2.2一元二次不等式的解法(2)

合集下载

一元二次不等式的解法(第二课时)

一元二次不等式的解法(第二课时)

学科:数学教学内容:一元二次不等式的解法(第二课时)【自学导引】1.如果αb <0,则α,b 满足.0000⎩⎨⎧><⎩⎨⎧<>b a b a 或 2.如果ba >0,则α,b 满足⎩⎨⎧<<⎩⎨⎧>>0000b a b a 或.【思考导学】1.一元二次不等式怎样转化为一元一次不等式组?答:先把不等式化为(x -α)(x -b )<0,它的解集是不等式组⎩⎨⎧<-<-⎩⎨⎧<->-000b x a x b x a x 与的解集的并集.2.分式不等式怎样转化为整式不等式来解?答:分式不等式0)()(>g g x f (<0)的解集是f (x )g (x )>0(<0)的解集.【典例剖析】 [例1]解不等式31-+x x <0.解:(1)(方法一)原不等式等价于 (Ⅰ)⎩⎨⎧<->+0301x x 或(Ⅱ)⎩⎨⎧>-<+0301x x由(Ⅰ)得-1<x <3,由(Ⅱ)得x ∈∅综上所述,原不等式的解集是{x |-1<x <3}(方法二)原不等式等价于(x +1)·(x -3)<0即x 2-2x -3<0 解方程x 2-2x -3=0,得x 1=3,x 2=-1∴原不等式的解集是{x |-1<x <3}.点评:把分式不等式转化为不等式组或一元二次不等式来解是解题的两个基本思路[例2]解不等式x 2-(a +1)x +a >0. 解:原不等式整理得(x -a )(x -1)>0∴原不等式可转化为下面两个不等式组来解: (Ⅰ)⎩⎨⎧>->-01x 0a x 或(Ⅱ)⎩⎨⎧<-<-01x 0a x即(Ⅰ)⎩⎨⎧>>1x a x 或(Ⅱ)⎩⎨⎧<<1x ax∴当a >1时,原不等式的解集为{x |x >a 或x <1} 当a <1时,原不等式的解集为{x |x >1或x <a }当a =1时,原不等式的解集为{x |x ∈R 且x ≠1} 点评:当得出(Ⅰ) ⎩⎨⎧>>1x a x (Ⅱ) ⎩⎨⎧<<1x a x 后,由于a 与1的大小不确定,为了使问题能够顺利解下去,应对a 与1的大小关系进行讨论,讨论时,不要忽略“a =1”这种情况.[例3]解不等式xx 211-->1.解法一:原不等式整理得1223--x x <0得原不等式的解集是{x |3221<<x }.解法二:原不等式等价于下面两个不等式组 (Ⅰ)⎩⎨⎧->->-xx x 211021 (Ⅱ)⎩⎨⎧-<-<-xx x 211021不等式组(Ⅰ)的解集是∅ 不等式组(Ⅱ)的解集是{x |21<x <32}.∴原不等式的解集为{x |21<x <32}.点评:关于分式不等式,一般是化为一边为零,另一边进行通分,转化为等价的一元二次不等式或不等式组来解,在明确分母的符号的情况下,也可考虑去分母,转化为整式不等式(组).【随堂训练】1.与不等式(x -2)(x +1)<0的解集相同的是( )A .⎩⎨⎧<+>-0102x xB .⎩⎨⎧>+<-0102x xC .⎩⎨⎧>+<-⎩⎨⎧<+>-01020102x x x x 或 D . ⎩⎨⎧>+<-⎩⎨⎧<+>-01020102x x x x 且 答案: C 2.不等式x1>1的解集为( )A .{x |x <1}B .{0|0<x <1}C .{x |x <1且x ≠0}D .{x |x >1}解析: 原不等式可化为xx -1>0即(x -1)x <0,∴0<x <1.答案: B 3.如果x 满足231--x x <0,那么化简29124x x +--122+-x x 的结果是( )A .2x -1B .1-2xC .3-4xD .4x -3 解析: 由231--x x <0得32<x <1∴原式==---22)1()23(x x |3x -2|-|x -1|=3x -2-(1-x )=4x -3. 答案: D 4.不等式:523322++++x x x x <1的解集为( )A .{x |0<x <2}B .{x |x >2}C .{x |x <2}D .R解析: 原不等式可化为:5222++-x x x <0∵x 2+2x +5=(x +1)2+4>0 ∴x -2<0即x <2.答案: C 5.不等式xx 211-->0的解集是______.解析: 原不等式可化为x x 211--<0∴原不等式解集为{x |21<x <1}答案: {x |21<x <1}6.x1<11-x 的解集是______.解析: 原不等式整理得)1(1-x x >0∴x (x -1)>0,∴x >1或x <0. 答案: {x |x <0或x >1}【强化训练】 1.与不等式xx +-11>0有相同解集的是( )A .x 2-1<0B .x 2-1>0 C .⎩⎨⎧<+<-0101x xD .11+-x x >0答案: A 2.不等式23--x x ≤0的解集为A ,不等式(x 2+1)(x -a )>0的解集为B .若A B ,则a的取值范围是( )A .a <2B .a ≤2C .a >2D .a <3 解析: 由23--x x ≤0得2<x ≤3,∴A ={x |2<x ≤3}由(x 2+1)(x -a )>0得x >a ,∴B ={x |x >a } 若A B ,则a ≤2. 答案: B 3.不等式xx --213≥1的解集是( )A .{x |43≤x <2}B .{x |43≤x ≤2}C .{x |x >2或x ≤43}D .{x |x >2} 解析:xx --213≥1可化为xx --234≥0,即234--x x ≤0,∴43≤x <2.答案: A4.设a <-1,则关于x 的不等式a (x -a )(x -a1)<0的解集是( )A .{x |x <a 或x >a 1}B .{x |x >a }C .{x |x >a 或x <a1}D .{x |x <a 1}解析: 方程a (x -a )(x -a1)=0的解为x 1=a ,x 2=a1 ∵a <-1,∴原不等式等价于(x -a )(x -a1)>0,且a1>a∴原不等式的解集为{x |x >a1或x <a }.答案: A 5.不等式|x x +1|>x x +1的解集是______. 解析: 由|xx +1|>xx +1得xx +1<0.∴原不等式解集为{x |-1<x <0}. 答案: {x |-1<x <0} 6.不等式2)1()12)(43(-+-x x x <0的解集是______.解析: 原不等式等价于⎩⎨⎧≠<+-10)12)(43(x x x ,∴⎪⎩⎪⎨⎧≠<<-13421x x 答案: {x |-21<x <34且x ≠1}7.解不等式85-+x x ≤0.解:原不等式可化为(x +5)(x -8)≤0且x -8≠0∴-5≤x <8,解集为{x |-5≤x <8}. 8.解不等式122||2---x x x <0.解:原不等式可化为⎩⎨⎧<-->-⎩⎨⎧>--<-01202||01202||22x x x x x x 或 由⎩⎨⎧>--<-01202||2x x x 得解集为∅,由⎩⎨⎧<-->-01202||2x x x 得解集为{x |2<x <4或-3<x <-2}∴原不等式的解集为{x |-3<x <-2或2<x <4}. 9.解不等式x1a x -->0.解:原不等式可化为(x -a )(x -1)<0 ∴当a >1时,不等式解集为{x |1<x <a } 当a <1时,不等式解集为{x |a <x <1}当a =1时,不等式变为(x -1)2<0,此时不等式无解. 10.k 为何值时,关于x 的不等式3642222++++x x k kx x <1的解集是一切实数.解:∵分母4x 2+6x +3的Δ<0∴4x 2+6x +3>0对任意实数x 恒成立∴原不等式可化为2x 2+2kx +k <4x 2+6x +3 即2x 2+(6-2k )x +3-k >0恒成立解得⎩⎨⎧<-⨯--=∆>0)3(42)26(022k k 即1<k <3故当1<k <3时,关于x 的不等式3642222++++x x k kx x <1的解集是R .【学后反思】分式不等式的解法主要依据以下等价变形来求解: 设A 、B 表示关于x 的整式代数式则有: (1)BA >0⇔AB >0⇔(Ⅰ)⎩⎨⎧>>00B A 或(Ⅱ)⎩⎨⎧<<00B A(2)BA <0⇔AB <0⇔(Ⅰ) ⎩⎨⎧<>00B A 或(Ⅱ) ⎩⎨⎧><00B A(3)B A ≥0⇔⎩⎨⎧≠≥00B AB(4) BA ≤0⇔⎩⎨⎧≠≤00B AB。

