2015-2016年北师大版九年级上第四章《图形的相似》检测题
北师大版数学九年级上册《第四章图形相似》单元测试(含答案)

北师大版数学九年级上册《第四章图形相似》单元测试一.选择题(共12小题)1.若,则的值为()A.1 B.C.D.2.若△ABC∽△DEF,且对应中线比为2:3,则△ABC与△DEF 的面积比为()A.3:2 B.2:3 C.4:9 D.9:163.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=30m,EC=15m,CD=30m,则河的宽度AB长为()A.90m B.60m C.45m D.30m 4.如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,﹣4)C.(2,﹣1)D.(8,﹣4)5.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.6.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2 C.D.7.如图▱ABCD,E是BC上一点,BE:EC=2:3,AE交BD于F,则BF:FD等于()A.2:5 B.3:5 C.2:3 D.5:7 8.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF:S△AOB的值为()A.1:3 B.1:5 C.1:6 D.1:11 9.如图,在△ABC中,∠C=90°,点D是BC边上一动点,过点B 作BE⊥AD交AD的延长线于E.若AC=6,BC=8,则的最大值为()A.B.C.D.[来源:学] 10.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:10 11.如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH上.若AB=5,BG=3,则△GFH的面积为何?()A.10 B.11 C.D.12.如图,,∠1=∠2,则对于结论:①△ABE∽△ACF;②△ABC∽△AEF;③;④.其中正确的结论的个数是()A.1 B.2 C.3 D.4二.填空题(共5小题)13.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为.14.已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=.15.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1D1C1;在等腰直角三角形OA1B1中作内接正方形A2B2D2C2;在等腰直角三角形OA2B2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形A n B n D n C n的边长是.16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.17.如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG的周长是.三.解答题(共6小题)18.已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.19.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△AB E∽△DEF;(2)若正方形的边长为4,求BG的长.20.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.21.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=,AE=3,求AF的长.22.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.23.如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF 以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K 到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t 秒(t>0).(1)当t=1时,KE=,EN=;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?参考答案一.选择题1.C.2.C.3.B.4.A.5.B.6.A.7.A.8.C.9.B10.D.11.D.12.B.二.填空题13.]4.14.7.5.15.].16.3.17.36.三.解答题18.(1)证明:∵AB=2,BC=4,BD=1,∵∠ABD=∠CBA,∴△ABD∽△CBA;(2)解:∵DE∥AB,∴△CDE∽△C BA,∴△ABD∽△CDE,∴DE=1.5.19.(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∵DF=DC,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.20.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.21.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠B+∠C=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵AE⊥BC,AD=3,AE=3,∴在Rt△DAE中,DE===6,由(1)知△ADF∽△DEC,得=,∴AF===2.22.解:(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为:(1)(2,﹣2);(2)(1,0)23.解:(1)当t=1时,根据题意得,AP=1,PK=1,∵PE=2,∴KE=2﹣1=1,∵四边形ABCD和PEFG都是矩形,∴△APM∽△ABC,△APM∽△NEM,∴MP=,ME=,∴NE=;故答案为:1;;(2)由(1)并结合题意可得,AP=t,PM=t,ME=2﹣t,NE=﹣t,∴t×t=(2﹣t)×(﹣t),解得,t=;(3)当点K到达点N时,则PE+NE=AP,由(2)得,﹣t+2=t,解得,t=;(4)①当K在PE边上任意一点时△PKB是直角三角形,即,0<t≤2;②当点k在EF上时,则KE=t﹣2,BP=8﹣t,∵△BPK∽△PKE,∴PK2=BP×KE,PK2=PE2+KE2,∴4+(t﹣2)2=(8﹣t)(t﹣2),解得t=3,t=4;③当点K运动6秒时,点K到点F,点P还没到点B,∴点K不可能在BC边上,.综上,当0<t≤2或t=3或t=4时,△PKB是直角三角形.。
(常考题)北师大版初中数学九年级数学上册第四单元《图形相似》检测(含答案解析)

一、选择题1.如图,在Rt ABC 中,90ACB D ∠=︒,是AB 边的中点,AF CD ⊥于点E ,交BC 边于点F ,连接DF ,则图中与ACE △相似的三角形共有( )A .2个B .3个C .4个D .5个2.如图,////AB CD EF ,若3BF DF =,则AC CE 的值是( )A .2B .12C .13D .33.已知△ABC 如图,则下列4个三角形中,与△ABC 相似的是( )A .B .C .D . 4.已知ABC 26,2,则与ABC 相似的三角形的三边长可能是( )A .123B .13 22C .136D .1335.下列说法中,正确的说法有( )①对角线互相平分且相等的四边形是菱形;②一元二次方程2340x x --=的根是14x =,21x =-;③两个相似三角形的周长的比为23,则它们的面积的比为49; ④对角线互相垂直的平行四边形为正方形; ⑤对角线垂直的四边形各边中点得到的四边形是矩形. A .1个 B .2个 C .3个 D .4个6.如图,4AB =,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,12BE DB =,作EF DE ⊥并截取EF DE =,连结AF 并延长交射线BM 于点C .设BE x =,BC y =,则y 关于x 的函数解析式是( )A .124x y x =--B .21x y x =--C .31x y x =--D .84x y x =-- 7.如图,在△ABC 中,EF //BC ,EG //AB ,则下列式子一定正确的是( )A .AE EF EC CD = B .EF EG CD AB = C .CG AF BC AD = D .AF BG DF GC= 8.下列各组图形中,一定相似的是( )A .两个等腰三角形B .两个等边三角形C .两个平行四边形D .两个菱形 9.若275x y z ==,则2x y z x z +-+的值是( ) A .67 B .13 C .49 D .410.如图,在Rt ABC 中,90ACB ∠=︒,以其三边为边向外作正方形,过点C 作CR FG ⊥于点R ,再过点C 作PQ CR ⊥分别交边DE ,BH 于点P ,Q .若2QH PE =,9PQ =,则CR 的长为( )A .14B .9C .425D .36511.如图,正方形ABCD 的边长为2,BE CE =, 1.MN =线段MN 的两端在CD ,AD 上滑动,当ABE 与以D ,M ,N 为顶点的三角形相似时,DM 的长为( )A .13B .13或23C .5D .5或25 12.