(教师1份)北师大版七年级数学下册期中试题含答案

合集下载

北师大版数学七年级下册《期中考试卷》含答案

北师大版数学七年级下册《期中考试卷》含答案

北 师 大 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分) 1.下列各式中计算结果为5x 的是( ) A .32x x + B .32x xC .3x xD .72x x -2.计算()2019201821.53⎛⎫-⨯ ⎪⎝⎭的结果是( ) A .32-B .32C .23-D .233.计算63a a ÷,正确的结果是( ) A .2B .3aC .2aD .3a4.计算23(3)2x x -的结果是( ) A .65x -B .66x -C .55x -D .56x -5.下列多项式相乘,不能用平方差公式计算的是( ) A .(23)(32)x y y x -- B .(23)(23)x y x y -+--C .(2)(2)x y y x -+D .(3)(3)x y x y +-6.下列等式成立的是( ) A .22(1)(1)x x --=- B .22(1)(1)x x --=+ C .22(1)(1)x x -+=+D .22(1)(1)x x +=-7.计算3(42)2x x x -+÷的结果正确的是( ) A .221x -+B .221x +C .321x -+D .482x x -+8.下列各图中,1∠与2∠是对顶角的是( ) A .B .C .D .9.如图,下列结论中错误的是( )A .1∠与2∠是同旁内角B .1∠与6∠是内错角C .2∠与5∠是内错角D .3∠与5∠是同位角10.如图,//AB EF ,设90C ∠=︒,那么x 、y 和z 的关系是( )A .y x z =+B .90x y z +-=︒C .180x y z ++=︒D .90y z x +-=︒二.填空题(共7小题,满分28分,每小题4分) 11.已知(1)(1)80m n m n +-++=,则m n += .12.在关系式31y x =-中,当x 由1变化到5时,y 由 变化到 .13.已知,梯形的高为8cm ,下底是上底的3倍,设这个梯形的上底为xcm ,面积为2Scm ,这个问题中,常量是 ,变量是 .14.若2249x kxy y ++是一个完全平方式,则k 的值为 .15.如图,在ABC ∆中,以点C 为顶点,在ABC ∆外画ACD A ∠=∠,且点A 与D 在直线BC 的同一侧,再延长BC 至点E ,在作的图形中,A ∠与 是内错角;B ∠与 是同位角;ACB ∠与 是同旁内角.16.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为 .17.已知,在同一平面内,50ABC ∠=︒,//AD BC ,BAD ∠的平分线交直线BC 于点E ,那么AEB ∠的度数为 . 三.解答题(共3小题,每小题6分,满分18分)18011(2(2)()|3-+-+--19.化简:222(23)(23)(3)x x y x y x y +-+----,其中2x =-,1y =-.20.(1)如图,以B 为顶点,射线BC 为一边,用直尺和圆规作CBE ∠,使CBE CAD ∠=∠; (2)在所作图中,BE 与AD 平行吗?为什么?四.解答题(共3小题,每小题8分,满分24分)21.如图,在四边形ABCD 中,连接BD ,点E 、F 分别在AB 和CD 上,连接CE 、AF ,CE 与AF 分别交BD 于点N 、M .已知AMD BNC ∠=∠.(1)若110AFC ∠=︒,求ECD ∠的度数;(2)若ABD BDC ∠=∠,试判断ECD ∠与BAF ∠之间的数量关系,并说明理由.22.已知24a =,26b =,212c = (1)求证:1a b c +-=; (2)求22a b c +-的值.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?五.解答题(共2小题,每小题10分,满分18分) 24.观察下列关于自然数的等式: (1)223415-⨯= (1) (2)225429-⨯= (2) (3)2274313-⨯= (3) ⋯根据上述规律解决下列问题: (1)完成第五个等式:2114-⨯2= ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性. 25.