3的倍数的特征

合集下载

3的倍数的特征背后道理

3的倍数的特征背后道理

3的倍数的特征背后道理对于许多人来说,数学是一门难以理解的学科,越是接近高年级,越是充满晦涩难懂的公式和定理。

但是在日常生活中,我们却可以发现一些简单而有趣的规律,比如3的倍数的一些特征。

在这篇文章中,我们将探究3的倍数的背后道理,让你对数学的认识变得更加全面和深入。

三的倍数的奇偶性首先,大多数人都知道一个简单的规律,即一个整数是否是3的倍数,只需要判断这个整数的各个位数之和是否是3的倍数。

例如,123的各位数之和为6,是3的倍数,所以123是3的倍数。

这个规律的科学解释十分简单,因为一个整数可以表示为各个位数上数字的加和,如果各个位数之和是3的倍数,则说明这个整数的每个数位上的数都是3的倍数,因此整个数也是3的倍数。

而这个规律的背后,是数学中奇偶性带来的特殊性质。

我们都知道,奇数和偶数是两个性质不同的数列。

奇数可以写成2n+1的形式,而偶数可以写成2n的形式,其中n为整数。

当一个整数判断是否是3的倍数时,我们可以观察这个整数的个位,如果个位是奇数,则这个整数为3的倍数的充要条件是剩余位数上数字之和为3的倍数。

如果个位是偶数,则这个整数为3的倍数的充要条件是个位上数字的一半减去剩余位数上数字之和仍是3的倍数。

这个规律的精妙在于,3是奇数,而2是偶数,因此当判断一个整数是否为3的倍数时,我们可以通过观察其个位奇偶性来推出奇偶性关系,再根据奇偶性关系推出判断规律,这种“拆解”和“推导”的方式是数学思维和解题的重要手段和方法。

三的倍数的约数和倍数性其次,我们还可以发现,3的倍数有一些特殊的约数性质。

一个整数能被3整除,当且仅当它的各个位数之和能被3整除。

从这个性质中可以得出几个结论。

首先,任意一个3的倍数都是9的倍数。

因为9是3的平方,当一个整数各个位数之和能被3整除时,它一定能被9整除。

其次,如果一个奇数各个数位上的数之和是3的倍数,则这个奇数至少有一个奇数因子是3。

这是因为奇数的约数中一定有奇数倍数的3,而3又是奇数,因此如果一个奇数的各数位之和是3的倍数,则这个奇数中必有一个3因子。

3的倍数的特征

3的倍数的特征

3的倍数的特征教学内容分析3的倍数的特征是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。

因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。

教材是先教学2、5的倍数的特征,再教学3的倍数的特征。

因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。

而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判断,学生理解起来有一定的困难,因此,把它放在2、5的倍数的特征后面教学。

教学对象分析苏霍姆林斯基说:“在小学面临的许多任务中,首要的任务是教会儿童学习”。

这里的学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。

本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。

教学目标:1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。

2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。

教学重、难点:是3的倍数的数的特征。

教学流程图教学过程:一、提出课题,寻找3的特征。

师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?生1:个位上是3、6、9的数是3的倍数。

生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。

生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。

师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。

(揭示课题)师:先请在下表中找出3的倍数,并做上记号。

(教师出示百以内数表,学生人手一张。

3的倍数的特征

3的倍数的特征

暂停一下
3
6
9
12
15
18
21
24
27
30
33
36
39
42
45
48
51
54Biblioteka 576063
66
69
72
75
78
81
84
87
90
93
96
99
个位和十位上的数字相加之和都等于9。
9
18 1+8=9
27 2+7=9
36 3+6=9
45 4+5=9
54
5+4=9
63
6+3=9
72 81
7+2=9 8+1=9
个位和十位上的 数字相加之和: 9+2=11, 11 ÷3=3……2
如果是三位数或更多数位的数,我们的发现还成立吗?
暂停一下
3的倍数的特征:
一个数各个数位上的数字之和是3 的倍数,这个数就是3的倍数。
北师大版 五年级上册 第三单元 倍数与因数
学习目标:
√ 经历探索3的倍数的特征的过程,理解3 的倍数的特征。
√ 能判断一个数是否是3的倍数。 √ 发展分析、比较、猜测、验证的能力。
2的倍数的特征:个位上是2、4、6、8、0的数都是 2的倍数。
5的倍数的特征:个位上是0或5的数都是5的倍数。
个位上是3、6、9的数是3的 倍数。
个位上是3、6、9的数不一定 是3的倍数,如:23、26、29
都不是3的倍数。
请在百数表中圈出3的倍数,你发现了什么?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