2.2一元二次不等式的解法

2.2一元二次不等式的解法
一元二次不等式的解法
刹车距离
在交通繁忙的路段,交通管理部门出于车辆安全和畅通的考 虑,对汽车的行驶速度有一定的限制,超速行驶被视为违规.因 为汽车在遇到紧急情况时,即使司机马上刹车,但由于惯性的作 用,刹车后的汽车仍会继续往前滑行一段距离后才会停下.这段 距离叫做刹车距离.车速越快,刹车距离越长.
代数方法: x 2x 1 0
x x
2 0••••
1 0

x 2 0 x 1 0
x 2
x 2
x 1

x 1
原不等式的解集是: •x | 1 x 2
想一想
y x2 x 2
x2 x 2 0
甲乙两辆汽车相向而行,在一个弯道上相遇,弯道限制 车速在40km/h以内,由于突发情况,两车相撞了,交警在现 场测得甲车的刹车距离接近但未超过12m,乙车的刹车距离 刚刚超过10m,又知两辆汽车的刹车距离s(m)与车速x(km/h) 之间分别有以下函数关系:
S甲=0.01x2+0.1x
S乙=0.005x2+0.05x
2.解对应的方程。
3.画出相应函数的简图,根据图象确定所求不等 式的解集。
练习:
求下列不等式的解集 (1) x2-5x+6<0
(2)x2-x+2<0
(3) 3x2-x-4>0
(4)9x2-6x+1≤0
(5) -6x2-x+2<0
(6)2x2+4x>-3
小结
一元二次方程、一元二次不等式、一元二次函数的相互关系及其解法:
的解集是 R,求实数k的取值范围.
例3.写出一个一元二次不等式,使它的解

3.2.2含参数的一元二次不等式的解法(例题精讲)

3.2.2含参数的一元二次不等式的解法(例题精讲)

含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ;例1 解不等式:()0122>+++x a ax 分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项 系数进行分类讨论。

解:∵()044222>+=-+=∆a a a 解得方程 ()0122=+++x a ax 两根,24221a a a x +---=a a a x 24222++--= ∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式 分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。

解 ()()032)65(2>--=+-x x a x x a ∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x二、按判别式∆的符号分类,即0,0,0<∆=∆>∆;例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。

解:∵162-=∆a ∴当()4,4-∈a 即0<∆时,解集为R ;当4±=a 即Δ=0时,()00652≠>+-a a ax ax解集为⎭⎬⎫⎩⎨⎧≠∈2a x R x x 且; 当4>a 或4-<a 即0>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >, ∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或例4 解不等式()()R m x x m ∈≥+-+014122 解 因,012>+m ()()2223414)4(mm -=+--=∆,所以当3±=m ,即0=∆时,解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当33<<-m ,即0>∆时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+--+-+>1321322222m m x m m x x 〈或; 当33>-<m m 或,即0<∆时,解集为R 。

2.2一元二次不等式的解法

2.2一元二次不等式的解法

2.2一元二次不等式的解法【教学目标】1、掌握一元二次不等式的解法2、知道一元二次不等式可以转化为一元一次不等式组3、弄清一元二次方程、一元二次不等式与二次函数的关系4、学会用区间的形式表示不等式的解集【教学重点】一元二次不等式的解法【教学难点】弄清一元二次方程、一元二次不等式与二次函数的关系 一、课前预习反馈:1、设,a b 都为实数,并且a b <,我们规定⑴集合{}x a x b ≤≤叫做 区间, 表示为 。

⑵集合{}x a x b <<叫做 区间,表示为 。

⑶集合{}x a x b ≤<或{}x a x b <≤叫做 区间,表示为 或 。

在上述所有区间中,,a b 叫做区间的 点。

2、实数R 用区间表示为 ,集合{}x x a ≥用区间表示为 ,集合{}x x a >用区间表示为 ,集合{}x x b ≤用区间表示为 , 集合{}x x b <用区间表示为 。

