电磁感应习题课

合集下载

10第十章 习题(222345)

10第十章 习题(222345)

二、选择题 1、在下列描述中正确的是( ) B (A)感生电场和静电场一样,属于无旋场 (B)感生电场和静电场的共同点,就是对场中的电荷 具有作用力 (C)因为感生电场对电荷具有类似于静电场对电荷的 作用力,所以在感生电场中也可类似于静电场一样 引入电势 (D)感生电场和静电场一样,是能脱离电荷而单独存 在。 解:根据感生电场性质
• 二、选择题 • 1、两个相同的线圈,每个自感系数均为L0,将它 们顺向串联起来,并放得很近,使每个线圈所产生 的磁通量全部穿过另一个线圈,则该系统的总自感 系数为( ) D • (A)0 (B)L0/2 (C)2L0 (D)4L0 解:设每个线圈通电流I,则 0 NB0 S , L0 顺向串联后,设I不变,则 B 2 B0
2、感生电场是:( )A (A)由变化的磁场激发,是无源场 (B)由电荷激发,是有源场。 (C)由电荷激发,是无源场。 (D)由变化的磁场激发,是有源场。 解:根据感生电场性质 三、计算题 1、如图所示,在两无限长载流导线组成的平面内, 有一固定不动的矩形导体回路。两电流方向相反,若 I I 0 cos t I 0, 有电流, (式中, 为大于0的常数)。求线 圈中的感应电动势。
解:根据法拉第电磁感应定律、 磁矩概念判断
2、一闭合导体环,一半在匀强磁场中,另一半在 磁场外,为了环中感生出顺时针方向的电流,则 应:( )B (A)使环沿轴正向平动。 (B)使环沿轴正向平动。 (C)环不动,增强磁场的磁感应强度。 (D)使环沿轴反向平动。 解:根据法拉第电磁感 应定律判断
• 3、如图,长度为l的直导线ab在均匀磁场B中以速 度 v 移动,直导线ab中的电动势为( ) D (A)Blv. B)Blvsinα. (C)Blvcosα .(D) 0.

电磁感应习题课

电磁感应习题课

作业79.一半径r=10cm的圆形闭合导线回路置于均匀磁 场B ( B=0.80T)中,B与回路平面正交。若圆形回路的半径 从t=0开始以恒定的速率(dr/dt=-80cm/s)收缩,则在t=0时 刻闭合回路的感应电动势的大小是多少?如要求感应电动 势保持这一数值,则闭合回路面积应以怎样的恒定速率收 缩?
作业84.无限长直导线载有电流I,其旁放置一段长度为l与 载流导线在同一平面内且成的导线。计算当该导线在平面上 以垂直于载流导线的速度v平移到该导线的中点距载流导线 为a时,其上的动生电动势,并说明其方向。
a I
60°
l
孙秋华
Harbin Engineering University
Ⅱ 感生电动势的计算 利用法拉第电磁感应定律
1. 求长度为L的金属杆在均匀磁场B中绕平行于磁场方向的定 轴转动时的动生电动势。已知杆相对于均匀磁场B的方位 角为,杆的角速度为 ,转向如图所示。
B


孙秋华
L
Harbin Engineering University
解: ab
( v B ) dl
b 0
vBdl sin
另外一边产生的动生电动势与2大小相等绕向相同
孙秋华
Harbin Engineering University
2 3 ac 1 2 2 [ ln ] 2π a 3 a
其方向为顺时针
0 Iv l
C I D a A
孙秋华
Harbin Engineering University
6.理解涡旋电场和位移电流的概念。理解变化磁场引起电 场和变化电场引起磁场的两个基本规律,是电磁感应定 律和安培环路定律相应的推广。掌握麦克斯韦方程组的 积分形式。掌握电磁波的性质及波印廷矢量

电磁感应-习题课

电磁感应-习题课

20 20 2a 2a
2 2a2
24.一半径为R的无限长柱形导体上均匀流有电流I,该
导体材料的磁导率为μ0,则在导体轴线上一点的磁场
能量密度wmo= 0 ;在与导体轴线相距r处.(r<R)的
磁场能量密度wmr=
.
I 2r2
H I 1 ( I r 2 ) Ir
2r 2r R 2
(A) 1.5×106V/m; (B)1.5×108V/m; (C)3.0×106V/m; (D)3.0×108V/m.
1 2