第二单元《3的倍数的特征》教案

第二单元《3的倍数的特征》教案
4.3的倍数在数列中的规律和性质。
5.3的倍数在日常生活中的应用。
二、核心素养目标
《3的倍数的特征》教学旨在培养学生的以下核心素养:
1.数学抽象:通过探究和归纳,使学生理解数的倍数概念,提高数学抽象思维能力。
2.逻辑推理:培养学生运用逻辑推理方法,分析并证明3的倍数的特征,增强推理能力。
3.数学建模:让学生运用所学知识解决实际问题,建立数学模型,提高数学建模素养。
-重点三:分析数列中3的倍数的规律,如每隔两个数出现一个3的倍数等。
-重点四:结合实际情境,让学生学会将数学知识应用于生活,如购物时如何判断总价是否为3的倍数。
2.教学难点
(1)理解并掌握如何运用各位数字之和判断一个数是否为3的倍数。
(2)在数列中找出并应用3的倍数的规律。
(3)将抽象的数学概念应用于解决具体问题。
五、教学反思
在今天的课堂中,我们探讨了《3的倍数的特征》,整体教学过程让我有了以下几点思考。
首先,我发现同学们对3的倍数的概念掌握得还不错,但在运用各位数字之和判断一个数是否为3的倍数时,部分同学还是感到有些困难。这一点让我意识到,在今后的教学中,需要加强对这一知识点的讲解和练习,让学生更好地理解并运用这一方法。
其次,在实践活动环节,同学们分组讨论和实验操作的过程中,我注意到他们对3的倍数在实际生活中的应用有了更深刻的认识。但同时,我也发现有些小组在讨论时,观点较为片面,未能全面考虑到3的倍数在各种情境下的应用。针对这一问题,我计划在接下来的课堂中,引入更多丰富多样的实例,激发学生的思考,帮助他们更好地将数学知识应用于实际生活。
3.重点难点解析:在讲授过程中,我会特别强调3的倍数的定义和判断方法这两个重点。对于难点部分,如理解各位数字之和与3的倍数的关系,我会通过举例和图示来帮助大家理解。

是3的倍数的特征

是3的倍数的特征

是3的倍数的特征
3的倍数的特征有以下几个方面:
1.整除性质:3的倍数具有整除3的性质,即一个数能够被3整除,那么它就是3的倍数。

例如,6除以3的结果是2,说明6是3的倍数。

2.数位和:一个数的各个位数之和如果能够被3整除,那么这个数也是3的倍数。

例如,123的各个位数之和是6,因为6能被3整除,所以123是3的倍数。

3.末尾为0:为0、3、6、9的数字都能被3整除,因此如果一个数的末尾是0、3、6、9中的一个,那么它就是3的倍数。

4.各位数字之和为3的倍数:如果一个数的各位数字之和能够被3整除,那么这个数也是3的倍数。

例如,624的各位数字之和是12,因为12能被3整除,所以624是3的倍数。

5.间隔为3的倍数:如果一个数的个位数和十位数的差能被3整除,那么这个数也是3的倍数。

例如,27的个位数为7,十位数为2,它们的差为5,5不能被3整除,所以27不是3的倍数;而30的个位数为0,十位数为3,它们的差为3,3能被3整除,所以30是3的倍数。

即个位数与十位数之差能被3整除。

6.整数规律:3的倍数的个位数如果是0、3、6、9,那么这个数还是3的倍数。

如果一个数的个位数是0、3、6、9,那么它一定能被3整除,并且这个规律也可以递归应用于数的每一位。

例如,231的个位数为1,因此它不是3的倍数;而234的个位数为4,因此可以通过判断234除以10后的结果是否是3的倍数来判断234是否是3的倍数。

这些都是3的倍数的特征,根据这些特征可以判断一个数是否是3的倍数。

同时,这些特征也可以用于解决一些与3的倍数有关的问题,例如编写算法求解3的倍数的个数或者求给定范围内3的倍数之和等。

3的倍数的特征

3的倍数的特征

探索3的倍数的特征
3的倍数的数
1 2 3 4 5 6 7 ……
×3
3 6 9 12 15 18 21 ……
1+2=3 1+5=6 ……
12个位上的数不是3的倍数,但 1 + 2 = 3,3是3的倍数。 15个位上的数不是3的倍数, 但1 + 5 = 6,6是3的倍数。
3的倍数的数
1 2 3 4 5 6 7 ……
×3
3 6 9 12 15 18 21 ……
提示:
把3的倍数的各位上的数 相加,看看你有什么发现。
探索3的倍数的特征
我们把刚才得到的3的那些倍数各个数位上的数字加起来, 看看他们都是些什么数?
1+2=3 1+5=6 1+8=9 2+1=3
想一想
这些数有什么特点,你看出来了吗?
探索3的倍数的特征
刚才的那些数各数位上的数加起来的和还是3的倍数。 1+2=3 1+5=6 1+8=9 2+1=3 3,6,9都是3的倍数。 因此,一个数如果各个数位上的数字之和是3的倍数,这个 数就是3的倍数。 小精灵的话你听懂了吗?它说得对吗? 我们用小精灵讲的方法检验一下吧: 354是3的倍数吗? 3+5+4=12,12是3的倍数,因此354就是3的倍数。 检验一下:354÷3=118 同学们再试试看呢
探索3的倍数的特征
用刚刚的方法判断以下数是否是3的倍数: 789 93 527 1050
7+8+9=24, 24是3的倍数,所以789是3的倍数。 (789÷3=263) 9+3=12, 12是3的倍数,所以93是3的倍数。 (93÷3=31) 5+2+7=14,14不是3的倍数,所以527不是3的倍数。 (527÷3=175…2) 1+0+5+0=6,6是3的倍数,所以1050也是3的倍数。 (1050÷3=350) 用刚刚的方法判断出的结果正确吗? 你能用自己的话说一说3的倍数的特征了吗?