“+∞”读作 ,“-∞”读作 。

3、我们把含有 个未知数,并且未知数的最高次数是 次,这样的 不等 式叫做一元二次不等式。

一元二次不等式的一般形式为 或 ( ) 4、(1)一元二次方程的根与系数的关系——韦达定理 已知关于x 的方程20(0)ax bx c a ++=≠的两个根1x 、2x ,则12x x +=___________;12x x ⋅=_____________;1211x x += ;12x x -=___________。

(2)描述二次函数2(0)y ax bx c a =++≠的草图开口方向由____________________决定;对称轴是__________________________;与y 轴交点坐标是__________________;与x 是否相交由_________________决定。

练习画出下列函数的图像:(1)231y x x =+- (2)2231y x x =-+-(3)2322y x x =-+ (4)245y x x =---二、课堂学习探索:1、解法的研究[例]解不等式的解集 : 2(1)230x x --> 2(2)230x x --<解法一:一元二次不等式可以转化为一元一次不等式组(转化思想)解法二:利用一元二次方程、一元二次不等式与二次函数的关系(数形结合思想)3、解一元二次方程的步骤:[总结]解一元二次不等式的步骤:①把二次项的系数变为正的。

一元二次不等式的解法6种常见考法归类(原卷版)

一元二次不等式的解法6种常见考法归类(原卷版)