如图,在△ABC 中,∠C =90°,AB =10,BC =8.E 是AC 边上一动点,过点E 作EF ∥AB 交BC 于点F ,D 为线段EF 的中点,当BD 平分∠ABC 时,AE 的长度是( )A .1613B .3013C .4013D .4813二、填空题13.如图,△ABC 是测量小玻璃管内径的量具,AB 的长为18cm ,AC 被分为60等份.如果小玻璃管口DE 正好对着量具上20等份处(D 、E 分别在AC 、BC 上,且DE ∥AB ),那么小玻璃管内径DE 是_____cm .14.如图所示是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的半径为0.8m ,桌面距离地面1m ,若灯泡距离地面3m ,则地面上阴影部分的面积为_________m 2(结果保留)π.15.在平面直角坐标系中,ABC 的三个顶点坐标分别为(2,4)A -,(3,1)B -,(2,0)C -,以原点O 为位似中心,把ABC 缩小为原来的12,得到A B C ''',则点A 的对应点A '的坐标为__________. 16.如图,EB 为驾驶员的盲区,驾驶员的眼睛点P 处与地面BE 的距离为1.6米,车头FACD 近似看成一个矩形,且满足32FD FA =,若盲区EB 的长度是6米,则车宽FA 的长度为________米.17.在平面直角坐标系中,ABC 与DEF 是以坐标原点O 为位似中心的位似图形,相似比为1:2;若B 点的坐标为(2,1),则B 的对应点E 的坐标为________.18.如图,在正方形ABCD 中,对角线,AC BD 相交于点,O E 是OB 的中点,连接AE 并延长交BC 于点,F 若BEF ∆的面积为1,则正方形ABCD 的面积为________________________.19.如图,在矩形ABCD 中,ABC ∠的平分线BE 与AD 交于点E ,BED ∠的平分线EF 与DC 交于点F ,若12AB =,2DF FC =,则BC 的长是_____.20.如图,在ABC 中,8AB =,6AC =,D 是AC 上一点,4=AD ,在AB 上取一点E ,使A 、D 、E 为定点的三角形与ABC 相似,则AE 的长为_______________.三、解答题21.如图,在ABC 中,∠ACB =90°,AC=BC ,O 是AB 的中点,连结OC ,点F ,E 分别在边AB 和BC 上,过E 点作EM ⊥AB ,垂足为M ,满足∠FCO =∠EFM .(1)求证:CF=EF ;(2)求证:BC EF CE NE=.22.如图,正方形ABCD 中,6AB =,点E 在边CD 上,且3CD DE =.将ADE 沿AE 翻折至AFE △,延长EF 交边BC 于点G ,连接AG 、CF .(1)求证:BG GC =;(2)求CFG △的面积.23.如图,在ABC 中,90ACB ∠=︒,CD 是斜边AB 上的高,E 是AC 的中点,连接ED 并延长交CB 的延长线于点F .(1)求证:2FD FB FC =⋅.(2)若G 是BC 的中点,连接DG ,5AB =,4AC =,求点G 到EF 的距离. 24.已知: ABC ∆在平面直角坐标平面内,三个顶点的坐标分别为()0,3A 、()3,4B 、()2,2C (正方形网格中每个小正方形的边长是一个单位长度).(1)画出ABC ∆向下平移4个单位长度得到的111A B C ∆,并写出点1C 的坐标; (2)以点B 为位似中心,在网格内画出222A B C ∆,使222A B C ∆与ABC ∆位似,且位似比为2:1,并写出点2C 的坐标;(3)222A B C ∆的面积是多少个平方单位?25.如图,正方形ABCD 的边长为2,E 、F 为线段AC 上两动点(不与A 、C 点重合),且45EBF ∠=︒.(1)求证:ABF BEF △△.(2)试说明无论点E、F在线段AC上怎样运动,总有2BE CE BF AF⎛⎫=⎪⎝⎭.(3)如图2,过点E、F分别作AB、BC的垂线相交于点O,垂足分别为M、N,求OM ON⋅的值.26.如图,在平面直角坐标系中,已知ΔABC三个顶点的坐标分别是A(-4,2),B(-3,1),C(-1,2).(1)请画出ΔABC关于x轴对称的ΔA1B1C1;(2)以点O为位似中心,相似比为1:2,在y轴右侧,画出ΔA1B1C1放大后的ΔA2B2C2;【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用直角三角形斜边上的高线模型,可判断有2个三角形与ACE△相似,利用直角三角形斜边上的中线等于斜边的一半,传递一组等角,得到第3个三角形.【详解】∵∠EAC=∠CAF,∠AEC=∠ACF,∴△ACE∽△AFC;∵∠EAC+∠AFC=90°,∠ECF+∠AFC=90°,∴∠EAC=∠ECF ,∵∠AEC=∠CEF ,∴△ACE ∽△CFE ;∵90ACB D ∠=︒,是AB 边的中点,∴DC=DB ,∴∠ECF=∠EAC=∠B ,∵∠AEC=∠BCA ,∴△ACE ∽△BAC ;共有3个,故选B.【点睛】本题考查了直角三角形的相似,熟练运用三角形相似的判定定理是解题的关键. 2.A解析:A【分析】由BF=3DF ,得BD=2DF ,使用平行线分线段成比例定理计算即可.【详解】∵BF=3DF ,∴BD=2DF ,∵////AB CD EF , ∴AC CE =BD DF , ∴AC CE =2DF DF=2, 故选A.【点睛】本题考查了平行线分线段成比例定理,熟练掌握定理,特别是定理的对应关系是解题的关键.3.C解析:C【分析】△ABC 是等腰三角形,底角是75°,则顶角是30°,看各个选项是否符合相似的条件.【详解】解:∵由图可知,AB =AC =6,∠B =75°,∴∠C =75°,∠A =30°,A 、三角形各角的度数分别为75°,52.5°,52.5°,不符合题意;B 、三角形各角的度数都是60°,不符合题意;C 、三角形各角的度数分别为75°,30°,75°,符合题意;D、三角形各角的度数分别为40°,70°,70°,不符合题意;∴只有C选项中三角形各角的度数与题干中三角形各角的度数相等,故选:C.【点睛】此题主要考查等腰三角形的性质,三角形内角和定理和相似三角形的判定的理解和掌握,解题的关键是熟练掌握相似三角形的判定.4.A解析:A【分析】根据相似三角形的判定定理即可得到结论.【详解】解:∵△ABC,2,∴△ABC:2=1∴△ABC相似的三角形三边长可能是1,故选:A.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.5.C解析:C【分析】根据矩形的判定定理、一元二次方程的解法、【详解】解:①对角线互相平分且相等的四边形是矩形,故①错误;②一元二次方程x2-3x-4=0(x-4)(x+1)=0x-4=0或x=1=0x1=4,x2=-1,故②正确;③两个相似三角形的周长的比为23,则它们的面积的比为22()349,故③正确;④对角线相等且互相垂直的平行四边形为正方形,故④错误;⑤对角线垂直的四边形各边中点得到的四边形是矩形,说法正确.故选:C【点睛】本题考查的是命题的真假判断,掌握矩形的判定定理、一元二次方程的解法、中点四边形的性质、矩形、菱形和正方形的判断是解题的关键.6.A解析:A【分析】作FG ⊥BC 于G ,依据已知条件求得△DBE ≌△EGF ,得出FG =BE =x ,EG =DB =2x ,然后根据平行线的性质即可求得.【详解】解:作FG ⊥BC 于G ,∵∠DEB +∠FEC =90°,∠DEB +∠BDE =90°;∴∠BDE =∠FEG ,在△DBE 与△EGF 中,B FGE BDE FEG DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△EGF ,∴EG =DB ,FG =BE =x ,∴EG =DB =2BE =2x ,∴GC =y -3x ,∵FG ⊥BC ,AB ⊥BC ,∴FG ∥AB ,CG :BC =FG :AB , 即34x y x y-=, ∴124x y x =--, 故选:A .【点睛】本题考查了三角形全等的判定和性质,以及平行线分线段成比例,辅助线的做法是解题的关键.7.D解析:D【分析】根据平行线分线段成比例定理逐一判断即可.【详解】∵EG //AB ,EF //BC ,∴AE AF AC FD=, ∵AC≠EC ∴AE EF EC CD=不成立, ∴选项A 错误;∵EG //AB ,EF //BC , ∴EF AE CD AC =,EG EC AB AC=, ∵AE≠EC , ∴EF EG CD AB=不成立, ∴选项B 错误;∵EG //AB ,EF //BC , ∴CG CE CB CA =DF DA=, ∵DF≠AF ∴CG AF BC AD=不成立, ∴选项C 错误;∵EG //AB ,EF //BC , ∴AF AE DF EC =,AE BG EC GC =, ∴AF BG DF GC=, ∴选项D 正确;故选D .【点睛】本题考查了平行线分线段成比例定理,熟练掌握定理,特别是比例中对应线段的属性保持一致是解题的关键.8.B解析:B【分析】根据相似图形的概念进行判断即可;【详解】任意两个等腰三角形的对应边的比相等,但对应角不一定相等,故不一定相似,故A 错误;任意两个等边三角形的对应角相等,都是60°,故一定相似,故B 正确;任意两个平行四边形的对应角不一定相等,对应边也不一定成比例,故不一定相似,故C 错误;任意两个菱形的对应边的比相等,但对应角不一定相等,故不一定相似,故D 错误; 故答案选B .【点睛】本题主要考查了相似图形的定义判断,准确理解是解题的关键.9.C解析:C【分析】 根据275x y z k ===,则x =2k ,y =7k ,z =5k ,代入2x y z x z+-+进行计算即可. 