0
E
2

B2
20
[B
]
E cB
22.有两个长直密绕螺线管,长度及线圈匝数均相同,半
径分别为r1和r2,管内充满均匀介质,其磁导率分别为μ1
和μ2,设r1 :r2 = 1 :2 , μ1:μ2 =2:1,其自感之比
杆的一端接一个N匝的矩形线圈,线圈的一部分在均匀
磁场B中,设杆的微小振动规律为 x A cost 线圈
随杆振动时,线圈中的感应电动势为
.
i

N
d dt

N
d (Bbx) dt

NBbAsin
t
6.如图所示,电量Q均匀分布在一半径为R、长为
L(L>>R)的绝缘长圆筒上,一单匝矩形线圈的一条边与
圆筒的轴线相重合.若筒以角速度 线性减速旋转.则线圈中感应电流为
0(1
0.
t t0)
线圈回路的通量等于零.
7.如图所示,一半径为r的很小的金属环,在初始时刻与
一半径为a(a>>r)的大金属圆环共面且同心,在大圆环
中通以恒定的电流I,方向如图.如果小圆环以匀角速绕

电磁感应习题课

电磁感应习题课

高二物理简报 电磁感应的综合应用【知识点一】电磁感应中的电路问题、与力学综合问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于 。

(2)该部分导体的电阻或线圈的电阻相当于电源的 ,其余部分是 。

2.电源电动势和路端电压(1)电动势:E =Bl v 或E = 。

(2)路端电压:U =IR = 。

3.安培力的大小⎭⎪⎬⎪⎫感应电动势:E =Bl v感应电流:I =E R 安培力公式:F =BIl ⇒F =B 2l 2vR4.安培力的方向(1)先用 确定感应电流方向,再用 确定安培力方向。

(2)根据楞次定律,安培力方向一定和导体切割磁感线运动方向 。

[试一试]1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感应强度为B ,方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻。

一根与导轨接触良好、有效阻值为R2的金属导线ab 垂直导轨放置,并在水平外力F 的作用下以速度v 向右匀速运动,则(不计导轨电阻)( )A .通过电阻R 的电流方向为P →R →MB .a 、b 两点间的电压为BL vC .a 端电势比b 端高D .外力F 做的功等于电阻R 上发出的焦耳热2、如图所示,ab 和cd 是位于水平面内的平行金属轨道,轨道间距为l ,其电阻可忽略不计。

ac 之间连接一阻值为R 的电阻,ef 为一垂直于ab 和cd 的金属杆,它与ab 和cd 接触良好并可沿轨道方向无摩擦地滑动,其电阻可忽略。

整个装置处在匀强磁场中,磁场方向垂直于图中纸面向里,磁感应强度为B 。

当施外力使杆ef 以速度v 向右匀速运动时,杆ef 所受的安培力为( )A.v B 2l 2RB.v Bl RC.v B 2l RD.v Bl 2R【重难点突破一】电磁感应与电路知识的综合应用1.对电磁感应电源的理解(1)电源的正、负极可用右手定则或楞次定律判定。

(2)电源电动势的大小可由E =Bl v 或E =n ΔΦΔt 求得。

13 电磁学:第20、21章 习题课及部分习题解答

13 电磁学:第20、21章 习题课及部分习题解答

Zhang Shihui
2) dΨmA = M dI = 6.28×10−4 × (−50) = −3.14×10−6 (Wb/s)
dt
dt
3) ε = − dΨmA = 3.14 ×10−4 (V)
dt
题.一螺绕环单位长度上的线圈匝数为n =10匝/cm。环
心材料的磁导率μ =μ0。求在电流强度I为多大时,线圈 中磁场的能量密度w =1J/m3? (μ0 =4π×10-7 T·m/A)
正方向如箭头所示,求直导线中的感生电动势。
解:设直导线中通电流i,计算直导
线在线圈中产生的磁通量ϕ ;通过 y
计算互感系数M=ϕ/i,进而求感生电
A yDI
动势。
O
x E Cx
建立如图所示的坐标系,y沿直导线。 b
取如图所示的窄带作为微元 dS = 2 ydx
B
h
其中 y = tan 30ο = 3
解: ε ac = ε ab + εbc

εab
=

d Φ扇形Oab dt
=

d dt
⎛ ⎜⎜⎝

3 4
R2B
⎞ ⎟⎟⎠
=
3R2 d B 4 dt
第20、21章 电磁感应 电磁波
练习册·第20章 电磁感应·第8题
εbc
=

d ΦΔObc dt
= − d [− π R2
dt 12
B] =
π R2
12
解:根据充电方向知Æ极板间场 强竖直向下。
由于充电电流 i 的增加 dD向下且
变大。
dt
+i
P⊗H E

