中考数学试题及答案(word版)44

合集下载

中招考试题及答案数学

中招考试题及答案数学

中招考试题及答案数学一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边,且满足a²+b²=c²,那么这个三角形是直角三角形。

A. 正确B. 错误答案:A2. 已知函数y=2x+3,当x=1时,y的值为5。

A. 正确B. 错误答案:A3. 等腰三角形的两个底角相等。

A. 正确B. 错误答案:A4. 一个数的相反数是它本身,这个数是0。

A. 正确B. 错误答案:A5. 圆的周长和它的半径成正比例。

A. 正确B. 错误答案:A6. 一个数的绝对值总是非负数。

A. 正确B. 错误答案:A7. 两条平行线被第三条直线所截,同位角相等。

A. 正确B. 错误答案:A8. 一个数的立方根只有一个。

A. 正确B. 错误答案:A9. 一个数的平方总是非负数。

A. 正确B. 错误答案:A10. 任何数的零次幂都等于1。

A. 正确B. 错误答案:B二、填空题(每题3分,共30分)1. 若一个数的平方是25,则这个数是____或____。

答案:5或-52. 一个等差数列的首项是2,公差是3,那么它的第五项是____。

答案:173. 一个圆的半径是5厘米,那么它的面积是____平方厘米。

答案:78.54. 若一个三角形的内角和为180°,那么一个等边三角形的每个内角是____°。

答案:605. 一个数的绝对值是5,那么这个数是____或____。

答案:5或-56. 一个数的立方根是2,那么这个数是____。

答案:87. 一个数的相反数是-7,那么这个数是____。

答案:78. 一个数的平方是36,那么这个数是____或____。

答案:6或-69. 一个等腰三角形的底角是45°,那么它的顶角是____°。

答案:9010. 一个数的平方根是3,那么这个数是____。

答案:9三、解答题(每题20分,共40分)1. 已知直角三角形的两条直角边分别是3和4,求斜边的长度。

2024年中考数学试卷和答案

2024年中考数学试卷和答案

2024年中考数学试卷和答案一、选择题1.设集合A={x: x是整数,1≤x≤10},B={x|x是10的因数},则A∩B=() A. {1,2,5,10} B. {1,10} C. {2,5} D. {10}2.当x=-1时,方程2x-3=() A. -2 B. 5 C. 1 D. 73.下列哪个数是一个有理数()A. √2 B. π C. 0.5 D. e4.下列哪种运算法则是错的() A. (2+3)+4=2+(3+4) B. 2+3=3+2 C.2×(3×4)=(2×3)×4 D. 2×(3+4)=2×3+2×45.三角形ABC中,AB=9cm,BC=12cm,AC=15cm,则它的周长等于() A. 38cm B. 36cm C. 42cm D. 45cm二、填空题1.小麦每亩产量550kg,玉米每亩产量600kg,若田地上种植小麦和玉米的总面积为200亩,总产量为______kg。

2.一个数的六倍减去29的结果为41,则这个数是______。

3.若y=-5,则方程4y-7=______。

4.若正方形ABCDA的边长为18cm,则它的面积为______平方厘米。

5.一个半球的直径为14cm,它的体积为______立方厘米。

三、解答题1.一辆汽车以每小时60公里的速度行驶,行驶4小时后,它到达了目的地,这段路程的长度是多少?解答:速度等于路程除以时间,所以路程等于速度乘以时间。

这段路程的长度等于60公里/小时 × 4小时 = 240公里。

2.设x 是某个数,若将它加2再除以3,得到的结果是5,求x的值。

解答:根据题意,可以写出方程: (x + 2)/3 = 5 将两边的等式都乘以3,得到:x + 2 = 15 再将两边的等式都减去2,得到: x = 13 所以x的值为13。

3.一个桶里原有5升的水,小明先往里倒了3升水,然后小红又倒了2升水,这时桶里有多少升水?解答:小明先往桶里倒了3升水,所以桶里剩下的水是5升 - 3升 = 2升。

初三数学中招考试卷及答案

初三数学中招考试卷及答案

一、选择题(每题4分,共40分)1. 若实数a,b满足a+b=0,则a和b的关系是()A. a和b相等B. a和b互为相反数C. a和b都是正数D. a和b都是负数2. 下列各组数中,有最小数的一组是()A. 0.1,0.01,0.001B. -0.1,-0.01,-0.001C. 1,-1,0D. 100,-100,03. 已知一次函数y=kx+b(k≠0),下列说法正确的是()A. 当k>0时,函数的图象经过第一、二、四象限B. 当k<0时,函数的图象经过第一、二、三象限C. 当b>0时,函数的图象与y轴交于正半轴D. 当b<0时,函数的图象与y轴交于负半轴4. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (2,-3)B. (-2,-3)C. (-2,3)D. (2,3)5. 已知一元二次方程x^2-4x+3=0的解是x1和x2,则x1+x2的值是()A. 4B. 3C. 2D. 16. 下列函数中,是反比例函数的是()A. y=2x+1B. y=3/xC. y=x^2D. y=3x^27. 已知等腰三角形底边长为6,腰长为8,则其面积为()A. 24B. 32C. 36D. 408. 在平面直角坐标系中,点P(a,b)在第二象限,那么a和b的关系是()A. a>0,b>0B. a<0,b>0C. a>0,b<0D. a<0,b<09. 下列各式中,正确的是()A. (a+b)^2 = a^2 + 2ab + b^2B. (a-b)^2 = a^2 - 2ab + b^2C. (a+b)^2 = a^2 - 2ab + b^2D. (a-b)^2 = a^2 + 2ab - b^210. 下列各式中,不是等差数列的是()A. 2,5,8,11,14B. 1,4,7,10,13C. 3,6,9,12,15D. 4,8,12,16,20二、填空题(每题5分,共25分)11. 若a=2,b=-3,则a+b的值为______。