【详解】 解:275x y z k ===(k≠0), 则x =2k ,y =7k ,z =5k , ∴2x y z x z+-+=2754495k k k k k +-+=, 故选:C .【点睛】 本题考查了比例的性质,解题的关键是掌握比例的性质进行解题.10.C解析:C【分析】连接EC ,CH ,设AB 交CR 于点J ,先证得△ECP ∽△HCQ ,可得12PC CE EP CQ CH HQ ===,进而可求得CQ =6,AC :BC =1:2,由此可设AC =a ,则BC =2a ,利用AC ∥BQ ,CQ ∥AB ,可证得四边形ABQC 为平行四边形,由此可得AB =CQ =6,再根据勾股定理求得AC =,BC =125CJ =,进而可求得CR 的长. 【详解】解:如图,连接EC ,CH ,设AB 交CR 于点J ,∵四边形ACDE ,四边形BCIH 都是正方形,∴∠ACE =∠BCH =45°,∵∠ACB =90°,∠BCI =90°,∴∠ACE +∠ACB +∠BCH =180°,∠ACB +∠BCI =180°,∴点E 、C 、H 在同一直线上,点A 、C 、I 在同一直线上,∵DE ∥AI ∥BH ,∴∠CEP =∠CHQ ,∵∠ECP =∠QCH ,∴△ECP ∽△HCQ , ∴12PC CE EP CQ CH HQ ===, ∵PQ =9,∴PC =3,CQ =6,∵EC :CH =1:2,∴AC :BC =1:2,设AC =a ,则BC =2a ,∵PQ ⊥CR ,CR ⊥AB ,∴CQ ∥AB ,∵AC ∥BQ ,CQ ∥AB ,∴四边形ABQC 为平行四边形,∴AB =CQ =6,∵222AC BC AB +=,∴2536a =,∴a =(舍负)∴AC =,BC = ∵1122AC BC AB CJ ⋅⋅=⋅⋅,∴125565CJ ==, ∵JR =AF =AB =6,∴CR =CJ +JR =425, 故选择:C .【点睛】本题考查了正方形的性质、相似三角形的判定及性质、平行四边形的判定及性质、勾股定理的应用,作出正确的辅助线并灵活运用相关图形的性质与判定是解决本题的关键. 11.D解析:D【分析】根据90B D ∠=∠=,所以只有两种可能,假设ABE △∽NDM 或ABE △∽MDN △,分别求出DM 的长即可.【详解】 解:正方形ABCD 边长是2,BE CE =,1BE ∴=,225AE AB BE ∴+=当ABE △∽NDM 时::DM BE MN AE ∴=,1.MN = 5DM ∴=. 当ABE △∽MDN △时,::DM BA MN AE ∴=,2=1,=AB MN25DM ∴ 5DM ∴=25. 故选D .【点睛】本题考查相似三角形的判定与性质、正方形的性质.解决本题特别要考虑到①DM 与AB 是对应边时,②当DM 与BE 是对应边时这两种情况.12.B解析:B【分析】根据角平分线、中点及平行线的性质,得出FD=ED= FB ,设FD=ED= FB=x ,再根据△CEF ∽△CAB ,得出x 的值,根据勾股定理即可求解.【详解】解:∵BD 平分∠ABC∴∠ABD=∠FBD∵EF ∥AB∠FDB=∠ABD∴∠FDB=∠FBD∴△FBD 为等腰三角形∴FB=FD∵D 为线段EF 的中点∴FD=ED∴FD=ED= FB设FD=ED= FB=x∴EF=2x∵EF ∥AB∴△CEF ∽△CAB ∴CF EF CB AB= ∴CB FB EF CB AB-= 即8-2810x x = 解得:x=4013∴CF=8-BF=8-4013=6413EF=2×4013=8013 ∵∠C =90°,AB =10,BC =8∴=在Rt △CEF 中=4813 ∴AE=AC-CE=6-4813=3013故选:B .【点睛】本题主要考查了角平分线、中点及平行线的性质,也考察了相似三角形的性质,勾股定理的应用;解题关键是熟练掌握角平分线、平行线以及相似三角形的性质以及利用方程解决实际问题.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.12【分析】利用平行证明△CDE ∽△CAB 根据相似三角形对应边成比例的性质即可求DE 长【详解】∵DE ∥AB ∴△CDE ∽△CAB ∴即解得:cm 故答案为:12【点睛】本题考查相似三角形的判定及其性质解题解析:12【分析】利用平行证明△CDE ∽△CAB ,根据相似三角形对应边成比例的性质即可求DE 长.【详解】∵DE ∥AB ,∴△CDE ∽△CAB , ∴=CD DE CA AB ,即()6020=6018DE - 解得:12DE =cm故答案为:12【点睛】本题考查相似三角形的判定及其性质,解题的关键是熟练掌握相似三角形的判定及其性质:相似三角形对应边成比例.14.44π【分析】证明△OBQ ∽△OAP 根据相似三角形的性质求出AP 根据圆的面积公式计算得到答案【详解】解:如图由题意得OB=08mOQ=OP-PQ=3-1=2(m )BQ ∥AP ∴△OBQ ∽△OAP ∴即解解析:44π【分析】证明△OBQ ∽△OAP ,根据相似三角形的性质求出AP ,根据圆的面积公式计算,得到答案.【详解】解:如图,由题意得,OB=0.8m ,OQ=OP-PQ=3-1=2(m ),BQ ∥AP ,∴△OBQ ∽△OAP , ∴BQ OQ AP OP =,即0.823AP =, 解得,AP=1.2(m ), 则地面上阴影部分的面积=π×1.22=1.44π(m 2),故答案为:1.44π.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的判定定理和性质定理是解题的关键. 15.或【分析】根据在平面直角坐标系中如果位似变换是以原点为位似中心相似比为k 那么位似图形对应点的坐标的比等于k 或-k 即可求得答案【详解】解:∵△ABC 的三个顶点坐标分别为A (-24)B (-31)C (-2解析:(1,2)-或(1,2)-【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k ,即可求得答案.【详解】解:∵△ABC 的三个顶点坐标分别为A (-2,4),B (-3,1),C (-2,0),以原点O 为位似中心,把△ABC 缩小为原来的12,得到△A'B'C′, ∴点A 的对应点A'的坐标为:(-2×12,4×12)或[-2×(-12),4×(-12)],即(1,-2)或(-1,2).故答案为:(1,-2)或(-1,2).【点睛】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.16.【分析】通过作高利用相似三角形的对应高的比等于相似比列方程求解即可【详解】解:如图过点P 作PM ⊥BE 垂足为M 交AF 于点N 则PM=16设FA=x 米由3FD=2FA 得FD=x=MN ∵四边形ACDF 是矩形解析:127【分析】通过作高,利用相似三角形的对应高的比等于相似比,列方程求解即可.【详解】解:如图,过点P 作PM ⊥BE ,垂足为M ,交AF 于点N ,则PM=1.6,设FA=x 米,由3FD=2FA 得,FD=23x=MN , ∵四边形ACDF 是矩形,∴AF ∥CD ,∴△PAF ∽△PBE , ∴PN FA PM EB =,即1.66PN x =, ∴415PN x =, ∵PN+MN=PM , ∴42 1.6153x x +=, 解得,x=127, 故答案为:127. 【点睛】本题考查视点、视角、盲区的意义,此类问题可以转化为相似三角形的知识进行解答. 17.或【分析】根据位似图形的有两个在原点同侧或异侧分类讨论根据坐标变化规律求解即可【详解】解:与是以坐标原点为位似中心的位似图形分两种情况当与在原点同侧时E 点坐标为:当与在原点异侧时E 点坐标为:故答案为 解析:(4,2)或(4,2)--【分析】根据位似图形的有两个,在原点同侧或异侧分类讨论,根据坐标变化规律求解即可.【详解】解:ABC 与DEF 是以坐标原点O 为位似中心的位似图形,分两种情况, 当ABC 与DEF 在原点同侧时,E 点坐标为:(4,2),当ABC 与DEF 在原点异侧时,E 点坐标为:(4,2)--,故答案为:(4,2)或(4,2)--.【点睛】本题考查了平面直角坐标系中位似图形的坐标变化规律,解题关键是注意分类讨论,熟记位似坐标变化规律.18.【分析】根据正方形的性质得OB =ODAD ∥BC 根据三角形相似的性质和判定得:根据同高三角形面积的比等于对应底边的比可得结论【详解】解:∵四边形ABCD 是正方形∴OB =ODAD ∥BC ∴△BEF ∽△DE解析:24【分析】根据正方形的性质得OB =OD ,AD ∥BC ,根据三角形相似的性质和判定得:13BE EF ED AE ==,根据同高三角形面积的比等于对应底边的比,可得结论. 【详解】解:∵四边形ABCD 是正方形,∴OB =OD ,AD ∥BC ,∴△BEF ∽△DEA , ∴BE EF ED AE=, ∵E 是OB 的中点, ∴13BE EF ED AE ==, ∴S △BEF :S △AEB =EF :AE =13, ∵△BEF 的面积为1,∴△AEB 的面积为3, ∵13BE ED =, ∴S △AEB :S △AED =13, ∴△AED 的面积为9,∴S △ABD =9+3=12, ∴正方形ABCD 的面积=12×2=24.故答案为:24.【点睛】本题考查了正方形的性质,三角形面积,三角形相似的性质和判定等知识,熟练掌握相似三角形的性质和判定是关键.19.