2.2.3 一元二次不等式的解法6种常见考法归类1、一元二次不等式的概念一般地,形如ax 2+bx +c >0的不等式称为一元二次不等式,其中a ,b ,c 是常数,而且a ≠0.一元二次不等式中的不等号也可以是“<”“≥”“≤”等.注:一元二次不等式的二次项系数a 有a >0和a <0两种,注意aa <0时,我们通常将不等式两边同乘以-1,化为二次项系数大于0的一元二次不等式,但要注意不等号要改变方向,这样我们只需要研究二次项系数大于0的一元二次不等式.2、一元二次不等式的解法(1)用因式分解法解一元二次不等式一般地,如果x 1<x 2,则不等式(x -x 1)(x -x 2)<0的解集是(x 1,x 2),不等式(x -x 1)(x -x 2)>0的解集是(-∞,x 1)∪(x 2,+∞).①这种方法只有在一元二次不等式左边能够因式分解(一般用十字相乘法)时才能使用,简记为“小于零取中间,大于零取两边”.②因式分解法就是将一元二次不等式转化为两个一元一次不等式组来求解.依据是:ab >0当且仅当⎩⎪⎨⎪⎧a >0,b >0 或⎩⎪⎨⎪⎧a <0,b <0 ;ab <0当且仅当⎩⎪⎨⎪⎧a <0,b >0 或⎩⎪⎨⎪⎧a >0,b <0.(2)用配方法解一元二次不等式一元二次不等式ax 2+bx +c >0(a ≠0)通过配方总是可以变为(x -h )2>k 或(x -h )2<k 的形式,然后根据k 的正负等知识,就可以得到不等式的解集.注:(1)因式分解法只适用于特殊类型的一元二次不等式,一般的一元二次不等式可以通过配方法求得解集.(2)用配方法解一元二次不等式的关键是熟练掌握二次三项式的配方技巧.3、二次函数与一元二次方程、不等式的解的对应关系4、简单分式不等式的解法分式不等式的概念分母中含有未知数的不等式称为分式不等式.注:当分式不等式等价转化为整式不等式时,其分母不为零最容易被忽略,这一点一定要注意.5、求解可化成ax2+bx+c>0(a>0)形式的不等式为例,用框图表示其求解过程:6、一元二次不等式的解法:(1)图像法:一般地,当a>0时,解形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)的一元二次不等式,一般可分为三步:∪确定对应方程ax2+bx+c=0的解;∪画出对应函数y=ax2+bx+c的图像简图;∪由图像得出不等式的解集.对于a<0的一元二次不等式,可以直接采取类似a>0时的解题步骤求解;也可以先把它化成二次项系数为正的一元二次不等式,再求解.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解,当p <q 时,若(x -p)(x -q)>0,则x >q 或x <p ;若(x -p)(x -q)<0,则p <x <q.有口诀如下“大于取两边,小于取中间”.7、含参数一元二次不等式求解步骤(1)讨论二次项系数的符号,即相应二次函数图像的开口方向; (2)讨论判别式的符号,即相应二次函数图像与x 轴交点的个数; (3)当Δ>0时,讨论相应一元二次方程两根的大小;(4)最后按照系数中的参数取值范围,写出一元二次不等式的解集.8、三个“二次”之间的关系一元二次不等式与其对应的函数与方程之间存在着密切的联系,在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.(1)若一元二次不等式的解集为区间的形式,则区间的端点值恰是对应一元二次方程的根,要注意解集的形式与二次项系数的联系.(2)若一元二次不等式的解集为R 或∪,则问题可转化为恒成立问题,此时可以根据二次函数图像与x 轴的交点情况确定判别式的符号,进而求出参数的范围.9、简单的分式不等式的解法对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.注:设A 、B 均为含x 的多项式 (1)00>⇔>A AB B (2)00<⇔<AAB B(3)000≥⎧≥⇔⎨≠⎩AB A B B (4)000≤⎧≤⇔⎨≠⎩AB AB B 10、解不等式应用题的四步骤(1)审:认真审题,把握问题中的关键量,找准不等关系. (2)设:引进数学符号,用不等式表示不等关系. (3)求:解不等式. (4)答:回答实际问题.特别提醒:确定答案时应注意变量具有的“实际含义”.考点一 解不含参数的一元二次不等式 考点二 含参数的一元二次不等式的解法 考点三 利用不等式的解集求参数考点四 简单的分式不等式的解法 考点五 一元二次不等式的恒成立有解问题 考点六 一元二次不等式的实际应用考点一 解不含参数的一元二次不等式1.(2023秋·安徽合肥·高二校考学业考试)不等式(1)(2)0x x -+>的解集为( ) A .{2x x <-或1}x >B .{21}x x -<<C .{12}x x <<D .{1x x <或2}x >2.(2023秋·广东佛山·高一佛山市第二中学校考开学考试)解下列一元二次不等式: (1)23710x x -≤; (2)2104x x -+<; (3)2340x x -+>.3.(2023·上海·高一专题练习)解下列不等式: (1)22310x x -+-<; (2)()2160x -->;(3)2260340x x x x ⎧--≤⎨+-<⎩4.(2023秋·高一校考课时练习)解下列不等式: (1)22320x x --> (2)2350x x -+>(3)2620x x --+≥ (4)2414x x -≥-5.(2023春·福建福州·高二福建省福州延安中学校考学业考试)不等式24410x x -+<的解集为 A .1(,]2-∞B .11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .12⎧⎫⎨⎬⎩⎭D .∅6.【多选】(2023秋·江苏淮安·高一校考阶段练习)下列四个不等式中,解集为∅的是( ) A .210x x -++≤ B .22340x x -+<C .2690x x ++≤D .2440(0)x x a a a ⎛⎫-+-+>> ⎪⎝⎭考点二 含参数的一元二次不等式的解法7.(2023·全国·高一假期作业)若01a <<,解不等式()10a x x a ⎛-⎫ ⎪⎝⎭->.8.(2023·江苏·高一假期作业)解关于x 的不等式()()2231220x a x a --+->9.(2023秋·高一校考课时练习)解关于x 的不等式: ()22110ax a x a -+++<.10.(2023秋·北京·高一北京市第五十中学校考阶段练习)解不等式()2110ax a x -++>.11.(2023秋·北京西城·高一北京铁路二中校考期中)设a ∈R ,解关于x 的不等式:()2330ax a x -++≤.12.(2023秋·黑龙江鹤岗·高一鹤岗一中校考期中)已知222()(1)2(1)f x ax a x a =-+++,a ∈R ,求关于x 的不等式()0f x ≥的解集.考点三 利用不等式的解集求参数13.(2023秋·福建福州·高一福州三中校考阶段练习)已知不等式20x ax b ++<的解集是{}24x x -<<,则a b +=( )A .-10B .-6C .0D .214.(2023秋·福建泉州·高一校考阶段练习)若关于x 的不等式220x x a -+<的解集是{|2}x b x <<,则a b += ( )A .1-B .152-C .92-D .9-15.【多选】(2023·黑龙江佳木斯·佳木斯一中校考模拟预测)已知关于x 的不等式20ax bx c ++>的解集为()(),23,-∞-⋃+∞,则下列选项中正确的是( )A .a<0B .不等式0bx c +>的解集是{}|6x x <-C .0a b c ++>D .不等式20cx bx a -+<的解集为11(,)(,)32-∞-⋃+∞16.(2023秋·河南南阳·高一校考阶段练习)关于x 的不等式20ax bx c ++<的解集为()3,1-,则不等式20bx ax c ++<的解集为( )A .()1,2?B .1,2C .1,12⎛⎫- ⎪⎝⎭D .3,12⎛⎫- ⎪⎝⎭17.(2023秋·广西柳州·高一柳铁一中校联考阶段练习)已知关于x 的不等式mx n >的解集是{}<2x x ,则关于x 的不等式()()30mx n x +->的解集是( )A .{|2x x <或3}x >B .{}2<<3x xC .{|2x x <-或3}x >D .{}2<<3x x -18.(2023秋·江苏常州·高一江苏省前黄高级中学校考期中)已知函数()243f x ax x =++.(1)若关于x 的不等式()0f x >的解集是(),1b ,求,a b 的值. (2)若0a >,求关于x 的不等式()1f x ax >--的解集.19.(2023秋·湖南永州·高二统考阶段练习)若不等式20x x c +-≤的解集为[]2,1-,则c = .20.(2023·全国·高三专题练习)若不等式()210x a x a -++≤的解集是[]4,3-的子集,则a 的范围是( )A .[-4,3]B .[-4,2]C .[-1,3]D .[-2,2]21.【多选】(2023春·浙江温州·高二统考学业考试)关于x 的不等式22(12)20ax a x a +--<的解集中恰有3个正整数解,则a 的值可以为( )A .1-B .32C .74D .2考点四 简单的分式不等式的解法22.(2023秋·云南曲靖·高一校考阶段练习)不等式302x x +>+的解集是 .23.(2023秋·陕西渭南·高二统考期末)不等式102xx-≥+的解集为 . 24.(2023秋·河南商丘·高一统考期中)不等式3102x x +≤- 的解集是 . 25.(2023·全国·高三对口高考)已知集合3442x P xx ⎧⎫+=≥⎨⎬-⎩⎭,则P = . 26.(2023秋·陕西西安·高三西北工业大学附属中学校考阶段练习)解不等式: (1)2450x x -++>; (2)2221x ax a -≤-+; (3)132x x+≥-. 考点五 一元二次不等式的恒成立有解问题27.(2023秋·高一单元测试)设()()212=--+-∈y x a x a a R .(1)若不等式()2122--+-≥-x a x a 对一切实数x 恒成立,求实数a 的取值范围;(2)解关于x 的不等式()2120--+-<x a x a .28.(2023春·江苏南京·高二南京市中华中学校考阶段练习)设()()212f x ax a x a =+-+-. (1)若不等式()2f x ≥-对一切实数x 恒成立,求实数a 的取值范围; (2)解关于x 的不等式()()1R f x a a <-∈.29.(2023秋·黑龙江哈尔滨·高一哈尔滨三中校考阶段练习)已知函数()()()2124f x m x mx m m =+-+-∈R .(1)若不等式()0f x <的解集为R ,求m 的取值范围; (2)解关于x 的不等式()f x m ≥.30.(2023秋·四川遂宁·高一射洪中学校考阶段练习)设2(1)2y ax a x a =+-+-. (1)若不等式2y ≥-对一切实数x 恒成立,求实数a 的取值范围;(2)解关于x 的不等式()2(1)10R ax a x a +--<∈.31.(2023·高一课时练习)已知函数()()2322f x x a x a b =+-+++,a ,b ∈R .(1)若关于x 的不等式()0f x >的解集为{4x x <-或}2x >,求实数a ,b 的值; (2)若关于x 的不等式()f x b ≤在[]1,3x ∈上有解,求实数a 的取值范围;(3)若关于x 的不等式()12f x b <+的解集中恰有3个整数,求实数a 的取值范围.考点六 一元二次不等式的实际应用32.(2023秋·高一校考单元测试)某小型雨衣厂生产某种雨衣,售价P (单位:元/件)与月销售量x (单位:件)之间的关系为1602P x =-,生产x 件的成本(单位:元)50030R x =+.若每月获得的利润y (单位:元)不少于1300元,则该厂的月销售量x 的取值范围为( )A .()20,45B .[)20,45C .(]20,45D .[]20,4533.(2023·全国·高一假期作业)某小型服装厂生产一种风衣,日销售量x (件)与单价P (元)之间的关系为1602P x =-,生产x 件所需成本为C (元),其中()50030C x =+元,若要求每天获利不少于1300元,则日销售量x 的取值范围是( ).A .{}2030,N x x x +≤≤∈B .{}2045,N x x x +≤≤∈C .{}1530,N x x x +≤≤∈D .{}1545,N x x x +≤≤∈34.(2023春·河南安阳·高二林州一中校考阶段练习)某地每年消耗木材约20万立方米,每立方米售价480元,为了减少木材消耗,决定按%t 征收木材税,这样,每年的木材消耗量减少52t 万立方米,为了既减少木材消耗又保证税金收入每年不少于180万元,t 的取值范围是( )A .[]1,3B .[]2,4C .[]3,5D .[]4,635.(2023秋·四川绵阳·高一绵阳中学校考阶段练习)某种衬衫进货价为每件30元,若以40元一件出售,则每天能卖出40件;若每件提价1元,则每天卖出件数将减少一件,为使每天出售衬衫的净收入不低于525元,则每件衬衫的售价的取值范围是 .(假设每件衬衫的售价是m )。