感知与填空:如图①,直线//AB CD .求证:B D BED ∠+∠=∠.阅读下面的解答过程,井填上适当的理由. 解:过点E 作直线//EF CD 2(D ∴∠=∠ )//AB CD (已知),//EF CD ,//(AB EF ∴ ) 1(B ∴∠=∠ ) 12BED ∠+∠=∠,(B D BED ∴∠+∠=∠ )应用与拓展:如图②,直线//AB CD .若22B ∠=︒,35G ∠=︒,25D ∠=︒,则E F ∠+∠= 度. 方法与实践:如图③,直线//AB CD .若60E B ∠=∠=︒,80F ∠=︒,则D ∠= 度.答案与解析一.选择题(共10小题,满分30分,每小题3分) 1.下列各式中计算结果为5x 的是( ) A .32x x +B .32x xC .3x xD .72x x -[解析]A .不是同类项不能合并,所以A 选项不符合题意; B .325x x x =.符合题意;C .34x x x =,不符合题意;D .不是同类项不能会并,不符合题意.故选:B .2.计算201820192( 1.5)()3-⨯的结果是( ) A .32-B .32C .23-D .23[解析]201820192( 1.5)()3-⨯2018201822(1.5)()33=⨯⨯2018322()233=⨯⨯ 2018213=⨯213=⨯23=. 故选:D .3.计算63a a ÷,正确的结果是( ) A .2B .3aC .2aD .3a[解析]由同底数幂除法法则:底数不变,指数相减知,63633a a a a -÷==.故选:D . 4.计算23(3)2x x -的结果是( ) A .65x -B .66x -C .55x -D .56x -[解析]23(3)2x x -56x =-,故选:D .5.下列多项式相乘,不能用平方差公式计算的是( ) A .(23)(32)x y y x --B .(23)(23)x y x y -+--C .(2)(2)x y y x -+D .(3)(3)x y x y +-[解析](23)(32)x y y x --不能利用平方差公式计算,故选:A . 6.下列等式成立的是( ) A .22(1)(1)x x --=- B .22(1)(1)x x --=+C .22(1)(1)x x -+=+D .22(1)(1)x x +=-[解析]A .22(1)(1)x x --=+,故本选项不合题意; B .22(1)(1)x x --=+,正确;C .22(1)(1)x x -+=-,故本选项不合题意;D .22(1)(1)x x +=+,故本选项不合题意.故选:B .7.计算3(42)2x x x -+÷的结果正确的是( ) A .221x -+B .221x +C .321x -+D .482x x -+[解析]3(42)2x x x -+÷3(4)222x x x x =-÷+÷221x =-+故选:A .8.下列各图中,1∠与2∠是对顶角的是( ) A .B .C .D .[解析]A 、1∠与2∠不是对顶角,故A 选项不符合题意; B 、1∠与2∠不是对顶角,故B 选项不符合题意;C 、1∠与2∠是对顶角,故C 选项符合题意;D 、1∠与2∠不是对顶角,故D 选项不符合题意.故选:C .9.如图,下列结论中错误的是( )A .1∠与2∠是同旁内角B .1∠与6∠是内错角C .2∠与5∠是内错角D .3∠与5∠是同位角[解析]A 、1∠与2∠是同旁内角,正确,不合题意;B 、1∠与6∠是内错角,正确,不合题意; C 、2∠与5∠是内错角,错误,符合题意;D 、3∠与5∠是同位角,正确,不合题意;故选:C .10.如图,//AB EF ,设90C ∠=︒,那么x 、y 和z 的关系是( )A .y x z =+B .90x y z +-=︒C .180x y z ++=︒D .90y z x +-=︒[解析]过C 作//CM AB ,延长CD 交EF 于N ,则CDE E CNE ∠=∠+∠,即CNE y z ∠=-//CM AB ,//AB EF ,////CM AB EF ∴,1ABC x ∴∠==∠,2CNE ∠=∠,90BCD ∠=︒,1290∴∠+∠=︒,90x y z ∴+-=︒.故选:B .二.填空题(共7小题,满分28分,每小题4分) 11.