【分析】先延长EF 和BC 交于点G 再根据条件可以判断三角形ABE 为等腰直角三角形并求得其斜边BE 的长然后根据条件判断三角形BEG 为等腰三角形最后根据△EFD ∽△GFC 得出CG 与DE 的倍数关系并根据BG解析:4【分析】先延长EF 和BC ,交于点G ,再根据条件可以判断三角形ABE 为等腰直角三角形,并求得其斜边BE 的长,然后根据条件判断三角形BEG 为等腰三角形,最后根据△EFD ∽△GFC 得出CG 与DE 的倍数关系,并根据BG =BC +CG 进行计算即可.【详解】解:如图,延长EF 和BC ,交于点G ,∵矩形ABCD 中,∠B 的角平分线BE 与AD 交于点E ,∴∠ABE =∠AEB =45°,∴ AB =AE =12,∴直角三角形ABE 中,2212122BE +==又∵∠BED 的角平分线EF 与DC 交于点F ,∴∠BEG =∠DEF ,∵AD//BC ,∴∠G =∠DEF ,∴∠BEG =∠G ,∴BG =BE =2,∵∠G =∠DEF ,∠EFD =∠GFC ,∴△EFD ∽△GFC , ∴12CG CF DE DF ==, 设CG =x ,DE =2x ,则AD =12+2x =BC ,∵BG =BC +CG ,∴ 122=12+2x+x解得:x =424,∴ )122424824BC=+=+, 故答案为:824+【点睛】本题主要考查了矩形、相似三角形以及等腰三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:有两个角对应相等的两个三角形相似. 20.或【分析】本题应分两种情况进行讨论①△ABC ∽△AED ;②△ABC ∽△ADE ;可根据各相似三角形得出的关于AEAEABAC 四条线段的比例关系式求出AE 的长【详解】解:本题分两种情况:①△ADE ∽△A 解析:163或3 【分析】 本题应分两种情况进行讨论,①△ABC ∽△AED ;②△ABC ∽△ADE ;可根据各相似三角形得出的关于AE、AE、AB、AC四条线段的比例关系式求出AE的长.【详解】解:本题分两种情况:①△ADE∽△ACB∴AB:AC=AE:AD,∵AB=8,AC=6,AD=4,∴AE=163;②△ADE∽△ABC∴AB:AC=AD:AE,∵AB=8,AC=6,AD=4,∴AE=3,故答案为:163或3.【点睛】本题主要考查了相似三角形的性质.由于题中没有明确相似三角形的对应角和对应边,因此本题要分情况进行讨论,以免漏解.三、解答题21.(1)证明见解析,(2)证明见解析.【分析】(1)证∠FCE=∠FEC即可;(2)证△EMF≌△FOC,再通过平行列比例式,通过线段相等进行代换即可.【详解】(1)证明:∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵O是AB的中点,∴CO⊥AB,∠BOC=90°,∴∠BCO=45°,∠FCE=∠BCO+∠FCO=45°+∠FCO,∠FEC=∠B+∠EFM=45°+∠EFM,∵∠FCO=∠EFM,∴∠FCE=∠FEC ,∴CF=EF ;(2)∵EM ⊥AB ,∴∠EMF=∠COF=90°,∵EF=CF ,∠FCO =∠EFM ,∴△EMF ≌△FOC ,∴FM=OC=OB ,∵EM ∥CO , ∴=BC BO FM CE OM OM=, ∵EM ∥NO , ∴=EF FM NE OM , ∴BC EF CE NE= 【点睛】本题考查了等腰三角形的判定,全等三角形的判定与性质,平行线分线段成比例定理,解题关键是熟练运用相关知识,整合已知条件,进行推理证明.22.(1)见解析;(2)185 【分析】(1)由条件可以求出ED 的值,设FG=x ,则BG=FG=x ,CG=6-x ,EG=x+2,由勾股定理可以求出x 的值,从而可以求出BG 和CG 的值,得出结论.(2)过点F 作FN ⊥CG 于点N ,可以得出∠FNG=∠DCG=90°,通过证明△GFN ∽△GEC ,得出GF FN GE EC=,可以求出FN 的值,最后利用三角形的面积公式可以求出其面积. 【详解】解:(1)证明:∵AB=6,CD=3DE ,∴DC=6,∴DE=2,CE=4,∴EF=DE=2,设FG=x ,则BG=FG=x ,CG=6-x ,EG=x+2,在Rt △ECG 中,由勾股定理得,42+(6-x )2=(x+2)2,解得x=3,∴BG=FG=3,CG=6-x=3,∴BG=CG .(2)过点F 作FN ⊥CG 于点N ,则∠FNG=∠DCG=90°,又∵∠EGC=∠EGC,∴△GFN∽△GEC,∴GF FN GE EC=,∴354FN =,∴FN=125,∴S△CGF=12CG•FN=112325⨯⨯=185.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,勾股定理的运用及三角形面积公式的运用.在解答中注意相似三角形的对应顶点在对应的位置.23.(1)见解析;(2)3 2【分析】(1)由直角三角形斜边上的中线得DE=EA,可得∠1=∠A,可推出∠FDC=∠FBD,证明△FBD∽△FDC,根据相似三角形的性质即可得出结论;(2)由直角三角形斜边上的中线得DG=CG,则∠3=∠4,根据相似三角形的性质即可得∠4=∠1,可证明∠5+∠1=90°,即DG⊥EF,可得DG的长度点G到EF的距离,根据直角三角形斜边上中线的性质即可求解.【详解】证明:(1)∵CD是斜边AB上的高,E是AC的中点,∴E是Rt△ACD斜边中点.∴DE=EA.∴∠A=∠2.∵∠1=∠2.∴∠1=∠A.∵∠FDC=∠CDB+∠1=90°+∠1,∠FBD=∠ACB+∠A=90°+∠A.∴∠FDC=∠FBD.∵∠F是公共角.∴△FBD∽△FDC.∴FB FD FD FC=. ∴FD 2=FB•FC ;(2)∵DG 是Rt △CDB 斜边上的中线,∴DG=GC ,∴∠3=∠4,由(1)得∠4=∠1,∴∠3=∠1,∵∠3+∠5=90°,∴∠5+∠1=90°,∴DG ⊥EF ,∵5AB =,4AC =,∴22543BC =-=,∵G 是BC 的中点,CD 是斜边AB 上的高,∴DG=12BC =32, ∴点G 到EF 的距离为32. 【点睛】本题考查了相似三角形的判定和性质以及直角三角形斜边上中线的性质,解题的根据是掌握在证明线段的积相等可以转化为证明三角形相似,求点到直线的距离转化为证明两直线垂直.24.(1)图见解析,()2,2-;(2)图见解析,()1,0;(3)10.【分析】(1)先根据平移法则确定各点的坐标、然后连线即可解答;(2)直接利用位似图形的性质得出对应点位置即可解答;(3)用矩形的面积减去三个三角形的面积即可.【详解】解:(1)如图:111A B C ∆即为所求,1C 点坐标为()2,2-;(2)如图:222A B C ∆即为所求,2C 点坐标为()1,0;(3) 222A B C ∆的面积为:4×6-111242624222⨯⨯-⨯⨯-⨯⨯=24-4-6-4=10. 答:222A B C ∆的面积是10个平方单位.【点睛】本题主要考查了平移、位视的作图以及不规则三角形面积的求法,掌握基本作图和运用拼凑法求面积是解答本题的关键.25.(1)见解析;(2)见解析;(3)2【分析】(1)根据相似三角形的判定方法:有两角相等的三角形形似,即可证明.(2)利用ABF BEF △∽△,BCE FBE △∽△完成边转换即可.(3)先证明 ABF CEB ∽,可得4AF CE AB CB ⋅=⋅=,在利用平行线分线段成比例可得AF BN AC BC =,CE BM AC AB=,在结合线段的等量关系,即可求解. 【详解】 (1)证明:在正方形ABCD 中,∵45BAC ∠=︒,又45EBF ∠=︒, ∴BAC EBF ∠=∠,∵BFE AFB ∠=∠,∴ABFBEF △△.(2)∵ABF BEF △△,∴AF BF BF EF =, ∴2BF AF EF =⋅,同理可证BCE FBE △△,∴BE CE EF BE=, ∴2BE CE EF =⋅, ∴2BE CE EF CE BF AF EF AF ⋅⎛⎫== ⎪⋅⎝⎭. (3)∵45BAC BCA ∠=∠=︒,又45EBF ∠=︒,∴BAC EBF ∠=∠,又BEC ABE BAC ABE EBF ABF ∠=∠+∠=∠+∠=∠,∴ABF CEB △△, ∴AB AF CE CB=, ∴4AF CE AB CB ⋅=⋅=,∵90ABC BMO BNO ∠=∠=∠=︒,∴四边形BNOM 是矩形,∴//ON AB ,ON MB =,//OM BC ,OM NB =, ∴AF BN AC BC =,CE BM AC AB =,2BN =2BM =,∴2BN =,2BM =,∴422222AF CE OM ON BN BM ⋅⋅=⋅=⋅===. 【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定定理,和性质定理是解题关键.26.(1)见解析;(2)见解析【分析】(1)利用关于x 轴对称点的性质:横坐标相等,纵坐标互为相反数,可以求出1A 、1B 、1C ,进而可画出图形;(2)利用位似图形的性质得出对应点的位置,即可画出图形.【详解】解:(1)如图所示:ΔA 1B 1C 1即为所求;(2)如图所示,ΔA2B2C2即为所求.【点睛】本题考查关于对称轴对称的点的性质以及位似的性质,掌握相关性质是解题的关键.。
北师大九年级数学上《第四章图形的相似》单元测试含答案