2.2一元二次不等式的解法

2.2一元二次不等式的解法
x2 k 1x 4 0的解集为R?
例4.设a R,解关于x的不等式 x2 a 1x a 0.
练习:
1.解下列不等式:
19x2 6x 1 0; 24x x2 5 32x2 x 1 0 44x x2 4
2.1若不等式ax2 bx 3 0的解集为-1,3,求a,b. 2若不等式ax2 bx 2 0的解集为- 1 ,1 ,求a b.
一元二次不等式的解法
2007.12
问题思考: 1.什么叫一元一次不等式?什么叫一元一次不等式组? 怎样解一元一次不等式? 2.什么叫一元二次不等式?怎样解一元二次不等式?
方程ax2 bx c 0(a 0)的根的判别
函数y ax2 bx c(a 0)的图像
不等式ax2 bx c 0的解集
范例解析: 例1:求下列不等式的解集:
12x2 3x 2 0 2x2 x 1 0
3 3x2 x 1 0
例2.写出一个一元二次不等式,使得它的解集为:
1 1,3
2 , 1 1 ,

2 3
例3.当k为何值时,关于x的一元二次不等式
2 3
3若不等式x2 ax b 0的解集为2,5,解不等式
bx2 ax 1 0.
4若不等式ax2 bx c 0的解集为 ,2 1 ,,
2 求不等式ax2 bx c 0的解集。
3.解下列不等式组:
1

x x
2 2 2
x

3

0ቤተ መጻሕፍቲ ባይዱ
2x2
3x
4x 12 2 4x 4

一元二次不等式及其解法-一元二次不等式解集

一元二次不等式及其解法-一元二次不等式解集
等价形式
一元二次不等式也可以通过因式分解或配方法转换为 (x - x1)(x - x2) ≥ 0 或 (x - x1)(x - x2) ≤ 0 的形式,其中 x1 和 x2 是方程 ax^2 + bx + c = 0 的根。
02 一元二次不等式的解法
配方法
总结词
通过配方将一元二次不等式转化为完全平方形式,从而求解。
05 一元二次不等式的扩展
一元高次不等式
一元高次不等式是指形如 ax^n > b (n ≥ 2) 的不等式,其中 a、b 是常数 且 a ≠ 0。
解一元高次不等式时需要注意不等式 的符号和临界点,确保解集的准确性。
解一元高次不等式需要利用因式分解、 不等式的性质以及数轴等方法,逐步 化简不等式,最终得到解集。
二元一次不等式组的解集可以通过平 面区域来表示,通过确定临界点和约 束条件来确定区域的边界。
一元二次不等式的解集可以通过抛物 线的开口方向和顶点坐标来表示,一 元高次不等式的解集可以通过相应函 数的图像来表示。
利用几何意义可以更加直观地理解不 等式的解集,有助于解决复杂的不等 式问题。
THANKS FOR WATCHING
函数分析
通过一元二次不等式,可以对一元二次函数进行全面的分析,包括函数的单调性、极值点、零点等。
在物理领域的应用
力学问题
在解决物理中的力学问题时,常常需要用到 一元二次不等式。例如,在解决碰撞、落体 等问题时,可以通过一元二次不等式来描述 物理量的变化范围。
波动问题
在研究波动问题时,如声波、电磁波等,一 元二次不等式可以用来描述波的传播范围以 及某些物理量的变化范围。
因式分解法
总结词
通过因式分解将一元二次不等式转化为 两个一次不等式的乘积形式,从而求解 。

2122 一元二次方程的解法(二)公式法(解析版)

2122 一元二次方程的解法(二)公式法(解析版)