中招考试数学试题(附答案)

中招考试数学试题(附答案)

中招考试数学试题(附答案)一、选择题(本大题共12小题,共48分)1.如图所示的几何体是由6个大小相同的小立方块搭成的,它的左视图是()A.B.C.D.2.原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为()A. 17×105B. 1.7×106C. 0.17×107D. 1.7×1073.如图,∠A=40°,∠CBD是△ABC的外角,∠CBD=120°,则∠C的大小是()A. 90°B. 80°C. 60°D. 40°4.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A. 17元B. 19元C. 21元D. 23元5.下列运算正确的是()A. x2+x2=x4B. (a−b)2=a2−b2C. (−a2)3=−a6D. √(−2)2=−26.山茶花是某市的市花、品种多样,“金心大红”是其中的一种,某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A. 6.5cmB. 6.6cmC. 6.7cmD. 6.8cm7.从下列4个函数:①y=3x−2;②y=−7x (x<0);③y=5x(x>0);④y=−x2(x<0)中任取一个,函数值y随自变量x的增大而增大的概率是()A. 14B. 12C. 34D. 18.如图,A、B是双曲线y=kx上的两点,过A点作AC⊥x轴,交OB于点D,垂足为点C,若△ADO的面积为1,D为OB的中点,则k的值为()A. 43B. 83C. 3D. 49.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A. 3α+β=180°B. 2α+β=180°C. 3α−β=90°D. 2α−β=90°10.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是()A. ②③B. ②④C. ①③④D. ②③④11. 在平面直角坐标系中,已知函数y 1=x 2+ax +1,y 2=x 2+bx +2,y 3=x 2+cx +4,其中a ,b ,c 是正实数,且满足b 2=ac.设函数y 1,y 2,y 3的图象与x 轴的交点个数分别为M 1,M 2,M 3,下列选项正确的是( )A. 若M 1=2,M 2=2,则M 3=0B. 若M 1=1,M 2=0,则M 3=0C. 若M 1=0,M 2=2,则M 3=0D. 若M 1=0,M 2=0,则M 3=012. 如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x轴的负半轴上,∠BOC =60°,顶点C 的坐标为(m,3√3),反比例函数y =k x的图象与菱形对角线AO 交D 点,连接BD ,当DB ⊥x 轴时,k 的值是( ) A. 6√3B. −6√3C. 12√3D.−12√3二、填空题(本大题共6小题,共24分)13. 如图,AB//CD ,EF 分别与AB ,CD 交于点B ,F.若∠E =30°,∠EFC =130°,则∠A =______.14. 如图,已知AB 是⊙O 的直径,BC 与⊙O 相切于点B ,连接AC ,OC.若sin∠BAC =13,则tan∠BOC =______.15. 计算:√32+√83−|π0−√2|−(13)−1=______.16.如图,在平面直角坐标系中,正比例函数y=kx与反比例函数y=−3x的图象交于A,B两点,过A作y轴的垂线,交反比例函数y=kx(x>0)的图象于点C,连接BC,若S△ABC=8,则k的值为______.17.如图,已知一次函数y=−x+b与反比例函数y=kx(k≠0)的图象相交于点P,则关于x的方程−x+b= kx的解是______.18.如图,在矩形ABCD中,AB=6,BC=10,以点B为圆心、BC的长为半径画弧交AD于点E,再分别以点C,E为圆心、大于12CE的长为半径画弧,两弧交于点F,作射线BF交CD于点G,则CG的长为______.三、解答题(本大题共7小题,共78分)19.(1)先化简,再求值:(x+1)2−x(x+1),其中x=2021.(2)解不等式组:{2x+3>1x−2≤12(x+2)20.如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB//DE.(1)求证:△ABC≌△DCE.(2)连结AE,当BC=5,AC=12时,求AE的长.21.如图,CD=CA,∠1=∠2,EC=BC,求证:DE=AB.22.某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA和折线B−C−D 分别表示甲、乙离开小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25≤x≤30时s关于x的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)23.在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.,0).(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(1r(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.24.如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF,(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长;(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF;②若DF=EF,求∠BAC的度数。

河北中考数学试题及答案doc

河北中考数学试题及答案doc

河北中考数学试题及答案doc一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.5D. 3/4答案:B2. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角是多少度?A. 60°B. 90°C. 120°D. 150°答案:A3. 将下列哪个数列按从小到大的顺序排列?A. 3, 2, 1B. 1, 2, 3C. 3, 1, 2D. 2, 3, 1答案:B4. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C5. 以下哪个图形是轴对称图形?A. 等边三角形B. 矩形C. 圆D. 所有选项答案:D6. 一个数的绝对值是5,这个数可能是多少?A. 5B. -5C. 5或-5D. 以上都不是答案:C7. 以下哪个表达式的结果是一个正数?A. -2 + 3B. 2 - 5C. -3 × 2D. 1 ÷ (-1)答案:A8. 一个圆的半径是5厘米,那么这个圆的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:B9. 一个数的立方是-8,这个数是多少?A. 2B. -2C. 8D. -8答案:B10. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:B二、填空题(每题3分,共30分)11. 一个数的相反数是-4,这个数是________。

答案:412. 如果一个数的绝对值是7,那么这个数可能是________或________。

答案:7或-713. 一个等腰三角形的底角是45°,那么顶角是________度。

答案:9014. 一个数的平方根是2,那么这个数是________。

答案:415. 一个圆的直径是10厘米,那么这个圆的半径是________厘米。

答案:516. 一个数的立方根是-2,那么这个数是________。

2024福建省三明市中考数学试题及答案(Word解析版)

2024福建省三明市中考数学试题及答案(Word解析版)

