)在这个函数图象上有一点P(x,y)(x<0),过点P分别作x轴和y轴的垂线,并延长与直线y=x﹣2交于A、B两点,若△PAB的面积等于,求出P点坐标.【分析】(1)根据图可知xy=﹣2,再根据表格秒点即可画出图象;(2)设点P(x,),则点A(x,x﹣2),由题意可知△PAB是等腰三角形,可列出﹣x+2=5,从而可求出x的值.【解答】解:(1)由图可知:y=(2)设点P(x,),则点A(x,x﹣2)由题意可知△PAB是等腰三角形,∵S△PAB=,∴PA=PB=5,∵x<0,∴PA=y P﹣y A=﹣x+2即﹣x+2=5解得:x1=﹣2,x2=﹣1∴点P(﹣2,1)或(﹣1,2)【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数的解析式,本题数中等题型.23.(7.00分)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,请用配方法探索有实数根的条件,并推导出求根公式,证明x1•x2=.【分析】由a不为0,在方程两边同时除以a,把二次项系数化为1,然后把常数项移项到方程右边,两边都加上一次项系数一半的平方即()2,左边变为完全平方式,右边大于等于0时,开方即可得到求根公式;由求根公式求出的两个根相乘,化简后即可得证.【解答】解:∵ax2+bx+c=0(a≠0),∴x2+x=﹣,∴x2+x+()2=﹣+()2,即(x+)2=,∵4a2>0,∴当b2﹣4ac≥0时,方程有实数根,∴x+=±,∴当b2﹣4ac>0时,x1=,x2=;当b2﹣4ac=0时,x1=x2=﹣;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学总复习提纲第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”) ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)实数无理数(无限不循环小数) 0 (有限或无限循环性数) 整数分数 正无理数 负无理数0 实数 负数整数 分数 无理数有理数正数整数 分数 无理数有理数│a │2aa (a ≥0)(a 为一切实数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷51³5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │=b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。
第二章 代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独 的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式没有加减运算的整式叫做单项式。
(数字与字母的积—包括单独的一个数或字母)几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
如,a(a≥0)-a(a<0)│a │= a x整式样有理式无理式代数式xx2=x,2x=│x │等。
4.系数与指数区别与联系:①从位置上看;②从表示的意义上看 5.同类项及其合并条件:①字母相同;②相同字母的指数相同 合并依据:乘法分配律 6.根式表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:3、7是根式,但不是无理式(是无理数)。
7.算术平方根⑴正数a 的正的平方根(a [a ≥0—与“平方根”的区别]); ⑵算术平方根与绝对值① 联系:都是非负数,2a =│a │②区别:│a │中,a 为一切实数;a 中,a 为非负数。
8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
9.指数(na —幂,乘方运算)⑴① a >0时,n a >0;②a <0时,n a >0(n 是偶数),na <0(n 是奇数) ⑵零指数:0a =1(a ≠0) 负整指数:p a-=1/pa (a ≠0,p 是正整数)二、运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则 2.分式的性质⑴基本性质:ab =am bm (m ≠0)⑵符号法则:ab a b ab -=-=-⑶繁分式:①定义;②化简方法(两种) 3.整式运算法则(去括号、添括号法则)a ·a …a=n a n 个4.幂的运算性质:①m a ²n a =n m a +;②m a ÷n a =n m a -;③n m a )(=mn a ;④n ab )(=n a n b ;⑤n nnbab a=)( 技巧:p p baab )()(=-5.乘法法则:⑴单³单;⑵单³多;⑶多³多。
6.乘法公式:(正、逆用)2222)(b ab a b a +±=± (a+b )(a-b )=22b a - (a ±b))(22b ab a + =33b a ± 7.除法法则:⑴单÷单;⑵多÷单。
8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质:2a =a ;)0()(2≥=a a a ;b a ab ⋅=(a ≥0,b ≥0);ba ba =(a ≥0,b>0)(正用、逆用)10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.a1;B.aab ab =;C.bn a m -1.11.科学记数法:n a 10⨯(1≤a <10,n 是整数=三、应用举例(略)四、数式综合运算(略)第三章 统计初步★重点★☆ 内容提要☆一、重要概念1.总体:考察对象的全体。
2.个体:总体中每一个考察对象。
3.样本:从总体中抽出的一部分个体。
4.样本容量:样本中个体的数目。
5.众数:一组数据中,出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)二、计算方法 1.样本平均数:⑴)(121n x x x nx +++=;⑵若a x x -=1'1,a x x -=2'2,…,a x x n n -=',则a x x +='(a —常数,1x ,2x ,…,n x 接近较整的常数a);⑶加权平均数:5 )(212211n f f f nf x f x f x x k kk =++++++=;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。
通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴])()()[(1222212x x x x x x nsn -++-+-=;⑵若a x x -=1'1,a x x -=2'2,…,a x x n n-=',则])[(12'2'2'22'12xn x x x n s n -+++= (a —接近1x 、2x 、…、n x 的平均数的较“整”的常数);若1x 、2x 、…、n x 较“小”较“整”,则])[(12222212x n x x x nsn -+++=;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
3.样本标准差:2s s =三、应用举例(略)第四章 直线形★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。
☆ 内容提要☆一、直线、相交线、平行线1.线段、射线、直线三者的区别与联系从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”) 4.两点间的距离(三个距离:点-点;点-线;线-线)5.角(平角、周角、直角、锐角、钝角) 6.互为余角、互为补角及表示方法7.角的平分线及其表示8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”) 9.对顶角及性质10.平行线及判定与性质(互逆)(二者的区别与联系)11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
12.定义、命题、命题的组成13.公理、定理 14.逆命题二、三角形 分类:⑴按边分;⑵按角分1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n 边形内角和;④n 边形外角和。
⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。
⑶角与边:在同一三角形中,等边 等角大边 大角小边 小角3.三角形的主要线段讨论:①定义②³³线的交点—三角形的³心③性质① 高线②中线③角平分线④中垂线⑤中位线⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质 5.全等三角形⑴一般三角形全等的判定(SAS 、ASA 、AAS 、SSS ) ⑵特殊三角形全等的判定:①一般方法②专用方法 6.三角形的面积⑴一般计算公式⑵性质:等底等高的三角形面积相等。
7.重要辅助线⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线 8.证明方法⑴直接证法:综合法、分析法⑵间接证法—反证法:①反设②归谬③结论 ⑶证线段相等、角相等常通过证三角形全等 ⑷证线段倍分关系:加倍法、折半法 ⑸证线段和差关系:延结法、截余法 ⑹证面积关系:将面积表示出来三、四边形 分类表:1.一般性质(角)⑴内角和:360°⑵顺次连结各边中点得平行四边形。
推论1:顺次连结对角线相等的四边形各边中点得菱形。
推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。
⑶外角和:360° 2.特殊四边形⑴研究它们的一般方法:⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定 ⑶判定步骤:四边形→平行四边形→矩形→正方形角线积称性轴对称中心对称┗→菱形──↑⑷对角线的纽带作用:3.对称图形⑴轴对称(定义及性质);⑵中心对称(定义及性质) 4.有关定理:①平行线等分线段定理及其推论1、2②三角形、梯形的中位线定理 ③平行线间的距离处处相等。
(如,找下图中面积相等的三角形)5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。