21.2.2一元二次方程的解法(二)公式法夯实双基,稳中求进公式法解一元二次方程知识点管理 归类探究 1 1.一元二次方程的求根公式一元二次方程()200ax bx c a ++=≠,当240b ac =->时,242b b ac x a-±-=.2.一元二次方程根的判别式一元二次方程根的判别式:24b ac =-.①当240b ac =->时,原方程有两个不等的实数根242b b acx a-±-=;②当240b ac =-=时,原方程有两个相等的实数根; ③240b ac =-<当时,原方程没有实数根. 3.用公式法解一元二次方程的步骤用公式法解关于x 的一元二次方程()200ax bx c a ++=≠的步骤:①变形:把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求△:求出24b ac -的值;④定根:240b ac -≥若,则利用公式242b b acx a-±-=求出原方程的解;若240b ac -<,则原方程无实根.题型一:一元二次方程的求根公式【例题1】(2021·全国九年级)关于x 的一元二次方程220(0,40)ax bx c a b ac ++=≠->的根是( )A B C D 【答案】D【详解】当20,40a b ac ≠->时,一元二次方程20ax bx c ++=的求根公式为x .故选D.变式训练【变式1-1】(2020·福建省福州延安中学九年级月考)x =是下列哪个一元二次方程的根( )A .23210x x +-=B .22410x x +-=C .2x 2x 30--+=D .23210x x --= 【答案】D【分析】根据一元二次方程的求根公式解答即可.【详解】解:对于一元二次方程()200ax bx c a ++=≠,方程的根为:2b x a-=.因为x =3a =,2b =-,1c =-,所以对应的一元二次方程是:23210x x --=.故选:D .【变式1-2】(2019·全国八年级课时练习)解下列方程,最适合用公式法求解的是( ) A .2(26)10x =+- B .2(14)x =+ C .2121x = D .2350x x =--【答案】D【分析】解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法,根据每种方法的特点逐个判断即可.【详解】解:A 、用因式分解法好,故本选项错误; B 、用直接开平方法好,故本选项错误;C 、变形后用直接开平方法好,故本选项错误;D 、用公式法好,故本选项正确.故选D .【变式1-3】(2019·全国九年级课时练习)用公式法解方程3x 2+4=12x ,下列代入公式正确的是( )A .x 1、2B .x 1、2C .x 1、2D .x 1、2【答案】D【详解】∵3x 2+4=12x , ∵3x 2-12x+4=0, ∵a=3,b=-12,c=4,∵x =,故选D.题型二:公式法解一元二次方程【例题2】(2021·黑龙江齐齐哈尔市·九年级二模)解方程:()86x x +=-.【答案】14x =-24x =-【分析】将方程化为一般式,再利用公式法进行求解即可. 【详解】解:原方程可化为:2860x x ++=, ∵1,8,6a b c ===, ∵2841640∆=-⨯⨯=,∵4x ==-,∵14x =-24x =-【点睛】本题考查一元二次方程的解法,熟练掌握公式法解一元二次方程是解题的关键. 变式训练【变式2-1】(2021·黑龙江齐齐哈尔市·九年级其他模拟)解方程:2x 2=3x -1 【答案】x 1=1,x 2=12【分析】将二次方程整理为二次方程的一般式,根据二次方程根的判别式可知该方程有两个不相等的实数根,代入求根公式计算即可.【详解】解:原式整理为:2x 2-3x +1=0 ∵∵=b 2-4ac =10>, ∵方程有两个不相等的实数根,∵x =, 故1314x +=或2314x -=得x 1=1;x 2=12. 【点睛】本题主要考查一元二次方程的解法,可以根据根的判别式判断根的情况,熟知公式法解一元二次方程的方法是解题关键.【变式2-2】(2021·黑龙江齐齐哈尔市·九年级三模)解方程:()2121x x +=- 【答案】方程没有实数根【分析】首先去括号合并同类项,化为一般式,根据0<可知,方程没有实数根. 【详解】解:去括号化简得:2+20x ,224041280b ac =-=-⨯⨯=-<,∵方程没有实数根.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键. 【变式2-3】(2020·永善县墨翰中学九年级月考)解方程.2820x x --= 【详解】(1)∵1a =,8b =-,2c =- ∵2(8)4(2)720∆=--⨯-=> ∵方程有两个不相等的实数根.∵4x ===±∵14x =+24x =-判别式与方程的根的关系题型三:判别式求根的个数【例题3】(2021·江苏苏州市·苏州草桥中学九年级一模)定义运算:21m n mn mn =-+☆.例如:232323217=⨯-⨯+=☆,则方程40x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根【答案】B【分析】根据新定义运算法则以及即可求出答案. 【详解】解:由题意可知:4∵x =4x 2-4x +1=0, ∵∵=16-4×4×1=0, ∵有两个相等的实数根, 故选:B .【点睛】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型. 变式训练【变式3-1】(2021·河南二模)关于x 的一元二次方程()2220x p x p -++=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .有两个实数根D .无实数根【答案】C2 1.一元二次方程根的判别式(1)∵>0∵方程有两个不相等的实数根; (2)∵=0∵方程有两个相等的实数根; (3)∵<0∵方程没有实数根.2. 根据一元二次方程方程根的情况可以确定△的取值范围.3. 通过配方法对△进行变形可以得到含参方程的解的情况特别说明:(1)一元二次方程根的情况与判别式∵的关系是可以双向互相推导的.(2)考查一元二次方程根的情况的时候,注意讨论参数的取值,要注意题目中是否是关于未知数的一元二次方程,因此一定不要忘记讨论二次项系数为0时的情况.【分析】先计算根的判别式得到∵=[﹣(p+2)]2﹣4×2p=(p﹣2)2,再利用非负数的性质得到∵≥0,然后可判断方程根的情况.【详解】解:∵=[﹣(p+2)]2﹣4×2p=(p﹣2)2,∵(p﹣2)2≥0,即∵≥0,∵方程有两个实数根.故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与∵=b2﹣4ac有如下关系:当∵>0时,方程有两个不相等的实数根;当∵=0时,方程有两个相等的实数根;当∵<0时,方程无实数根.x x-=-的根的情况,正确的是()【变式3-2】(2021·河南九年级二模)关于x的方程()53A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A【分析】根据一元二次方程根的判别式,即可得到方程根的情况.x x-=-,即x2-5x+3=0【详解】解:∵()53∵Δ=(-5)2−4×1×3=25-12=13>0,∵原方程有两个不相等的实数根;故选择:A【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.