已知(1)(1)80m n m n +-++=,则m n += . [解析](1)(1)80m n m n +-++=,22()180m n +-=, 2()81m n +=,9m n +=±,故答案为:9±.12.在关系式31y x =-中,当x 由1变化到5时,y 由 变化到 . [解析]当1x =时,代入关系式31y x =-中,得312y =-=;当5x =时,代入关系式31y x =-中,得15114y =-=. 故答案为:2,14.13.已知,梯形的高为8cm ,下底是上底的3倍,设这个梯形的上底为xcm ,面积为2Scm ,这个问题中,常量是 ,变量是 .[解析]常量是梯形的高,变量是梯形的上下底和面积, 故答案为:梯形的高,梯形的上下底和面积.14.若2249x kxy y ++是一个完全平方式,则k 的值为 . [解析]2249x kxy y ++是一个完全平方式,12k ∴=±,故答案为:12±15.如图,在ABC ∆中,以点C 为顶点,在ABC ∆外画ACD A ∠=∠,且点A 与D 在直线BC 的同一侧,再延长BC 至点E ,在作的图形中,A ∠与 是内错角;B ∠与 是同位角;ACB ∠与 是同旁内角.[解析]如图所示,A ∠与ACD ∠、ACE ∠是内错角;B ∠与DCE ∠、ACE ∠是同位角;ACB ∠与A ∠、B ∠是同旁内角.故答案是:ACD ∠、ACE ∠;DCE ∠、ACE ∠;A ∠、B ∠.16.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为 . [解析]数字55000用科学记数法表示为45.510⨯. 故答案为:45.510⨯.17.已知,在同一平面内,50ABC ∠=︒,//AD BC ,BAD ∠的平分线交直线BC 于点E ,那么AEB ∠的度数为 . [解析]分两种情况:①当D 点在A 点左侧时,如图1所示,此时AE 交CB 延长线于E 点,//AD BC ,50DAB ABC ∴∠=∠=︒.AE 平分DAB ∠,1252EAB DAB ∴∠=∠=︒, 502525AEB ∴∠=︒-︒=︒;②当D 点在A 点右侧时,如图2所示,此时AE 交BC 于E 点,//AD BC ,180********DAB ABC ∴∠=︒-∠=︒-︒=︒. AE 平分DAB ∠,1652EAB DAB ∴∠=∠=︒, 180506565AEB ∴∠=︒-︒-︒=︒.综上所述,25AEB ∠=︒或65︒. 故答案为25︒或65︒.三.解答题(共3小题,满分18分,每小题6分)18011(2(2)()|3-+-+--[解析]原式34513=+-+-19.化简:222(23)(23)(3)x x y x y x y +-+----,其中2x =-,1y =-. [解析]原式2222224969x x y x xy y =+--+-225618x xy y =+-当2x =-,1y =-时,原式5462181=⨯+⨯-⨯ 14=.20.(1)如图,以B 为顶点,射线BC 为一边,用直尺和圆规作CBE ∠,使CBE CAD ∠=∠; (2)在所作图中,BE 与AD 平行吗?为什么?[解析](1)如图,CBE ∠即为所求;(2)CBE CAD ∠=∠,//BE AD ∴(同位角相等,两条直线平行).四.解答题(共3小题,满分28分,每小题8分)21.如图,在四边形ABCD 中,连接BD ,点E 、F 分别在AB 和CD 上,连接CE 、AF ,CE 与AF 分别交BD 于点N 、M .已知AMD BNC ∠=∠.(1)若110AFC ∠=︒,求ECD ∠的度数;(2)若ABD BDC ∠=∠,试判断ECD ∠与BAF ∠之间的数量关系,并说明理由.[解析](1)AMD BMF ∠=∠,AMD BNC ∠=∠, BMF BNC ∴∠=∠,//AF CE ∴,180AFC ECD ∴∠+∠=︒, 110AFC ∠=︒, 70ECD ∴∠=︒;(2)ECD ∠与BAF ∠相等,理由是:ABD BDC ∠=∠,//AB CD ∴,180AFC BAF ∴∠+∠=︒,180AFC ECD ∠+∠=︒,ECD BAF ∴∠=∠.22.已知24a =,26b =,212c =(1)求证:1a b c +-=;(2)求22a b c +-的值.