由方向成右手螺 旋定则。

【大学物理bjtu】磁习题课2(磁感应)

【大学物理bjtu】磁习题课2(磁感应)

∫∫ D ⋅ dS = ∫∫∫ ρdV
S V
通量
∫∫ B ⋅ dS = 0
dΦ ∂B ∫LE ⋅ dl = − dt = −∫∫S ∂t ⋅ dS ∂D ∫LH ⋅ dl = ∫∫S jC ⋅ dS + ∫∫S ∂t ⋅ dS
S
环流
要求: 要求:公式的精确表达以及 每个公式的物理意义. 每个公式的物理意义.
位移电流密度
∂D jd = ∂t
Id =
dt
=∫
s
∂t
⋅ dS
引入位移电流概念的思想是:变化着的电场 引入位移电流概念的思想是 变化着的电场 也如同传导电流一样,可以激发磁场. 可以激发磁场 也如同传导电流一样 可以激发磁场
8.麦克斯韦方程组的积分形式 麦克斯韦方程组的积分形式: 麦克斯韦方程组的积分形式
ε2 = ∫ E ⋅ dl = ∫ E1 ⋅ dl +∫ E2 ⋅ dl
0 0 R
O
R R
ε ∆OAC = ε OA + ε AC + ε CO ε2 = εAC = ε∆OAC = dB ( S
做辅助线OA、 做辅助线 、 OC, ,
=0
A
v
D
F R C
R2 π dB + S扇形ODF )= ( 3+ ) ∆AOC dt 4 3 dt 2 R π dB 方向: 方向: ε = ( 3 + ) − vBR 方向:左→右 方向:左→右 4 3 dt
ε 21 = − M
是通过回路1(2)的由回路 的由回路2(1)中电流 式中Ψ12 (Ψ21) 是通过回路 的由回路 中电流 I2(I1) 所产生的全磁通。 所产生的全磁通。 dI 1 互感电动势

高中物理(新人教版)选择性必修二课后习题:第二章 电磁感应中的动力学、能量和动量问题【含答案及解析】

高中物理(新人教版)选择性必修二课后习题:第二章 电磁感应中的动力学、能量和动量问题【含答案及解析】

第二章电磁感应习题课:电磁感应中的动力学、能量和动量问题课后篇素养形成必备知识基础练1.(多选)如图所示,有两根和水平方向成α角的光滑平行的金属轨道,间距为l,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B。

一根质量为m的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋于一个最大速度v m,除R外其余电阻不计,则()A.如果B变大,v m将变大B.如果α变大,v m将变大C.如果R变大,v m将变大D.如果m变小,v m将变大金属杆从轨道上滑下切割磁感线产生感应电动势E=Blv,在闭合电路中形成电流I=BlvR,因此金属杆从轨道上滑下的过程中除受重力、轨道的弹力外还受安培力F作用,F=BIl=B 2l2vR,先用右手定则判定感应电流方向,再用左手定则判定出安培力方向,如图所示。

根据牛顿第二定律,得mg sin α-B 2l2vR=ma,当a=0时,v=v m,解得v m=mgRsinαB2l2,故选项B、C正确。

2.(多选)如图所示,两足够长的平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成矩形闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2∶1。

用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够长时间以后()A.金属棒ab、cd都做匀速运动B.金属棒ab上的电流方向是由b向aC.金属棒cd所受安培力的大小等于2F3D.两金属棒间距离保持不变ab、cd进行受力和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab速度小于金属棒cd速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向是由b到a,A、D错误,B正确;以两金属棒整体为研究对象有F=3ma,隔离金属棒cd分析F-F安=ma,可求得金属棒cd所受安培力的大小F安=23F,C正确。

3.如图所示,纸面内有一矩形导体闭合线框abcd,ab边长大于bc边长,置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速完全进入磁场,两次速度大小相同,方向均垂直于MN。