【变式3-3】(2021·河南焦作市·九年级二模)已知关于x的一元二次方程2-+=,其中b,c在x bx c20数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根【答案】A【分析】由数轴可知:0b >,0c <,然后计算根的判别式的值即可得出答案. 【详解】由数轴可知:0b >,0c <; ∵280b c ∆=->; ∵有两个不相等的实数根 故选:A【点睛】本题主要考查的是一元二次方程的根的判别式,熟练掌握一元二次方程的根的判别式的方法、某点在数轴上的位置确定其正负是解题的关键,属于基础知识题. 题型四:根据根的个数求参数的取值范围【例题4】(2021·南京二模)若一元二次方程20x x a -+=有实数根,则a 的取值范围是____________. 【答案】14a ≤【分析】根据判别式大于等于0即可求解. 【详解】解:一元二次方程20x x a -+=有实数根 ∵2(1)40a ∆=--≥,解得14a ≤ 故答案为14a ≤. 【点睛】此题考查了一元二次方程的根与系数的关系,熟练掌握相关基础知识是解题的关键. 变式训练【变式4-1】(2021·山东济南市·八年级期末)若关于x 的一元二次方程220x x k -+=有两个实数根,则k 的取值范围是________. 【答案】1k ≤【分析】根据一元二次方程判别式的性质,列一元一次不等式并求解,即可得到答案. 【详解】∵关于x 的一元二次方程220x x k -+=有两个实数根 ∵()2240k ∆=--≥ ∵1k ≤故答案为:1k ≤.【点睛】本题考查了一元二次方程、一元一次不等式的知识;解题的关键是熟练掌握一元二次方程判别式的性质,从而完成求解.【变式4-2】(2021·济南期末)关于x 的一元二次方程2210-+=ax x 有实数根,则a 的取值范围是( ) A .1a ≤ B .1a < C .1a ≤且0a ≠ D .1a <且0a ≠【答案】C【分析】根据一元二次方程根的判别式可得440a -≥,然后求解即可. 【详解】解:∵关于x 的一元二次方程2210-+=ax x 有实数根, ∵24440b ac a ∆=-=-≥,且0a ≠, 解得:1a ≤且0a ≠; 故选C .【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键. 【变式4-3】(2020·四川巴中市·中考真题)关于x 的一元二次方程x 2+(2a ﹣3)x +a 2+1=0有两个实数根,则a 的最大整数解是( ) A .1 B .1- C .2- D .0【答案】D【分析】根据一元二次方程根的情况,用一元二次方程的判别式代入对应系数得到不等式计算即可. 【详解】解:∵关于x 的一元二次方程22(23)10x a x a +-++=有两个实数根,∵()22(23)410a a ∆=--+≥,解得512a ≤, 则a 的最大整数值是0.故选:D .【点睛】本题主要考查一元二次方程根的判别式,解题的关键是能够熟练地掌握和运用一元二次方程根的判别式.题型五:根的判别式综合应用【例题5】(2020·全国九年级课时练习)已知关于x 的一元二次方程mx 2﹣(4m +2)x +(3m +6)=0. (1)试讨论该方程的根的情况并说明理由;(2)无论m 为何值,该方程都有一个固定的实数根,试求出这个根.【答案】(1)关于x 的一元二次方程mx 2﹣(4m +2)x +(3m +6)=0有实数根;(2)无论m 为何值,该方程都有一个固定的实数根,这个根为3【分析】(1)求出判别式的值即可判断.(2)由无论m 为何值,该方程都有一个固定的实数根,又m (x 2-4x+3)-2x+6=0,推出x 2-4x+3=0,且-2x+6=0即可解决问题.【详解】解:(1)对于关于x 的一元二次方程mx 2﹣(4m+2)x+(3m+6)=0,∵∵=[﹣(4m+2)]2﹣4m (3m+6)=16m 2+16m+4﹣12m 2﹣24m =4m 2﹣8m+4=4(m ﹣1)2≥0, ∵关于x 的一元二次方程mx 2﹣(4m+2)x+(3m+6)=0有实数根. (2)∵无论m 为何值,该方程都有一个固定的实数根, 又∵m (x 2﹣4x+3)﹣2x+6=0, ∵x 2﹣4x+3=0,且﹣2x+6=0 解得x =3,∵无论m 为何值,该方程都有一个固定的实数根,这个根为3【点睛】本题考查根的判别式,一元二次方程的定义等知识,解题的关键是熟练掌握基本知识. 变式训练【变式5-1】(2020·全国九年级课时练习)已知关于x 的一元二次方程2(1)20x k x k +-+-=. (1)求证:方程总有两个实数根;(2)任意写出一个k 值代入方程,并求出此时方程的解. 【答案】(1)详见解析;(2)120,1x x ==-【分析】(1)先求出∵的值,再根据∵的意义即可得到结论; (2)任意取一个k 值代入,然后根据一元二次方程的解法解答即可. 【详解】解:(1)2(1)4(k 2)k ∆=---269k k =-+ ()230k =-≥∵0∆≥,∵方程总有两个实数根. (2)当2k =∵20x x +=解得120,1x x ==-【点睛】本题主要考查了一元二次方程根的判别式,正确理解公式是解答本题的关键. 【变式5-2】(2016·甘肃白银市·中考真题)已知关于x 的方程x 2+mx+m -2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根. 【答案】(1)12;(2)证明见解析. 【详解】试题分析:一元二次方程ax 2+bx+c=0(a≠0)的根的判别式∵=b 2﹣4ac :当∵>0,方程有两个不相等的实数根;当∵=0,方程有两个相等的实数根;当∵<0,方程没有实数根. (1)直接把x=1代入方程x 2+mx+m ﹣2=0求出m 的值;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可. 解:(1)根据题意,将x=1代入方程x 2+mx+m ﹣2=0, 得:1+m+m ﹣2=0, 解得:m=12; (2)∵∵=m 2﹣4×1×(m ﹣2)=m 2﹣4m+8=(m ﹣2)2+4>0,∵不论m 取何实数,该方程都有两个不相等的实数根.【变式5-3】(2015·四川南充市·中考真题)已知关于x 的一元二次方程(x ﹣1)(x ﹣4)=p 2,p 为实数. (1)求证:方程有两个不相等的实数根;(2)p 为何值时,方程有整数解.(直接写出三个,不需说明理由) 【答案】(1)见解析;(2)P=0、2、-2. 【详解】解:(1)原方程可化为x 2﹣5x+4﹣p 2=0, ∵∵=(﹣5)2﹣4×(4﹣p 2)=4p 2+9>0,∵不论p 为任何实数,方程总有两个不相等的实数根;(2)原方程可化为x 2﹣5x+4﹣p 2=0,∵ ∵方程有整数解,为整数即可,∵p 可取0,2,﹣2时,方程有整数解.