2024福建省三明市中考数学试卷一、单项选择题(共10题,每题4分,满分40分)1.(4分)(2024•三明)的相反数是()C. 3 D.-3A.B.-分析:依据只有符号不同的两个数互为相反数求解后选择即可.解答:解:-的相反数是.故选A.点评:本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.2.(4分)(2024•三明)下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.(ab)2=a2b2D.(a+b)2=a2+b2考点:幂的乘方与积的乘方;同底数幂的除法;完全平方公式.分析:依据幂的乘方,可推断A,依据同底数幂的除法,可推断B,依据积的乘方,可推断C,依据完全平方公式,可推断D.解答:解:A、底数不变指数相乘,故A错误;B、底数不变指数相减,故B错误;C、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故C正确;D、和的平方等于平方和加积的二倍,故D错误;故选:C.点评:本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.3.(4分)(2024•三明)下列正方形中由阴影部分组成的图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:依据轴对称图形与中心对称图形的概念求解.解答:解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、是中心对称图形,是轴对称图形,故本选项正确;C、是中心对称图形,不是轴对称图形,故本选项错误;D、是中心对称图形不是轴对称图形,故本选项错误.故选B.点评:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转180度后两部分重合.4.(4分)(2024•三明)PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为()A.0.25×10-5B.2.5×10-5C.2.5×10-6D.2.5×10-7考点:科学记数法—表示较小的数.分析:肯定值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所运用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所确定.解答:解:0.000 002 5=2.5×10-6;故选:C.点评:本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所确定.5.(4分)(2024•三明)不等式组的解集是()A.x≥-1 B.x≤2 C.1≤x≤2 D.-1≤x≤2考点:解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:,解①得:x≥-1,解②得:x≤2,则不等式组的解集是:-1≤x≤2.故选D.点评:本题考查的是一元一次不等式组的解,解此类题目经常要结合数轴来推断.还可以视察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.6.(4分)(2024•三明)如图是由5个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的主视图是()A.B.C.D.考点:由三视图推断几何体;简洁组合体的三视图.分析:先细心视察原立体图形中正方体的位置关系,从正面看去,一共三列,左边有1竖列,中间有2竖列,右边是1竖列,结合四个选项选出答案.解答:解:从正面看去,一共三列,左边有1竖列,中间有2竖列,右边是1竖列.故选B.点评:本题考查了由三视图推断几何体及简洁组合体的三视图,重点考查几何体的三视图及空间想象实力.7.(4分)(2024•三明)小亮和其他5个同学参与百米赛跑,赛场共设1,2,3,4,5,6六个跑道,选手以随机抽签的方式确定各自的跑道.若小亮首先抽签,则小亮抽到1号跑道的概率是()A.B.C.D.1考点:概率公式.分析:由赛场共设1,2,3,4,5,6六个跑道,干脆利用概率公式求解即可求得答案.解答:解:∵赛场共设1,2,3,4,5,6六个跑道,∴小亮首先抽签,则小亮抽到1号跑道的概率是:.故选A.点评:此题考查了概率公式的应用.用到的学问点为:概率=所求状况数与总状况数之比.8.(4分)(2024•三明)一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形考点:多边形内角与外角.分析:此题可以利用多边形的外角和和内角和定理求解.解答:解:设所求正n边形边数为n,由题意得(n-2)•180°=360°×2解得n=6.则这个多边形是六边形.故选C.点评:本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,多边形的内角和为(n-2)•180°.9.(4分)(2024•三明)如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.D E=BE B.=C.△BOC是等边三角形D.四边形ODBC是菱形考点:垂径定理.分析:依据垂径定理推断即可.解答:解:∵AB⊥CD,AB过O,∴DE=CE,弧BD=弧BC,依据已知不能推出DE=BE,△BOC是等边三角形,四边形ODBC是菱形.故选B.点评:本题考查了垂径定理的应用,主要考查学生的推理实力和辨析实力.10.(4分)(2024•三明)已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥-1 B.b≤-1 C.b≥1 D.b≤1考点:二次函数的性质.专题:数形结合.分析:先依据抛物线的性质得到其对称轴为直线x=b,且当x>b时,y随x的增大而减小,由于已知当x>1时,y的值随x值的增大而减小,则可得推断b≤1.解答:解:∵抛物线y=-x2+2bx+c的对称轴为直线x=-=b,而a<0,∴当x>b时,y随x的增大而减小,∵当x>1时,y的值随x值的增大而减小,∴b≤1.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点式为y=a(x-)2+,的顶点坐标是(-,),对称轴直线x=-b2a,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小,二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2024•三明)计算:×=6.考点:二次根式的乘除法.分析:先将二次根式化为最简,然后再进行二次根式的乘法运算即可.解答:解:原式=2×=6.故答案为:6.点评:本题考查了二次根式的乘法运算,属于基础题,驾驭运算法则是关键.12.(4分)(2024•三明)甲、乙两支仪仗队的队员人数相同,平均身高相同,身高的方差分别为S2甲=0.9,S2乙=1.1,则甲、乙两支仪仗队的队员身高更整齐的是甲(填“甲”或“乙”).考点:方差.分析:依据方差的意义可作出推断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵S2=0.9,S2乙=1.1,甲∴S2甲<S2乙,∴甲、乙两支仪仗队的队员身高更整齐的是甲;故答案为:甲.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.(4分)(2024•三明)如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是AB=AD(答案不唯一)(写出一个即可).考点:菱形的判定.