第四章 图形的相似一、选择题(本大题共7小题,共28分)1.已知x y =32,那么下列等式中,不一定正确的是( )A .x +2y +2=32B .2x =3yC .x +y y =52 D .x x +y =352.如图4-Z -1,l 1∥l 2∥l 3,已知AB =6 cm ,BC =3 cm ,A 1B 1=4 cm ,则线段B 1C 1的长为( )A .6 cmB .4 cmC .3 cmD .2 cm图4-Z -1图4-Z -23.如图4-Z -2所示,在△ABC 中,D ,E 分别为AC ,BC 边上的点,AB ∥DE ,CF 为AB 边上的中线.若AD =5,CD =3,DE =4,则BF 的长为( )A .323B .163C .103D .83图4-Z -34.如图4-Z -3,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODB S △BDC =13.其中正确的个数为( ) A .1 B .2 C .3 D .45.在Rt △ABC 和Rt △DEF 中,∠C =∠F =90°,下列条件中不能判定这两个三角形相似的是( )A .∠A =55°,∠D =35°B .AC =9,BC =12,DF =6,EF =8 C .AC =3,BC =4,DF =6,DE =8D .AB =10,AC =8,DE =15,EF =96.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽约为( )A .12.36 cmB .13.64 cmC .32.36 cmD .7.64 cm7.如图4-Z -4,在Rt △ABC 中,∠C =90°,AC =BC =6 cm ,点P 从点A 出发,沿AB 方向以每秒 2 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1 cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P ′.设点Q 运动的时间为t s ,若四边形QPCP ′为菱形,则t 的值为( )图4-Z -4A . 2B .2C .2 2D .3二、填空题(本大题共6小题,共24分)8.有一块三角形的草地,它的一条边长为25 m .在图纸上,这条边的长为5 cm ,其他两条边的长都为4 cm ,则其他两边的实际长度都是________ m .9.若a 5=b 7=c8,且3a -2b +c =3,则2a +4b -3c =________.10.已知甲、乙两个相似三角形对应中线之比为1∶2,甲三角形的面积为5 cm 2,则乙三角形的面积为__________.11.如图4-Z -5,在两个直角三角形中,∠ACB =∠ADC =90°,AC =6,AD =2.当AB =________时,△ABC ∽△ACD.4-Z-54-Z-612.如图4-Z-6,数学兴趣小组想测量电线杆AB的高度,他们发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD与地面成30°角,且此时测得高1 m的标杆的影长为2 m,则电线杆的高度为________m(结果保留根号).图4-Z-713.如图4-Z-7,将边长为6 cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C 落在点Q处,EQ与BC相交于点G,则△EBG的周长是________ cm.三、解答题(共48分)14.(10分)如图4-Z-8,矩形ABCD是台球桌面,AD=260 cm,AB=130 cm,球目前在E的位置,AE =60 cm,如果小宝瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到点D的位置.(1)求证:△BEF∽△CDF;(2)求CF的长.图4-Z-815.(12分)如图4-Z-9,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O为位似中心,将△ABC放大为原来的2倍得到△A′B′C′.(1)在图中的第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)求△A′B′C′的面积.图4-Z-916.(12分)如图4-Z-10,一块材料的形状是锐角三角形ABC,边BC=12 cm,高AD=8 cm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?图4-Z-1017.(14分)如图4-Z-11,在▱ABCD中,对角线AC,BD相交于点O,M为AD的中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△CND的面积为2,求四边形ABNM的面积.图4-Z-11详解1.A2.D [解析] ∵l 1∥l 2∥l 3,∴A 1B 1B 1C 1=AB BC. ∵AB =6 cm ,BC =3 cm ,A 1B 1=4 cm , ∴4B 1C 1=63,∴B 1C 1=2(cm).故选D. 3.B 4.C5.C [解析] A 项,∵∠A =55°,∴∠B =90°-55°=35°.∵∠D =35°,∴∠B =∠D .又∵∠C =∠F ,∴△ABC ∽△EDF ;B 项,∵AC =9,BC =12,DF =6,EF =8,∴AC DF =BC EF =32.又∵∠C =∠F ,∴△ABC ∽△DEF ;C 项,有一组角相等、两边对应成比例,但该组角不是这两边的夹角,故不相似;D 项,易得AB =10,AC =8,BC =6,DE =15,DF =12,EF =9,∴AC DF =BC EF =23.又∵∠C =∠F ,∴△ABC ∽△DEF .故选C.6.A7.B [解析] 连接PP ′交BC 于点O ,∵四边形QPCP ′为菱形,∴PP ′⊥QC ,∴∠POQ =90°.∵∠ACB =90°,∴PO ∥AC ,∴AP AB =CO CB .∵点Q 运动的时间为t s ,∴AP =2t ,QB =t ,∴QC =6-t ,∴CO =3-t2.∵AC =CB =6,∠ACB =90°,∴AB =6 2,∴2t6 2=3-t26,解得t =2.8.20 [解析] 设其他两边的实际长度都是x m ,由题意,得x 4=255,解得x =20.即其他两边的实际长度都是20 m.9.143 [解析] 设a 5=b 7=c8=x ,则a =5x ,b =7x ,c =8x .因为3a -2b +c =3,所以15x -14x +8x =3,解得x =13,所以2a +4b -3c =10x +28x -24x =14x =143.10.20 cm 211.312.(7+3)[解析] 如图,过点D 作DE ⊥BC 交其延长线于点E ,连接AD 并延长交BC 的延长线于点F ,∵CD =4 m ,CD 与地面成30°角,∴DE =12CD =12×4=2(m),CE =CD 2-DE 2=2 3 m .∵高1 m 的标杆的影长为2 m ,∴DE EF =12,AB BF =12,∴EF =2DE =2×2=4(m),∴BF =BC +CE +EF =10+2 3+4=(14+2 3)m ,∴AB =12×(14+2 3)=(7+3)m.13.[全品导学号:52652189]12 [解析] 根据折叠的性质可得∠FEG =90°,设AF =x cm ,则EF =(6-x )cm.在Rt △AEF 中,AF 2+AE 2=EF 2,即x 2+32=(6-x )2,解得x =94,所以AF =94 cm ,EF =154 cm ,根据△AFE ∽△BEG ,可得AF BE =AE BG =EF EG ,即943=3BG =154EG,所以BG =4 cm ,EG =5 cm ,所以△EBG 的周长为3+4+5=12(cm).14.解:(1)证明:由题意,得∠EFG =∠DFG .∵∠EFG +∠BFE =90°,∠DFG +∠CFD =90°,∴∠BFE =∠CFD . 又∵∠B =∠C =90°, ∴△BEF ∽△CDF . (2)∵△BEF ∽△CDF ,∴BE CD =BF CF ,即70130=260-CF CF, ∴CF =169(cm).15.解:(1)△A ′B ′C ′如图所示.(2)图中每个小正方形的边长为1个单位长度,由勾股定理可得AC =2,AB =CB =5,AC 边上的高=(5)2-⎝ ⎛⎭⎪⎫222=322,所以△ABC 的面积S =12×2×32 2=32.设△A ′B ′C ′的面积为S ′,因为△ABC ∽△A ′B ′C ′,所以S S ′=⎝ ⎛⎭⎪⎫122,得S ′=4S =4×32=6,即△A ′B ′C ′的面积为6.16.解:如图,∵四边形EFHG 是正方形, ∴EF ∥BC ,∴△AEF ∽△ABC ,而AD ⊥BC , ∴EF BC =AK AD.设正方形EFHG 的边长为x cm ,则AK =(8-x )cm ,∴x 12=8-x 8,解得x =4.8. 答:这个正方形零件的边长为4.8 cm.17.解:(1)∵在▱ABCD 中,AD ∥BC ,AD =BC ,OB =OD , ∴∠DMN =∠BCN ,∠MDN =∠NBC , ∴△MND ∽△CNB , ∴MD CB =DN BN. ∵M 为AD 的中点,∴MD =12AD =12BC ,即MD CB =12,∴DN BN =12,即BN =2DN . 设OB =OD =x ,则BD =2x ,BN =OB +ON =x +1,DN =OD -ON =x -1,∴x +1=2(x -1),解得x =3, ∴BD =2x =6.(2)∵△MND ∽△CNB ,且相似比为1∶2, ∴MN ∶CN =DN ∶BN =1∶2,∴S △MND =12S △CND =1,S △CNB =2S △CND =4,∴S △ABD =S △BCD =S △CNB +S △CND =4+2=6, ∴S 四边形ABNM =S △ABD -S △MND =6-1=5.。
北师大版九年级数学上册第四章 图形的相似 单元测试题(含答案)