【点睛】本题考查了一元二次方程的根的情况,判别式∵的符号,把求未知系数的范围的问题转化为解不等式的问题是解题的关键.【真题1】(2011·广东深圳市·中考真题)如果关于x 的方程2x 2x m 0-+=(m 为常数)有两个相等实数根,那么m =______.【答案】1【详解】本题需先根据已知条件列出关于m 的等式,即可求出m 的值.解答:解:∵x 的方程x 2-2x+m=0(m 为常数)有两个相等实数根∵∵=b 2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案为1【真题2】(2021·山东泰安市·中考真题)已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k 的取值范围是( )A .14k >- B .14k < C .14k >-且0k ≠ D .14k <0k ≠ 【答案】C【分析】由一元二次方程定义得出二次项系数k ≠0;由方程有两个不相等的实数根,得出“∵>0”,解这两个不等式即可得到k 的取值范围.【详解】解:由题可得:()()2021420k k k k ≠⎧⎪⎨⎡⎤---->⎪⎣⎦⎩, 解得:14k >-且0k ≠; 故选:C .【点睛】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求.链接中考【真题3】(2021·辽宁营口市·中考真题)已知关于x 的一元二次方程2210x x m +-+=有两个实数根,则实数m 的取值范围是_________.【答案】2m ≤【分析】利用一元二次方程根的判别式即可求解.【详解】解:∵一元二次方程2210x x m +-+=有两个实数根,∵()4410m ∆=--+≥,解得2m ≤,故答案为:2m ≤.【点睛】本题考查一元二次方程根的情况,掌握一元二次方程根的判别式是解题的关键.【真题3】(2021·四川雅安市·中考真题)若直角三角形的两边长分别是方程27120x x -+=的两根,则该直角三角形的面积是( )A .6B .12C .12或2D .6或2 【答案】D【分析】根据题意,先将方程27120x x -+=的两根求出,然后对两根分别作为直角三角形的直角边和斜边进行分情况讨论,最终求得该直角三角形的面积即可.【详解】解方程27120x x -+=得13x =,24x =当3和4分别为直角三角形的直角边时,面积为134=62⨯⨯;当4为斜边,3=13=22;则该直角三角形的面积是6或2, 故选:D . 【点睛】本题主要考查了解一元二次方程及直角三角形直角边斜边的确定、直角三角形的面积求解,熟练掌握解一元二次方程及勾股定理是解决本题的关键.【真题5】(2021·山东菏泽市·中考真题)关于x 的方程()()2212110k x k x -+++=有实数根,则k 的取值范围是( )A .14k >且1k ≠B .14k ≥且1k ≠C .14k >D .14k ≥ 【答案】D【分析】根据方程有实数根,利用根的判别式来求k 的取值范围即可.【详解】解:当方程为一元二次方程时,∵关于x 的方程()()2212110k x k x -+++=有实数根,∵()()22121410k k ∆=+-⨯⨯≥-,且 1k ≠, 解得,14k ≥且1k ≠, 当方程为一元一次方程时,k =1,方程有实根 综上,14k ≥故选:D .【点睛】本题考查了一元二次方程方程的根的判别式,注意一元二次方程方程中0a ≠,熟悉一元二次方程方程的根的判别式的相关性质是解题的关键.【拓展1】(2021·东莞外国语学校九年级一模)已知:关于x 的方程2x (k 2)x 2k 0-++=,(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a=1,两个边长b ,c 恰好是这个方程的两个根,求∵ABC 的周长.【答案】(1)证明见解析;(2)∵ABC 的周长为5.【分析】(1)根据一元二次方程根与判别式的关系即可得答案;(2)分a 为底边和a 为腰两种情况,当a 为底边时,b=c ,可得方程的判别式∵=0,可求出k 值,解方程可求出b 、c 的值;当a 为一腰时,则方程有一根为1,代入可求出k 值,解方程可求出b 、c 的值,根据三角形的三边关系判断是否构成三角形,进而可求出周长.【详解】(1)∵判别式∵=[-(k+2)]²-4×2k=k²-4k+4=(k -2)²≥0,∵无论k 取任何实数值,方程总有实数根.满分冲刺(2)当a=1为底边时,则b=c,∵∵=(k-2)²=0,解得:k=2,∵方程为x2-4x+4=0,解得:x1=x2=2,即b=c=2,∵1、2、2可以构成三角形,∵∵ABC的周长为:1+2+2=5.当a=1为一腰时,则方程有一个根为1,∵1-(k+2)+2k=0,解得:k=1,∵方程为x2-3x+2=0,解得:x1=1,x2=2,∵1+1=2,∵1、1、2不能构成三角形,综上所述:∵ABC的周长为5.【点睛】本题考查一元二次方程根的判别式及三角形的三边关系.一元二次方程根的情况与判别式∵的关系:当∵>0时,方程有两个不相等的实数根;当∵=0时,方程有两个相等的实数根;当∵<0,方程没有实数根;三角形任意两边之和大于第三边,任意两边之差小于第三边;熟练掌握根与判别式的关系是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 一元二次不等式的解法(2)
一、填空题:
1.若一元二次方程20(0)ax bx c a ++=>无实数解,则不等式20ax bx c ++>的解集 .
2.不等式20(0)ax bx c a ++<≠的解集为∅的充要条件是 .
3.设2{|60|}A x x x =+-<,{|10|B x x =+>则不A
B = . 4.关于x 的不等式240x x a +-≥的解集为R ,则实数a 的取值范围是 .
*5.若函数2(0)y ax bx c a =++<的图像与x 轴只有一个公共点0(,0)x ,则使函数值0y ≥的所有x 值的集合是 .
二、选择题:
6. “22
x a >”等价于( ) .A ||x a ≥ .B a x a -<<
.C x a <-或x a > .D ||x a >或||x a <-
7.不等式组2210250
x x x x ⎧++>⎪⎨++<⎪⎩的解集( ) .A {0} .B ∅ .C R .D 以上都不对
*8.下列不等式中,解集为R 的不等式是( )
.A 241290x x -+> .B 241290x x -+<
.C 2210x x ++< .D 23240x x -+>
三、解答题:
9.解不等式组:2260260x x x x ⎧+->⎪⎨--≥⎪⎩

10.解下列不等式:
(1)221x x <-; (2)2210x x -+≤; (3)2
450x x --<.
*11.若关于x 的不等式组2220(1)ax x x x a x ⎧--≤⎪⎨-≥-⎪⎩的解集为R ,求实数a 的取值范围.
四、能力拓展题
12.某商品每件成本80元,售价100元,每天售出100件.若售价降低x 成,售出商品数量就增加85x 成.若要求该商品一天营业额至少10260元,且不能亏本,求x 得取值范围.。

相关文档
最新文档