分析:利用菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.解答:解:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵邻边相等的平行四边形是菱形,∴添加的条件是AB=AD(答案不唯一),故答案为:AB=AD(答案不唯一).点评:本题考查了菱形的判定,牢记菱形的判定定理是解答本题的关键.14.(4分)(2024•三明)如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是2π.考点:旋转的性质.分析:首先计算出圆的面积,依据图示可得阴影部分面积为半圆的面积,进而可得答案.解答:解:∵AB=4,∴BO=2,∴圆的面积为:π×22=4π,∴阴影部分的面积是:×4π=2π,故答案为:2π.点评:此题主要考查了旋转的性质,关键是驾驭圆的面积公式.15.(4分)(2024•三明)有两块面积相同的蔬菜试验田,第一块运用原品种,其次块运用新品种,分别收获蔬菜1500千克和2100千克.已知其次块试验田每亩的产量比第一块多200千克.若设第一块试验田每亩的产量为x千克,则依据题意列出的方程是=.考点:由实际问题抽象出分式方程.分析:设第一块试验田每亩的产量为x千克,则其次块试验田每亩的产量为(x+200)千克,依据两块地的面积相同,列出分式方程.解答:解:设第一块试验田每亩的产量为x千克,则其次块试验田每亩的产量为(x+200)千克,由题意得,=.故答案为;=.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出分式方程.16.(4分)(2024•三明)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB 于D,P是上的一个动点,连接AP,则AP的最小值是-1.考点:勾股定理;线段的性质:两点之间线段最短;等腰直角三角形.分析:找到BC的中点E,连接AE,交半圆于P2,在半圆上取P1,连接AP1,EP1,可见,AP1+EP1>AE,即AP2是AP的最小值,再依据勾股定理求出AE的长,然后减掉半径即可.解答:解:找到BC的中点E,连接AE,交半圆于P2,在半圆上取P1,连接AP1,EP1,可见,AP1+EP1>AE,即AP2是AP的最小值,∵AE==,P2E=1,∴AP2=-1.故答案为-1.点评:本题考查了勾股定理、最短路径问题,利用两点之间线段最短是解题的关键.三、解答题(共9小题,满分86分)17.(7分)(2024•三明)解不等式2(x-2)<1-3x,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:先求出不等式的解集,再在数轴上表示出来即可.解答:解:去括号得,2x-4<1-3x,移项得,2x+3x<1+4,合并同类项得,5x<5,系数化为1得,x<1.在数轴上表示为:.点评:本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.18.(7分)(2024•三明)先化简,再求值:(1+)•,其中x=+1.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=,当x=+1时,原式==.点评:此题考查了分式的化简求值,娴熟驾驭运算法则是解本题的关键.19.(8分)(2024•三明)如图,一次函数y=x+b的图象与反比例函数y=(x>0)的图象交于点A(2,1),与x轴交于点B.(1)求k和b的值;(2)连接OA,求△AOB的面积.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)分别把A点坐标代入y=x+b和y=中即可计算出b和k的值;(2)先确定B点坐标,然后依据三角形面积公式求解.解答:解:(1)把A(2,1)代入y=x+b得2+b=1,解得b=-1;把A(2,1)代入y=(x>0)得k=2×1=2;(2)一次函数解析式为y=x-1,把y=0代入y=x-1得x-1=0,解得x=1,则B点坐标为(1,0),所以△AOB的面积=×1×1=.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满意两函数解析式.20.(8分)(2024•三明)如图,在山坡上植树,已知山坡的倾斜角α是20°,小明种植的两棵树间的坡面距离AB是6米,要求相邻两棵树间的水平距离AC在5.3~5.7米范围内,问小明种植的这两棵树是否符合这个要求?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)考点:解直角三角形的应用-坡度坡角问题.分析:在直角三角形中利用20°角和AB的长求得线段AC的长后看是否在5.3-5.7范围内即可.解答:解:由题意得:Rt△ACB中,AB=6米,∠A=20°,∴AC=AB•cos∠A≈6×0.94=5.64,∴在5.3~5.7米范围内,∴符合要求.点评:本题考查了解直角三角形的应用,解题的关键是弄清题意,并整理出直角三角形.21.(10分)(2024•三明)某学校在开展“书香校内”活动期间,对学生课外阅读的喜好进行抽样调查(每人只选一种书籍),将调查结果绘制成如图所示的两幅不完整的统计图,依据图中的信息,解答下列问题:(1)这次调查的学生人数为200人,扇形统计图中m的值为15;(2)补全条形统计图;(3)假如这所学校要添置学生课外阅读的书籍1500册,请你估计“科普”类书籍应添置多少册比较合适?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用文学的人数和所占的百分比求出总人数,用整体1减去文学、科普、军事所占的百分比,即可求出m的值;(2)用200乘以科普所占的百分比,求出科普的人数,再补全统计图几即可;(3)用课外阅读的书籍的册数乘以科普所占的百分比,即可得出答案.解答:解:(1)这次调查的学生人数为=200(人),扇形统计图中军事所占的百分比是:1-35%-20%-30%=15%,则m=15;故答案为:200,15;(2)科普的人数是:200×30%=60(人),补图如下:(3)依据题意得:1500×=450(册),答:“科普”类书籍应添置450册比较合适.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清晰地表示出每个项目的数据;扇形统计图干脆反映部分占总体的百分比大小.22.(10分)(2024•三明)为了激励居民节约用水,某市采纳“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?考点:一次函数的应用.分析:(1)因为月用水量不超过20吨时,按2元/吨计费,所以当0≤x≤20时,y与x的函数表达式是y =2x;因为月用水量超过20吨时,其中的20吨仍按2元/吨收费,超过部分按2.8元/吨计费,所以当x>20时,y与x的函数表达式是y=2×20+2.8(x-20),即y=2.6x-12;(2)由题意可得:因为五月份缴费金额不超过40元,所以用y=2x计算用水量;四月份缴费金额超过40元,所以用y=2.8x-16计算用水量,进一步得出结果即可.解答:解:(1)当0≤x≤20时,y与x的函数表达式是y=2x;当x>20时,y与x的函数表达式是y=2×20+2.8(x-20)=2.8x-16;(2)因为小颖家五月份的水费都不超过40元,四月份的水费超过40元,所以把y=38代入y=2x中,得x=19;把y=45.6代入y=2.8x-16中,得x=22.所以22-19=3吨.答:小颖家五月份比四月份节约用水3吨.点评:此题考查一次函数的实际运用,依据题目蕴含的数量关系解决问题.23.