北师大版九年级数学上册第四章 图形的相似 单元测试题一、选择题(每小题3分,共24分)1.如图,一组互相平行的直线a ,b ,c 分别与直线l 1,l 2交于点A ,B ,C ,D ,E ,F ,直线l 1,l 2交于点O ,则下列各式不正确的是( )A.AB BC =DEEFB.AB AC =DE DFC.EF BC =DEABD.OE EF =EB FC2.如图,E 是矩形ABCD 的AB 边上任意一点,F 是AD 边上一点,∠EFC =90°,图中一定相似的三角形是( )A .①与②B .③与④C .②与③D .①与④3.在平面直角坐标系中,已知△ABC 三个顶点A(2,2),B(4,0),C(6,4)以坐标原点为中心,将△ABC 缩小,相似比为1∶2,则线段AC 的中点P 变换后对应点的坐标是( ) A.(2,32)或(-2,-32). B.(-2,32)或(-2,-32).C.(2,32)或(2,-32).D.(2,32)或(-2,32).4.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BE ,BD ,且AE ,BD 交于点F ,S △DEF ∶S △ABF =4∶25,则DE ∶EC =( )A .2∶3B .2∶5C .3∶5D .3∶25.如图,△ABE 和△CDE 是以点E 为位似中心的位似图形,已知点A(2,2),B(3,1),D(5,2),则点A 的对应点C 的坐标是( )A .(2,3)B .(2,4)C .(3,3)D .(3,4)6.如图,在等腰△ABC 中,AB =AC ,D 为CB 延长线上一点,E 为BC 延长线上一点,且AB 2=BD ·CE.若∠BAC =40°,则∠DAE =( )A.110°.B.115°.C.120°.D. 125°.7.如图,AB ∥DC ,AC 与BD 交于点E ,EF ∥DC 交BC 于点F ,CE =5,CF =4,AE =BC ,则DCAB 等于( )A.23B.14C.13D.358.如图,D ,E 分别是△ABC 的边AB ,BC 上的点,且DE ∥AC ,AE ,CD 相交于点O.若S △DOE ∶S△COA=1∶25,则S △BDE 与S △CDE 的比是( ) A .1∶3B .1∶4C .1∶5D .1∶25二、填空题(每小题3分,共18分)9.若a 6=b 5=c4≠0,且a +b -2c =3,则a =_____.10.已知线段MN 的长为2 cm ,点P 是线段MN 的黄金分割点,那么较长的线段MP 的长是_____.11.如图,在▱ABCD 中,E ,F 分别是边BC ,CD 的中点,AE ,AF 分别交BD 于点G ,H ,设△AGH 的面积为S 1,▱ABCD 的面积为S 2,则S 1∶S 2的值为_____.12.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,长方形城池ABCD ,南边城墙AD 长7里,东边城墙AB 长9里,东门点E ,南门点F 分别是AB ,AD 的中点,GE ⊥AB ,FH ⊥AD ,EG =15里,HG 过点A ,则FH =_____里.13.将三角形纸片(△ABC)按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF.已知AB =AC =3,BC =4.若以点B ′,F ,C 为顶点的三角形与△ABC 相似,则BF 的长度是_____.14.如图,在矩形ABCD 中,AB =5,BC =3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是_____.三、解答题(共80分)15.如图,在形状和大小不确定的△ABC 中,BC =5,E ,F 分别是AB ,AC 的中点,P 在EF 或EF 的延长线上,BP 交CE 于D ,Q 在CE 上且BQ 平分∠CBP ,设BP =y ,PE =x.(1)当x =14EF 时,求S △DPE ∶S △DBC 的值;(2)当CQ =13CE 时,求y 与x 之间的函数关系式.16.如图,在▱ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B.(1)求证:△ADF ∽△DEC ;(2)若AB =4,AD =33,AE =3,求AF 的长.17.如图,已知矩形ABCD 的两条对角线相交于点O ,过点A 作AG ⊥BD 分别交BD ,BC 于点G ,E.(1)求证:BE 2=EG ·EA ;(2)连接CG ,若BE =CE ,求证:∠ECG =∠EAC.18.已知:如图,在△ABC 中,点D 在BC 上,连接AD ,使得∠CAD =∠B ,DC =3且S △ACD ∶S △ADB =1∶2.(1)求AC 的值;(2)若将△ADC 沿着直线AD 翻折,使点C 落在点E 处,AE 交边BC 于点F ,且AB ∥DE ,求S △EFD S △ADC的值.19.如图,在Rt △ABC 中,已知∠ACB =90°,CD ⊥AB ,M 是CD 上一点,DH ⊥BM 于点H ,DH 交AC 的延长线于点E ,交BC 于点K.(1)求证:△AED ∽△CBM ; (2)求证:AE ·CM =AC ·CD.20.如图,在△ABC 中,∠ACB =90°,CD 是中线,AC =BC ,一个以点D 为顶点的45°角绕点D 旋转,使角的两边分别与AC ,BC 的延长线相交,交点分别为点E ,F ,DF 与AC 交于点M ,DE 与BC 交于点N.(1)如图1,若CE =CF ,求证:DE =DF ;(2)如图2,在∠EDF 绕点D 旋转的过程中,探究三条线段AB ,CE ,CF 之间的数量关系,并说明理由.21.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,点E 是BC 上的一个动点,连接DE ,交AC 于点F.(1)如图1,当CE EB =13时,求S △CEFS △CDF的值;(2)如图2,当DE 平分∠CDB 时,求证:AF =2OA ;(3)如图3,当点E 是BC 的中点时,过点F 作FG ⊥BC 于点G ,求证:CG =12BG.参考答案 一、选择题1-5、DAAAD 6-8、ABB 二、填空题9、6.10、(5-1) 11、16.12、1.05 13、127或2. 14、3105.三、解答题15、解:(1)∵E ,F 分别是AB ,AC 的中点,PE =x =14EF ,∴EF ∥BC ,EF =12BC.∴△EDP ∽△CDB.∴EP BC =18.∴S △DPE ∶S △DBC =1∶64.(2)延长BQ 交EF 的延长线于点H. ∵EF ∥BC ,∴△QEH ∽△QCB.∴BC EH =CQQE .∵CQ =13CE ,∴CQ QE =12.又∵BC =5,∴EH =2BC =10. ∵△QEH ∽△QCB ,∴∠PHQ =∠CBQ. 又∵BQ 平分∠CBP ,∴∠CBQ =∠PBQ. ∴∠PHB =∠PBH.∴PB =PH.∴EH =PE +PH =PE +PB =x +y =2BC =10. ∴y =-x +10(0<x <10).16、解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC.∴∠B +∠C =180°,∠ADF =∠DEC. ∵∠AFD +∠AFE =180°,∠AFE =∠B , ∴∠AFD =∠C.∴△ADF ∽△DEC. (2)∵AE ⊥BC ,AD =33,AE =3, ∴在Rt △DAE 中,DE =AD 2+AE 2=(33)2+32=6. 由(1)知△ADF ∽△DEC ,得AF DC =ADDE ,∴AF =DC ·AD DE =4×336=2 3.17、证明:(1)∵四边形ABCD 是矩形, ∴∠ABC =90°. ∵AE ⊥BD ,∴∠ABC =∠BGE =90°. ∵∠AEB =∠BEG , ∴△ABE ∽△BGE. ∴AE BE =BEEG . ∴BE 2=EG ·EA.(2)由(1)得BE 2=EG ·EA. ∵BE =CE ,∴CE2=EG·EA.∴CEEG=AECE.∵∠CEG=∠AEC,∴△CEG∽△AEC.∴∠ECG=∠EAC.18、解:(1)∵S△ACD∶S△ADB=1∶2,∴BD=2CD.∵DC=3,∴BD=6.∴BC=BD+DC=9. ∵∠B=∠CAD,∠C=∠C,∴△ABC∽△DAC.∴ACCD=BCAC,即AC3=9AC,解得AC=3 3.(2)由折叠的性质,得∠E=∠C,DE=CD=3. ∵AB∥DE,∴∠B=∠EDF.∵∠CAD=∠B,∴∠EDF=∠CAD.∴△EFD∽△CDA.∴S△EFDS△ADC=(DEAC)2=(333)2=13.19、证明:(1)在Rt△ABC中,∠ACB=90°,∴∠A+∠ABC=90°. ∵CD⊥AB,∴∠CDB=90°,∴∠MCB+∠ABC=90°,∠DBM+∠DMB=90°.∴∠A=∠MCB.∵DH⊥BM,∠BCE=90°,∠CKE=∠HKB,∴∠E=∠CBM.∴△AED∽△CBM.(2)∵△AED ∽△CBM , ∴AE ∶AD =CB ∶CM , 即AE ·CM =AD ·CB. 在Rt △ABC 中,CD ⊥AB ,∴△ACD ∽△CBD.∴AC ∶CB =AD ∶CD , 即AC ·CD =AD ·CB. ∴AE ·CM =AC ·CD.20、解:(1)证明:∵∠ACB =90°,AC =BC ,AD =BD , ∴∠BCD =∠ACD =45°,∠BCE =∠ACF =90°. ∴∠DCE =∠DCF =135°.在△DCE 与△DCF 中,⎩⎪⎨⎪⎧CE =CF ,∠DCE =∠DCF ,CD =CD ,∴△DCE ≌△DCF.∴DE =DF. (2)∵∠DCF =∠DCE =135°, ∴∠CDF +∠F =180°-135°=45°. ∵∠CDF +∠CDE =45°, ∴∠F =∠CDE.∴△CDF ∽△CED. ∴CD CE =CFCD . ∴CD 2=CE ·CF.∵∠ACB =90°,AD =BD , ∴CD =12AB.∴AB 2=4CE ·CF.21、解:(1)∵CE EB =13,∴CE CB =14.∵四边形ABCD 是正方形,∴AD ∥BC ,AD =BC.∴EF FD =CE AD =CE CB =14.∴S △CEF S △CDF =14. (2)证明:∵四边形ABCD 是正方形, ∴∠ADB =∠ACD =45°,AD =2OA. ∵DE 平分∠CDB , ∴∠BDE =∠CDE.∵∠ADF =∠ADB +∠BDE ,∠AFD =∠ACD +∠CDE , ∴∠ADF =∠AFD.∴AF =AD.∴AF =2OA. (3)设BC =4x ,CG =y ,则CE =2x ,FG =y , ∵FG ∥CD ,∴△EGF ∽△ECD. ∴EG EC =FG CD ,即2x -y 2x =y 4x , 整理,得y =43x ,即CG =43x.∴EG =2x -y =23x.∴BG =2x +23x =83x.∴CG =12BG.。