《3的倍数的特征》教案

《3的倍数的特征》教案

《3的倍数的特征》教案《3的倍数的特征》教案「篇一」教学目标:1、经历和体验“3的倍数的特征”的规律的探索过程,初步感知3的倍数特征的原理。

2、理解和掌握3的倍数的特征,并能正确、较迅速地判断什么样的数是3的倍数。

3、初步体会到初等数论的抽象性、严密性和逻辑性,感受到数学的魅力所在。

教学过程:一、复习引入1、复习把24、35、75、120、345、780、276、434填入相应的集合圈中。

为什么2、5的倍数只要看个位数字就可以了?2、猜想特征你认为3的倍数有什么特征?(1)个位上是3、6、9的数(2)各个数位上的数的和是3的倍数3、导入新课二、探索3的倍数的特征(一)百以内3的倍数的特征1、圈一圈,想一想。

2、交流(二)拓展与验证(三)得出结论一个数各位上的数的和是3的倍数,这个数就是3的倍数。

三、探索3的倍数的特征的原理四、练习拓展1、把复习题8个数中3的倍数填在相应的圈内。

2、判断各数是否是3的倍数?332 666 876 264 111 222。

3、判断各数是否是3的倍数?你是怎么想的?96332、24153、56093。

4、综合应用(1)一个数,同时是2、3、5的倍数,这个数最小是几?(2)一个三位数,同时是2、3、5的倍数,最小又是多少?《3的倍数的特征》教案「篇二」教学目标:知识与技能:1、学生会正确判断一个数是否是3的倍数。

过程与方法:2、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。

情感态度价值观:3、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。

教学重、难点:1、掌握3的倍数的特征。

2、能正确判断一个数是否是3的倍数。

教学过程设计:一、复习引新1、用5,6,7三个数字组成一个三位数,使这个数是2的倍数?说说什么样的数一定是2的倍数,可以摆成5的倍数吗?怎样摆出的数一定是5的倍数呢?2、引入:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,那么你能从个位上发现3的倍数的特征吗?今天我们一起来研究3的倍数的特征。

3的倍数的特征

3的倍数的特征

3的倍数的特征当我们将一个整数除以3时,得到的余数只可能是0、1或2、如果余数是0,那么这个整数就是3的倍数;如果余数是1或2,那么这个整数就不是3的倍数。

以下是3的倍数的一些特征:1.数字和为3的倍数:一个整数的每位数字相加得到的和如果是3的倍数,那么这个整数也是3的倍数。

例如,108的每位数字相加得到的和是9,是3的倍数,所以108也是3的倍数。

2.末尾数字为0、3、6或9:如果一个整数的个位数字是0、3、6或9,那么它一定是3的倍数。

例如,90、27和42都是3的倍数。

3. 同余模运算:如果两个整数对3的余数相等,那么它们的差也是3的倍数。

例如,对于任意整数a和b,如果a ≡ b (mod 3),那么a -b是3的倍数。

4.逆向思考:如果我们能够证明一个数不是3的倍数,那么它一定不是3的倍数。

例如,对于一个整数,如果它的个位数字之和不是3的倍数,那么这个整数肯定不是3的倍数。

5.数字位数之和不断相加:如果一个整数的所有位数之和不是3的倍数,那么这个整数也不是3的倍数。

我们可以将这个整数的所有位数相加,如果和大于9,再将和的各位数字相加,直到和小于10为止。

如果得到的最终和是3的倍数,那么这个整数也是3的倍数。

6.除法法则:当一个整数除以9的余数是0时,它一定是3的倍数。

因为3和9都是3的倍数,所以3的倍数也一定是9的倍数。

总结起来,判断一个数是否是3的倍数,可以使用以下方法:1.将整数的每位数字相加,如果和是3的倍数,那么这个整数也是3的倍数。

2.判断整数的个位数字是否是0、3、6或9,如果是,那么这个整数是3的倍数。

3.判断整数对3的余数是否相等,如果相等,那么这两个整数的差也是3的倍数。

4.判断整数的个位数字之和是否是3的倍数,如果不是,那么这个整数不是3的倍数。

5.判断整数的位数之和是否是3的倍数,直到和小于10为止。

如果最终和是3的倍数,那么这个整数也是3的倍数。

6.判断整数除以9的余数是否是0,如果是,那么这个整数是3的倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档