(10分)(2024•三明)已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.考点:直线与圆的位置关系;平行线的性质;全等三角形的判定与性质.分析:(1)连接OC,因为CD是⊙O的切线,得出∠OCD=90°,由OC=CD,得出∠ODC=∠COD,即可求得.(2)连接OE,①证明△AOE≌△OCD,即可得AE=OD;②利用等腰三角形及平行线的性质,可求得∠ODC的度数.解答:解:(1)如图①,连接OC,∵OC=OA,CD=OA,∴OC=CD,∴∠ODC=∠COD,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ODC=45°;(2)如图②,连接OE.∵CD=OA,∴CD=OC=OE=OA,∴∠1=∠2,∠3=∠4.∵AE∥OC,∴∠2=∠3.设∠ODC=∠1=x,则∠2=∠3=∠4=x.∴∠AOE=∠OCD=180°-2x.①AE=OD.理由如下:在△AOE与△OCD中,∴△AOE≌△OCD(SAS),∴AE=OD.②∠6=∠1+∠2=2x.∵OE=OC,∴∠5=∠6=2x.∵AE∥OC,∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,∴x=36°.∴∠ODC=36°.点评:本题考查了切线性质,全等三角形,等腰三角形的性质以及平行线的性质等,作出协助线是解题的关键.24.(12分)(2024•三明)如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B.(1)证明△COF是等腰三角形,并求出CF的长;(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相像?考点:圆的综合题;全等三角形的判定与性质;直角三角形斜边上的中线;勾股定理;相像三角形的判定与性质.专题:综合题;分类探讨.分析:(1)易证∠OCB=∠B,由条件∠DOE=∠B可得∠OCB=∠DOE,从而得到△COF是等腰三角形,过点F作FH⊥OC,垂足为H,如图1,由等腰三角形的三线合一可求出CH,易证△CHF∽△BCA,从而可求出CF长.(2)题中要求“△OMN与△BCO相像”,并没有指明对应关系,故需分状况探讨,由于∠DOE=∠B,因此△OMN中的点O与△BCO中的点B对应,因而只需分两种状况探讨:①△OMN∽△BCO,②△OMN∽△BOC.当△OMN∽△BCO时,可证到△AOM∽△ACB,从而求出AM长,进而求出CM长;当△OMN∽△BOC时,可证到△CON∽△ACB,从而求出ON,CN长.然后过点M作MG⊥ON,垂足为G,如图3,可以求出NG.并可以证到△MGN∽△ACB,从而求出MN长,进而求出CM长.解答:解:(1)∵∠ACB=90°,点O是AB的中点,∴OC=0B=OA=5.∴∠OCB=∠B,∠ACO=∠A.∵∠DOE=∠B,∴∠FOC=∠OCF.∴FC=FO.∴△COF是等腰三角形.过点F作FH⊥OC,垂足为H,如图1,∵FC=FO,FH⊥OC,∴CH=OH=,∠CHF=90°.∵∠HCF=∠B,∠CHF=∠BCA=90°,∴△CHF∽△BCA.∴=.∵CH=,AB=10,BC=6,∴CF=.∴CF的长为.(2)①若△OMN∽△BCO,如图2,则有∠NMO=∠OCB.∵∠OCB=∠B,∴∠NMO=∠B.∵∠A=∠A,∴△AOM∽△ACB.∴=.∵∠ACB=90°,AB=10,BC=6,∴AC=8.∵AO=5,AC=8,AB=10,∴AM=.∴CM=AC-AM=.②若△OMN∽△BOC,如图3,则有∠MNO=∠OCB.∵∠OCB=∠B,∴∠MNO=∠B.∵∠ACO=∠A,∴△CON∽△ACB.∴==.∵BC=6,AB=10,AC=8,CO=5,∴ON=,CN=.过点M作MG⊥ON,垂足为G,如图3,∵∠MNO=∠B,∠MON=∠B,∴∠MNO=∠MON.∴MN=MO.∵MG⊥ON,即∠MGN=90°,∴NG=OG=.∵∠MNG=∠B,∠MGN=∠ACB=90°,∴△MGN∽△ACB.∴=.∵GN=,BC=6,AB=10,∴MN=.∴CM=CN-MN=-=.∴当CM的长是或时,△OMN与△BCO相像.点评:本题考查了直角三角形斜边上的中线等于斜边的一半、等腰三角形的判定与性质、相像三角形的判定与性质、勾股定理等学问,考查了分类探讨的思想,而将等腰三角形的三线合一与三角形相像相结合是解决本题的关键.25.(14分)(2024•三明)如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,干脆写出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)解析式已存在,y=ax2+bx+4,我们只须要依据特点描述求出a,b即可.由对称轴为-,又过点A(-2,0),所以函数表达式易得.(2)四边形为平行四边形,则必定对边平行且相等.因为已知MN∥BC,所以MN=BC,即M、N的位置如B、C位置关系,则可分2种情形,①N点在M点右下方,即M向下平行4个单位,向右2个单位与N重合;②M点在N右下方,即N向下平行4个单位,向右2个单位与M重合.因为M在抛物线,可设坐标为(x,-x2+x+4),易得N坐标.由N在x轴上,所以其纵坐标为0,则可得关于x的方程,进而求出x,求出M的坐标.(3)使△PBD≌△PBC,易考虑∠CBD的平分线与抛物线的交点.确定平分线可因为BC=BD,可作等腰△BCD,利用三线合一,求其中线所在方程,进而与抛物线联立得方程组,解出P即可.解答:解:(1)∵抛物线y=ax2+bx+4交x轴于A(-2,0),∴0=4a-2b+4,∵对称轴是x=3,∴-=3,即6a+b=0,两关于a、b的方程联立解得a=-,b=,∴抛物线为y=-x2+x+4.(2)∵四边形为平行四边形,且BC∥MN,∴BC=MN.①N点在M点右下方,即M向下平移4个单位,向右平移2个单位与N重合.设M(x,-x2+x+4),则N(x+2,-x2+x),∵N在x轴上,∴-x2+x=0,解得x=0(M与C重合,舍去),或x=6,∴x M=6,∴M(6,4).②M点在N右下方,即N向下平行4个单位,向右2个单位与M重合.设M(x,-x2+x+4),则N(x-2,-x2+x+8),∵N在x轴上,∴-x2+x+8=0,解得x=3-,或x=3+,∴x M=3-,或3+.∴M(3-,-4)或(3+,-4)综上所述,M的坐标为(6,4)或(3-,-4)或(3+,-4).(3)∵OC=4,OB=3,∴BC=5.假如△PBD≌△PBC,那么BD=BC=5,∵D在x轴上,∴D为(-2,0)或(8,0).①当D为(-2,0)时,连接CD,过B作直线BE平分∠DBC交CD于E,交抛物线于P1,P2,此时△P1BC≌△P1BD,△P2BC≌△P2BD,∵BC=BD,∴E为CD的中点,即E(-1,2),设过E(-1,2),B(3,0)的直线为y=kx+b,则,解得,∴BE:y=-x+.设P(x,y),则有,解得,或,则P1(4+,),P2(4-,).②当D为(8,0)时,连接CD,过B作直线BF平分∠DBC交CD于F,交抛物线于P3,P4,此时△P3BC≌△P3BD,△P4BC≌△P4BD,∵BC=BD,∴F为CD的中点,即E(4,2),设过E(4,2),B(3,0)的直线为y=kx+b,则,解得,∴BF:y=2x-6.设P(x,y),则有,解得或,则P3(-1+,-8+2),P4(-1-,-8-2).综上所述,点P的坐标为(4+,)或(4-,)或(-1+,-8+2)或(-1-,-8-2).点评:本题考查了一次函数、二次函数的图象与性质,函数的意义,平移及二元一次方程求解等学问,本题难度适中,但想做全答案并不简洁,是道特别值得学生练习的题目.2024福建省三明市中考数学试题满分:150分,考试时间:120分钟。