2015-2016年北师大版九年级上第四章《图形的相似》检测题

图形的相似检测题一、选择题(每小题3分,共36分) 1.如图所示,给出下列条件: ①;②;③;④.其中单独能够判定的个数为( ) A .1B .2C .3D .42.如图,已知,那么下列结论正确的是( ) A .B .C .D .3. 如图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论: (1)DE=1,(2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为 1:4.其中正确的有:( ) A .0个B .1个C .2个D .3个4.若△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为( ) A .1∶4B .1∶2C .2∶1D .1∶5.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( ) A .只有1个 B .可以有2个 C .有2个以上但有限 D .有无数个6.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形 B .四边形MBON 和四边形MODN 都是菱形 C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形7.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。
已知这本书的长为20cm ,则它的宽约为( )A .12.36cm B.13.6cm C.32.36cm D.7.64cm8.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O 、准星A 、目标B 在同一条直线上,如图4所示,在射击时,小明有轻微的抖动,致使准星A 偏离到A ′,若OA=0.2米,OB=40米,AA ′=0.0015米,则小明射击到的点B ′偏离目标点B 的长度BB ′为 ( )A .3米B .0.3米C .0.03米D .0.2米DBCA NMO9.如图一,在△ABC 中,DE ∥BC ,AD =3,BD =2,则△ADE 与四边形DBCE 的面积比是( ) (A )3︰2; (B )3︰5; (C )9︰16; (D )9︰4.10.如图三,在△ABC 中,DE ∥BC ,DF ∥AB ,那么下列比例式中正确的是( )(A )=; (B )=; (C )=; (D )=.11、如图3,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( ) A .12mB .10mC .8mD .7m12、一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( ) A .第4张 B .第5张 C.第6张 D .第7张 二、填空题(每小题3分,共12分) 13、已知:则。
2015年北师大版数学九年级上册新第四章 图形的相似 综合题

第四章《图形的相似》练习题新北师大版九年级上册20151.在直角坐标系中,点A(-2,0),B(0,4),C(0,3)。
过点C作直线交x 轴于点D,使以D、O、C为顶点的三角形与ΔAOB相似,这样的直线最多可A以作()条6 D 4 B 3 C A 2PDBC0)AP=PB=BC=CD2.如图,∠APD=90,则下列结论成立的是(,DCA ∽ΔΔABC∽ΔDBA D ∽PABΔPCA B ΔPAB∽ΔPDA C ΔABC A Δ科。
:学。
[来源 K]。
X。
X网Z。
,它的最小边24:6,和它相似的另一个三角形的最大边为3.一个三角形的各边之比为2:5_____ 为填满。
ΔABC_____个ΔDEF才能把ABΔDEF,:DE=4:1,那么需要4.已知ΔABC∽ADE=_____ ,则∠AB上的点,且ABC的边AC、5.D、E分别是ΔABAC?AE?AD?)3.5km,画在地图上的距离为7cm,则这张地图的比例尺为(6.甲、乙两地相距1 :、:2 D500001 B、1:50000 C、1A、2:BC= ,则,AE=8AB=10∠B,DE=6,中,∠7.△ABCAED=,则0.5m1.2m,BD长距墙、8AB是斜靠在墙上的一个梯子,梯脚B距墙1.4m,梯上一点D m 梯长为PBC上是否存在点,AB=8,DC=6,BC=14、⊥⊥9.如图,ABBC,DCBC,垂足分别为BC,且的长,若没有,请说明理由。
相似?若有,有几个?并求出此时与△DCPBP使△ABP ADCPB10.如图,平行四边形ABCD中,E为DC边上一点,连接AE并延长交BC的延长线于F,在这CF1 ,AD的长为6,求BF个图形中,有哪几对相似三角形?你是怎么判断的?若的长2BC CE AD及的值。
DCO EFBCF. (1)BE相交于点BD=CE,AD上,且与,11.如图,⊿ABC是等边三角形点D,E分别在BC,AC. ?说说你的理由与⊿ABE相似吗BCE. (2)试说明⊿ABD≌⊿⊿AEF2. 请说明理由DF吗(3)BD?=AD·米米有一颗树,河对岸每隔5012,一条河的两岸有一段是平行的,在该河岸的这一段每隔5两根电线杆恰好被这岸的两d米处看对岸,看到对岸相邻25有一根电线杆。
北师大版九年级上册第四章 图形的相似 检测卷

北师大版九年级上册《图形的相似》检测卷一、选择题(每小题3分,共30分)1.如图,已知D、E分别为AB、AC上的两点,且DE∥BC,AE=3CE,AB=8,则AD的长为()A. 3B. 4C. 5D. 62.如图,已知AB∥CD∥EF,AD:AF=3:5,BE=12,那么CE的长等于()A. 2B. 4C. 4.8D. 7.23.如图,在平行四边形ABCD中,E是BC上一点,BE:EC=1:2,AE与BD相交于点F,若S△BEF=2,则S△ABD=()A. 24B. 25C. 26D. 23AB,那么AC:AB等于()4.如果延长线段AB到C,使得BC= 12A. 2:1B. 2:3C. 3:1D. 3:25.如图,正方形ABCD的面积为12,M是AB的中点,连接AC、DM,则图中阴影部分的面积是()A. 6B. 4.8C. 4D. 36.如图,锐角△ABC中,BE ,CD是高,它们相交于O ,则图中与△BOD相似的三角形有()A. 4个B. 3个C. 2个D. 1个7.已知x3=y2,那么下列式子中一定成立的是()A. 2x=3yB. 3x=2yC. x=2yD. xy=68.如图,小明把一个边长为10的正方形DEFG剪纸贴在△ABC纸片上,其中AB=AC=26,BC=20,正方形的顶点D,G分别在边AB、AC上,且AD=AG,点E、F在△ABC内部,则点E到BC 的距离为()A. 1B. 2C. √21D. √299.如图为两正方形ABCD,BPQR重叠的情形,其中R点在AD上,CD与QR相交于S点.若两正方形ABCD,BPQR的面积分别为16、25,则四边形RBCS的面积为何()A. 8B. 172C. 283D. 77810.如图,在矩形ABCD中,E,F分别是AD,BC的中点,AF与BE相交于点M,CE与DF相交于点N,QM⊥BE,QN⊥EC相交于点Q,PM⊥AF,PN⊥DF相交于点P,若2BC=3AB,记△ABM和△CDN的面积和为S,则四边形MQNP的面积为()A. SB. SC. SD. S二、填空题(每小题4分,共28分)11.若两个相似多边形的对应边之比为5:2,则它们的周长比是.12.如图,在△ABC与△AED中,ABAE =BCED,添加一个条件,使△ABC与△AED相似,这个条件可以是________。
北师大版九年级上册第四章 图形的相似 过关检测题