电磁感应习题课

电磁感应习题课

的感应电流,在i随时间增大的过程中,电阻消耗的功率
F
a
b 电阻
A.等于F的功率
B.等于安培力的功率的绝对值
C.等于F与安培力合力的功率 D.小于iE
3.两根相距为L的足够长的金属直角导轨如图所示放置,它们各有
一边在同一水平面内,另一边垂直于水平面。质量均为m的金属细
杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均
2.如图所示,位于一水平面内的、两根平行的光滑金属导轨,处在
匀强磁场中,磁场方向垂直于导轨所在的平面,导轨的一端与一电阻相
连;具有一定质量的金属杆ab放在导轨上并与导轨垂直。现用一平行于
导轨的恒力F拉ab,使它由静止开始向右运动。杆和导轨的电阻、感应
电流产生的磁场均可不计。用E表示回路中的感应电动势,i表示回路中
面转化为线框中的电能,另一方面使线框动能增加 C.从ab边出磁场到线框全部出磁场的过程中,F所做的功等
于线框中产生的电能 D.从ab边出磁场到线框全部出磁场的过程中,F所做的功
小于线框中产生的电能
2.如图,边长L的闭合正方形金属线框的电阻R,以速度v匀 速穿过宽度d的有界匀强磁场,磁场方向与线框平面垂直,磁 感应强度B,若L<d,线框穿过磁场的过程中产生的焦耳热为 ___________;若L>d,线框穿过磁场的过程中产生的焦耳热 为________________.
R1 R2 l a b M N P Q B v
10.如图所示,顶角θ=45º的金属导轨MON固定在水平面内,导轨处 在方向竖直、磁感应强度为B的匀强磁场中。一根与ON垂直的导体棒在 水平外力作用下以恒定速度v0沿导轨MON向右滑动,导体棒的质量 为m,导轨与导体棒单位长度的电阻均为r。导体棒与导轨接触点为a和 b,导体棒在滑动过程中始终保持与导轨良好接触。t=0时,导体棒位于 顶角O处。求:⑴t时刻流过导体棒的电流强度I和电流方向。⑵导体棒 作匀速直线运动时水平外力F的表达式。⑶导休棒在0-t时间内产生的焦 耳热Q。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
2
a
b
2
结束 目录
3 一圆形极板电容器,极板的面积为 S ,两极板的间距为 d 。一根长为d 的极细 的导线在极板间沿轴线与两板相连,已知细 导线的电阻为 R,两极板外接交变电压 U =U0sinω t,求: (1)细导线中的电流; (2)通过电容器的位移电流; (3)通过极板外接线中的电流; (4)极板间离轴线为r 处的磁场强度。设r 小于极板的半径。
.
结束 目录
已知:S、d、 R、 U =U sinω t
0
求:(1)I, (2)Id , (3)I ´ (4)H
解:(1)
U U 0 ωt sin I= = R R
(2)
(3)
d U 0S U Id = C ω ωt 0 cos = dt d
I ´ = I + Id
U 0 sin 0S U ω t+ ω ωt 0 cos = R d
结束 目录
H2pr = I + Id 2 p r U 0 sin 0 Uω t ω ωt + 0 cos = R d
2 p r 1 U 0 ω t + 0 Uω ωt sin H= 0 cos 2pr R d
.
(4)
H
dl = I ´
结束 目录
× ×
B
× ×
× × × × × ×d Φ . E dl = dt l R2 l 2 d B ( ) dt = 2 2 = E .dl
a
0
a
×
l
0 b π π = E cos dl + E cos q dl + E cos dl
= a E. d l = ab
0 0 0 0 0
结束 目录
2 在半径为R的圆柱形体积内充满 磁感应强度为B的均匀磁场,有一长为l 的金 属棒放在磁场中,如图所示,设dB/dt为已 知,求棒两端的电势差。
× × × × × × × × × ×
× ×
B
o
× × ×
R b
a
×
l
结束 目录
已知:R,dB/dt, I 。 求: ab 解:作一假想的回路aoba
I2 I1
感生电场 r B Ei 2 t 1 Wm LI 2 2
自感系数
L

I
M
1 磁场能量 Wm V BHdV 2
1 在两平行导线的平面内,有一矩 形线圈,如图所示。如导线中电流I随时间 变化,试计算线圈中的感生电动势。
l2 I I d1
l1
d2
结束 目录
已知: I, I1, I2, d1, d2 。 求:i 解: Φ =Φ 1 Φ 2 m I I1 d1+ I2 m I I1 d2+ I2 ln ln = 2 2 π π d1 d2 m I I1 d1+ I2 d2+ I2 ln ln = 2 π d1 d2 m I I1 ( d1+ I2 )d2 ln = 2 ( d2+ I2 )d1 π m I1 ( d1+ I2 )d2 d I d Φ ln i = d t = 2 ( d2+ I2 )d1 d t π
电磁感应习题课 电磁感应 产生原因分类
d dt
激发方式分类
l(v B) dl
动生电动势
感生电动势
Ei dl
自感电动势
dI L L dt
B s ds t
互感电动势 dI 2 12 M dt 互感系数 12 21
相关文档
最新文档