数学中招考试题及答案

数学中招考试题及答案

数学中招考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的平方等于9,这个数是:A. 3B. -3C. 3或-3D. 9答案:C3. 计算下列算式的结果:\(\frac{3}{4} + \frac{2}{5}\)A. \(\frac{17}{20}\)B. \(\frac{19}{20}\)C. \(\frac{23}{20}\)D. \(\frac{21}{20}\)答案:A4. 一个圆的半径是5厘米,那么它的周长是:A. 10π厘米B. 15π厘米C. 20π厘米D. 25π厘米答案:C5. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么斜边的长度是:A. 5厘米B. 6厘米C. 7厘米D. 8厘米答案:A6. 一个数的立方等于-8,这个数是:A. 2B. -2C. 2或-2D. 0答案:B7. 一个等差数列的前三项分别是2,5,8,那么第四项是:A. 11B. 10C. 9D. 12答案:A8. 一个等比数列的前三项分别是2,4,8,那么第四项是:A. 16B. 32C. 64D. 128答案:A9. 计算下列算式的结果:\(\sqrt{49}\)A. 7B. -7C. 9D. ±7答案:A10. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。

答案:162. 一个数的立方根是-2,那么这个数是______。

答案:-83. 一个数的倒数是\(\frac{1}{3}\),那么这个数是______。

答案:34. 一个数的相反数是-7,那么这个数是______。

答案:75. 一个数的绝对值是3,那么这个数可以是______。

答案:3或-3三、解答题(每题10分,共50分)1. 解方程:\(2x - 5 = 9\)。

中考数学试题及答案word

中考数学试题及答案word

中考数学试题及答案word一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. √2C. 0.5D. π答案:B2. 一个等腰三角形的两边长分别为5和8,那么它的周长是多少?A. 18B. 21C. 23D. 无法确定答案:B3. 如果一个二次函数的图像开口向上,且顶点坐标为(-1, -4),那么它的对称轴是?A. x = 1B. x = -1C. x = 0D. x = 2答案:B4. 一个圆的半径为3,那么它的面积是多少?A. 9πB. 18πC. 27πD. 36π答案:C5. 以下哪个表达式等于x^2 - 4x + 4?A. (x - 2)^2B. (x + 2)^2C. (x - 4)^2D. (x + 4)^2答案:A6. 一个数列的前三项为1, 2, 4,那么第四项是多少?A. 6B. 7C. 8D. 无法确定答案:C7. 如果一个多边形的内角和为900度,那么这个多边形有多少条边?A. 6B. 7C. 8D. 9答案:B8. 一个扇形的圆心角为60度,半径为4,那么它的面积是多少?A. 4πB. 8πC. 12πD. 16π答案:A9. 一个正方体的体积为8立方厘米,那么它的表面积是多少?A. 16平方厘米B. 24平方厘米C. 32平方厘米D. 48平方厘米答案:B10. 以下哪个函数是奇函数?A. y = x^2B. y = x^3C. y = -xD. y = x^2 + 1答案:B二、填空题(每题4分,共20分)11. 一个等差数列的首项为3,公差为2,那么它的第五项是________。