《图形的相似》过关检测题一、选择题1.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( ) A .8 B .12 C .14 D .16(第1题图) (第2题图) (第3题图) (第4题图) 2.已知如图,点 C 是线段 AB 的黄金分割点(AC (BC ((则下列结论中正确的是( (A .AB 2(AC 2+BC 2 B .BC 2(AC •BA C .12BC AC =D .12AC BC = 3.如图,△A ′B ′C ′是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则OB ′:OB 为( )A .2:3B .3:2C .4:5D .4:94.如图,在(ABC 中,AB =24,AC =18,D 是AC 上一点,AD =12.在AB 上取一点E ,使A 、D 、E 三点组成的三角形与(ABC 相似,则AE 的长为( )A .16B .14C .16或14D .16或9 二、填空题5.已知0234a b c ==≠,则a b c+的值为______. 6.如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若4AB =(3AD =,则CF 的长为________(7.如图,Q 为正方形ABCD 的CD 边上一点,CQ =1(DQ =2(P 为BC 上一点,若PQ ⊥AQ ,则CP =_____( 8.如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O (5米的A 处,沿OA 所在的直线行走到点C 时,人影长度增长3米,则小方行走的路程AC =________((第6题图)(第7题图)(第8题图)三、解答题9.如图,在正方形ABCD中,点E在边BC上(点E不与点B重合),连接AE,过点B作BF(AE于点F,交CD 于点G.(1)求证:(ABF((BGC((2)若AB(2(G是CD的中点,求AF的长.10.将图中的(ABC作下列运动,画出相应的图形,并指出三个顶点的坐标.(1)沿y轴正方向平移2个单位;(2)关于y轴对称;(3)以点C为位似中心,将(ABC放大到原来的2倍.11.如图,在Rt(ABC中,(C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与(ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.参考答案1.D 2.C 3.A 4.D5.546.1037.238.7.5米9.(1)(1)∵在正方形ABCD中,∵∵ABE=∵BCG=90°,∵∵BAE+∵ABF=90°,∵CBG+∵ABF=90°,∵∵BAE=∵CBG,∵∵ABF∵∵CBG;(2)∵∵ABF∵∵CBG,∵AB BG AF BC=,∵AB=2,G是CD的中点,正方形ABCD,∵BC=2,CG=1,∵BG,∵2AF,解得:AF.10.(1)△ABC沿y轴正方向平移2个单位后所得△A1B1C1的三个顶点坐标为A1(0,0),B1(3,1),C1(2,3).(2)△ABC关于y轴对称的△AB′C′的三个顶点坐标分别为A(0,-2),B′(-3,-1),C′(-2,1).(3)将△ABC以点C为位似中心,放大为原来的2倍后所得三角形的三个顶点坐标分别为F(6,7),E(0,5),C(2,1)或A″(-2,-5),B″(4,-3),C(2,1).11.解:(如图,在Rt(ABC中,(C=90°,AC=4cm,BC=3cm.(根据勾股定理,得AB5cm=.(1)以A,P,M为顶点的三角形与(ABC相似,分两种情况:(当(AMP((ABC时,AP AMAC AB=,即52445t t--=,解得32t=;(当(APM((ABC时,AM APAC AB=,即45245t t--=,解得t=0(不合题意,舍去).综上所述,当32t=时,以A、P、M为顶点的三角形与(ABC相似.(2)存在某一时刻t,使四边形APNC的面积S有最小值.理由如下:假设存在某一时刻t,使四边形APNC的面积S有最小值.如图,过点P作PH(BC于点H.则PH(AC,答案第2页,总3页(PH BP AC BA=, 即245PH t =. (85t PH =. (ABC BPN S S S =-△△()118343225t t =⨯⨯-⨯-⋅ ()24321=0 2.5525t t ⎛⎫-+<< ⎪⎝⎭. (405>, (S 有最小值. 当32t =时,S 最小值=215. 答:当32t =时,四边形APNC 的面积S 有最小值,其最小值是215.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的相似检测题
一、选择题(每小题3分,共36分) 1.如图所示,给出下列条件:
①B ACD ∠=∠;②ADC ACB ∠=∠;③
AC AB CD BC
=;④2
AC AD AB = . 其中单独能够判定ABC ACD △∽△的个数为( ) A .1
B .2
C .3
D .4
2.如图,已知AB CD EF ∥∥,那么下列结论正确的是( ) A .
AD BC DF CE = B .BC DF CE AD = C .CD BC EF BE = D .CD AD
EF AF
= 3. 如图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论: (1)DE=1,(2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为 1:4.其中正确的有:( ) A .0个
B .1个
C .2个
D .3个
4.若△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为( ) A .1∶4
B .1∶2
C .2∶1
D .1∶2
5.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( ) A .只有1个 B .可以有2个 C .有2个以上但有限 D .有无数个
6.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形 B .四边形MBON 和四边形MODN 都是菱形 C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形
7.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。
已知这本书的长为20cm ,则它的宽约为( )
A .12.36cm B.13.6cm C.32.36cm D.7.64cm
8.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O 、准星A 、目标B 在同一条直线上,如图4所示,在射击时,小明有轻微的抖动,致使准星A 偏离到A ′,若OA=0.2米,OB=40米,AA ′=0.0015米,则小明射击到的点B ′偏离目标点B 的长度BB ′为 ( ) A .3米 B .0.3米 C .0.03米 D .0.2米
D
B
C
A N
M
O
9.如图一,在△ABC 中,DE ∥BC ,AD =3,BD =2,则△ADE 与四边形DBCE 的面积比是( ) (A )3︰2; (B )3︰5; (C )9︰16; (D )9︰4.
10.如图三,在△ABC 中,DE ∥BC ,DF ∥AB ,那么下列比例式中正确的是( )
(A )
EB AE =FC BF ; (B )EB AE =FB CF
; (C )BC DE =DC AD ; (D )BC DE =AB
DF .
11、如图3,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( ) A .12m
B .10m
C .8m
D .7m
12、一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( ) A .第4张 B .第5张 C.第6张 D .第7张 二、填空题(每小题3分,共12分) 13、已知:
).0(,5
2
≠+==d b d c b a 则
=++d b c a 。
14、在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC .如果AD =8,DB =6,EC =9那么AE = . 15、如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论: ①AFC C ∠=∠;②DF CF =;
③ADE FDB △∽△;④BFD CAF ∠=∠.
其中正确的结论是 (填写所有正确结论的序号).
16、如图,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC 的面积是 .
B
C
A
D
E
(
图一
)
(图三)
D
B
C
A
E F
三、解答题(共52分)
17、已知,如图,在平行四边形ABCD 中,E 为AC 三分之一处,即AE = 3
1
AC ,DE 的延长线交AB 于F ,求证:AF = FB
18、如图所示,在平行四边形ABCD 中,过点B 作BE ⊥CD ,垂足为E ,连结AE ,F 为AE 上一点,且∠BFE =∠C (1)求证:△ABF ∽△EAD ;(2)若AB =4,∠BAE =30°, 求AE 的长;(3)在(1)(2)的条件下,若AD =3,求BF 长.
(计算结果含根号).
19、如图(3),在△ABC 中,E 、F 分别是AC 、BC 的中点,AF 与BE 交于点O ,ED ∥AF ,交BC 于点D ,求BO ∶OE 的值。
20、如图,AE 2
=AD ·AB ,且∠ABE =∠C ,试说明△BCE ∽△EBD 。
21、如图五,在△ABC 中,矩形DEFG 的一边DE 在BC 上,点G 、F 分别在
AB 、AC 上,AH 是BC 边上的高,AH 与GF 相交于K ,已知 S △AGF ︰S △ABC =9︰64,EF =10,求AH 的长.
D
A
B
C
F
E E B
D
C A
F A B C
D E F O
A
B
D C
E 1
2
(图五)
B
C
A D
E
G F K H。