答案:1112. 如果一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是________。

答案:513. 一个函数的图像经过点(1, 2)和(2, 3),那么它的斜率是________。

答案:114. 一个圆的直径为10,那么它的周长是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷类型:A初中学生学业考试数 学 试 题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷3页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共11页.2. 答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列运算中,正确的是( )(A)2a a a += (B)22a a a =⋅ (C)22(2)4a a = (D)325()a a = 2. 64的立方根是( )(A )4 (B )-4 (C )8 (D )-8 3. 一次函数34y x =-的图象不经过( )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限 4.分式方程xx 321=-的解是( )(A)-3(B) 2 (C)3(D)-25. 不等式组431x x +>⎧⎨⎩≤ 的解集为( )(A )-1< x ≤1 (B) -1≤x <1 (C) -1< x <1 (D) x <-1或x ≥16.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( ) (A)50° (B)30° (C)20° (D)15°1 2 3 (第6题图),ACBA'B'C'(第10题图)图乙图甲 A BCDEM N(第11题图)7. 如图所示,反比例函数1y与正比例函数2y的图象的一个交点是(21)A,,若21y y>>,则x的取值范围在数轴上表示为()8. 如图,小明为了测量其所在位置A点到河对岸B点之间的距离,沿着与AB垂直的方向走了m米,到达点C,测得∠ACB=α,那么AB等于()(A) m·sinα米(B) m·tanα米(C) m·cosα米(D)αtanm米9. 有20张背面完全一样的卡片,其中8张正面印有天鹅湖风光,7张正面印有黄河入海口自然风景,5张正面印有孙武湖景色.把这些卡片的背面朝上,搅匀后从中随机抽出一张卡片,抽到正面是天鹅湖风光卡片的概率是()(A)41(B)207(C)52(D)8510. 把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,大量地存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图乙)的对应点所具有的性质是( )(A)对应点连线与对称轴垂直(B)对应点连线被对称轴平分(C)对应点连线被对称轴垂直平分(D)对应点连线互相平行11. 如图,点C是线段AB上的一个动点,△ACD和△BCE是在AB同侧的两个等边三角形,DM,EN分别是△ACD和△BCE的高,点C在线段AB上沿着从点A向点B的方向移动(不与点A,B重合),连接DE,得到四边形DMNE.这个四边形的面积变化情况为()(A)逐渐增大(B) 逐渐减小(C) 始终不变(D) 先增大后变小12. 二次函数2y ax bx c=++的图象如图所示,则一次函数acbxy-=与反比例函数xcbay+-=在同一坐标系内的图象大致为()ABCmα(第8题图)(Axxx绝密★启用前 试卷类型:A二○一○年东营市初中学生学业考试数 学 试 题第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.上海世博会主题馆屋面太阳能板面积达3万多平方米,年发电量可达280万度.这里的280万度用科学记数法表示(保留三个有效数字)为_________________________度.14.把x x 43分解因式,结果为________________________________.15.有一组数据如下: 3, a , 4, 6, 7. 它们的平均数是5,那么这组数据的方差为_________. 16.将一直径为17cm 的圆形纸片(图①)剪成如图②所示形状的纸片,再将纸片沿虚线折叠得到正方体(图③)形状的纸盒,则这样的纸盒体积最大为 cm 3. 得 分评 卷 人(第16题图)① ② ③17. 观察下表,可以发现: 第_________个图形中的“△”的个数是“○”的个数的5倍.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分) 先化简,再求值:22112()2y x yx yx xy y-÷-+++,其中,23+=x23-=y .序号1 2 3 … 图形○ ○ △ ○○○○ ○ ○ △ △ ○ △ △○○○○○ ○ ○ ○△ △ △ ○△ △ △○ ○ △ △ △ ○○○○…得 分 评 卷 人 座号19.(本题满分9分)如图,在平行四边形ABCD中,点E,F分别是AD,BC的中点.求证:(1)△ABE≌△CDF;A E D(2)四边形BFDE是平行四边形.CF(第19题图)20. (本题满分9分)光明中学组织全校 1 000名学生进行了校园安全知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图的频数分布表和频数分布直方图(不完整).请根据以上提供的信息,解答下列问题: (1)直接写出频数分布表中a ,b ,c 的值,补全频数分布直方图; (2)上述学生成绩的中位数落在哪一组范围内?(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校1 000名学生中约有多少名获奖? 分组 频数 频率 50.5~60.5 10 a 60.5~70.5 b 70.5~80.50.2 80.5~90.5 52 0.26 90.5~100.5 0.37合计 c 1/分21. (本题满分9分)如图,AB 是⊙O 的直径,点D在AB 的延长线上,点C 在⊙O 上, CA =CD , ∠CDA =30°.(1)试判断直线CD 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径为5,求点A 到CD 所在直线的距离.得 分 评 卷 人(第21题图) A22. (本题满分10分)如图所示的矩形包书纸中,虚线是折痕,阴影是裁剪掉的部分,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.(1)设课本的长为a cm ,宽为bcm ,厚为c cm ,如果按如图所示的包书方式,将封面和封底各折进去3cm ,用含a ,b ,c 的代数式,分别表示满足要求的矩形包书纸的长与宽;(2)现有一本长为19cm ,宽为16cm ,厚为6cm 的字典,你能用一张长为43cm ,宽为26cm 的矩形纸,按图所示的方法包好这本字典,并使折叠进去的宽度不小于3cm 吗?请说明理由.得 分评 卷 人(第22题图)23.(本题满分10分)如图,已知二次函数24y ax x c=-+的图象与坐标轴交于点A(-1,0)和点B(0,-5).(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P的坐标.得分评卷人(第23题图)24. (本题满分10分)如图,在锐角三角形ABC 中,12 BC ,△ABC 的面积为48,D ,E 分别是边AB ,AC 上的两个动点(D 不与A ,B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG .(1)当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;(2)设DE = x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值范围,并求出y 的最大值.得 分 评 卷 人B(第24题图) A D EF G C B (备用图(1)) A CB(备用图(2))AC绝密★启用前试卷类型:A2010年东营市初中学生学业考试数学试题参考答案与评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见进行评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C A B C A C D B C B C B二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13. 2.80×106; 14.)2)(2(-+x x x ; 15. 2; 16.1717; 17. 20. 三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分)解:22112()2y x yx yx xy y-÷-+++yy x y x y x y x y x 2)())(()()(2+⋅+---+=…………………………………3分yy x y x y x y 2)())((22+⋅+-=yx y x -+=. ········································································································ 5分把,23+=x 23-=y 代入上式,得原式=262232)23()23()23()23(==--+-++.………………7分19. (本题满分9分)证明:(1)在平行四边形ABCD 中,AB =CD ,AD =CB .又 点E ,F 分别是AD ,BC 的中点. ………1分 ∴ AE =CF , …………………………3分 B AE D CF ∠=∠,…………………4分 ∴△ABE ≌△DCF (边,角,边) ……5分 (2)在平行四边形BFDE 中,∵△ABE ≌△DCF ,∴ BE =DF . ………………………………………6分 又 点E ,F 分别是AD ,BC 的中点.∴DE =BF , ……………………………………………8分 ∴四边形BFDE 是平行四边形. …………………9分20. (本题满分9分) 解:(1).200;24;05.0===c b a …………………………………3分作图略. …………………………………………………………4分 (2)80.5~90.5; …………………………………………………6分 (3)370人. …………………………………………………9分 21. (本题满分9分)解:(1) △ACD 是等腰三角形,∠D =30°. ∴∠CAD =∠CDA =30°.连接OC , AO =CO ,∴△AOC 是等腰三角形. ………………………2分 ∴∠CAO =∠ACO =30°,A EDC F (第19题图) (第21题图)∴∠COD =60°.…………………………………3分 在△COD 中,又 ∠CDO =30°,∴∠DCO =90°.………………………………4分∴CD 是⊙O 的切线,即直线CD 与⊙O 相切.……………5分 (2)过点A 作AE ⊥CD ,垂足为E . ………………………6分在Rt △COD 中,∠CDO =30°, ∴OD =2OC =10. AD =AO +OD =15…………………7分 在Rt △ADE 中,∠EDA =30°,∴点A 到CD 边的距离为:5.730sin =︒⋅=AD AE .…9分22. (本题满分10分) 解:(1)矩形包书纸的长为:(2b +c +6)cm ,…………………………………………2分矩形包书纸的宽为(a +6)cm. ……………………4分 (2)设折叠进去的宽度为x cm ,……………………………5分 分两种情况:①当字典的长与矩形纸的宽方向一致时,根据题意,得⎩⎨⎧++⨯+.4326216,26219xx………………………………7分 解得x ≤2.5.所以不能包好这本字典. …………………8分②当字典的长与矩形纸的长方向一致时,同理可得x ≤-6. 所以不能包好这本字典. ……………………9分综上,所给矩形纸不能包好这本字典. (10)23. (本题满分10分)解:(1)根据题意,得⎪⎩⎪⎨⎧+⨯-⨯=-+-⨯--⨯=.0405,)1(4)1(022c a c a …2分解得⎩⎨⎧-==.5,1c a ……………………3分∴二次函数的表达式为542--=x xy .……4分 (2)令y =0,得二次函数542--=x xy的图象与x 的另一个交点坐标C (5, 0).……………5分由于P 是对称轴2=x 上一点, 连结AB ,由于2622=+=OBOAAB,要使△ABP 的周长最小,只要PB PA +最小.……………6分由于点A 与点C 关于对称轴2=x 对称,连结BC 交对称轴于点P ,则PBPA += BP +PC=BC ,根据两点之间,线段最短,可得PB PA +的最小值为BC .因而BC 与对称轴2=x 的交点P 就是所求的点.………………8分设直线BC 的解析式为bkx y+=,根据题意,可得⎩⎨⎧+=-=.50,5b k b 解得⎩⎨⎧-==.5,1b k所以直线BC 的解析式为5-=x y.……………………9分≤ ≤ (第23题图)因此直线BC 与对称轴2=x的交点坐标是方程组⎩⎨⎧-==5,2x y x 的解,解得⎩⎨⎧-==.3,2y x所求的点P 的坐标为(2,-3).…………………10分 24. (本题满分10分)解:(1)当正方形DEFG 的边GF 在BC 上时,如图 (1),过点A 作BC 边上的高AM ,交DE 于N ,垂足为M .∵S △ABC =48,BC =12,∴AM =8.∵DE ∥BC ,△ADE ∽△ABC , ………1分∴AMAN BCDE =,而AN=AM -MN=AM -DE ,∴8812DE DE -=. ………2分解之得8.4=DE .∴当正方形DEFG 的边GF 在BC 上时,正方形DEFG 的边长为4.8.…3分 (2)分两种情况:①当正方形DEFG 在△ABC 的内部时,如图(2),△ABC与正方形DEFG 重叠部分的面积为正方形DEFG 的面积, ∵DE =x ,∴2x y =,此时x 的范围是x <0≤4.8…4分 ②当正方形DEFG 的一部分在△ABC 的外部时,如图(2),设DG 与BC 交于点Q ,EF 与BC 交于点P , △ABC 的高AM 交DE 于N ,∵DE =x ,DE ∥BC ,∴△ADE ∽△ABC , …………5分 即AM AN BC DE =,而AN =AM -MN =AM -EP , ∴8812EPx -=,解得x EP 328-=.………6分所以)328(x x y -=, 即x x y 8322+-=.………7分由题意,x >4.8,x <12,所以128.4<<x .因此△ABC 与正方形DEFG 重叠部分的面积为⎪⎩⎪⎨⎧<<+-=)128.4(83222x x x x y ……………………8分当x <0≤4.8时,△ABC 与正方形DEFG 重叠部分的面积的最大值为4.82=23.04 当128.4<<x 时,因为x xy 8322+-=,所以当6)32(28=-⨯-=x 时,△ABC 与正方形DEFG 重叠部分的面积的最大值为24)32(480)32(42=-⨯-⨯-⨯.B (第24题图(2))AD E FG CM B (第24题图(3))ADEF GCNP Q(第24题图(1))ADEF CN(0< x ≤4.8)因为24>23.04,所以△ABC与正方形DEFG重叠部分的面积的最大值为24.…10分。

相关文档
最新文档