[解析](1)证明:24a =,26b =,212c =,222462122a b c ∴⨯÷=⨯÷==,1a b c ∴+-=,即1a b c +-=;(2)解:24a =,26b =,212c =,222(2)22a b c a b c +-∴=⨯÷16612=⨯÷8=.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?[解析]如果//PQ MN ,那么AB 与CD 平行.理由如下:如图,//PQ MN ,EAQ ACN ∴∠=∠.又AB 平分EAQ ∠,CD 平分ACN ∠,112EAQ ∴∠=∠,122ACN ∠=∠, 12∴∠=∠,//AB CD ∴,即AB 与CD 平行.五.解答题(共3小题,满分27分,每小题9分)24.观察下列关于自然数的等式:(1)223415-⨯= (1)(2)225429-⨯= (2)(3)2274313-⨯= (3)⋯根据上述规律解决下列问题:(1)完成第五个等式:2114-⨯ 2= ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.[解析](1)22114521-⨯=,故答案为:5;21;(2)第n 个等式为:22(21)441n n n +-=+,证明:2222(21)4441441n n n n n n +-=++-=+.25.感知与填空:如图①,直线//AB CD .求证:B D BED ∠+∠=∠.阅读下面的解答过程,井填上适当的理由.解:过点E 作直线//EF CD2(D ∴∠=∠ )//AB CD (已知),//EF CD ,//(AB EF ∴ )1(B ∴∠=∠ )12BED ∠+∠=∠,(B D BED ∴∠+∠=∠ )应用与拓展:如图②,直线//AB CD .若22B ∠=︒,35G ∠=︒,25D ∠=︒,则E F ∠+∠= 度.方法与实践:如图③,直线//AB CD .若60E B ∠=∠=︒,80F ∠=︒,则D ∠=度.[解析]感知与填空:过点E 作直线//EF CD ,2D ∴∠=∠(两直线平行,内错角相等),//AB CD (已知),//EF CD ,//AB EF ∴(两直线都和第三条直线平行,那么这两条直线也互相平行),1B ∴∠=∠(两直线平行,内错角相等),12BED ∠+∠=∠,B D BED ∴∠+∠=∠(等量代换),故答案为:两直线平行,内错角相等;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换.应用与拓展:过点G 作//GN AB ,则//GN CD ,如图②所示:由感知与填空得:E B EGN ∠=∠+∠,F D FGN ∠=∠+∠,22253582E F B EGN D FGN B D EGF ∴∠+∠=∠+∠+∠+∠=∠+∠+∠=︒+︒+︒=︒, 故答案为:82.方法与实践:设AB 交EF 于M ,如图③所示:180180806040AME FMB F B ∠=∠=︒-∠-∠=︒-︒-︒=︒,由感知与填空得:E D AME ∠=∠+∠,604020D E AME ∴∠=∠-∠=︒-︒=︒,故答案为:20.。

北师大版七年级下册数学《期中考试试题》及答案

北师大版七年级下册数学《期中考试试题》及答案
因为∠AED=∠C(已知)
所以DE∥BC()
所以∠B+∠BDE=180°()
因为∠DEF=∠B(已知)
所以∠DEF+∠BDE=180°()
所以___∥___()
所以∠1=∠2().
23.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.
(1)如图1,连接CE,
A. y=8.2xB. y=100-8.2xC. y=8.2x-100D. y=100+8.2x
8.如图,由∠1=∠2,则可得出()
A.AB∥CDB.AD∥BCC.A D∥BC且AB∥CDD.∠3=∠4
9.已知一个长方形的长为a,宽为b,它的面积为6,周长为10,则a2+b2的值为( )
A 37B. 30C. 25D. 13
10.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()
A B. C. D.
11.如图,AD是△ABC的中线,△ABC的面积为10cm2,则△ABD的面积是()cm2.
A.5B.6C.7D.8
12.如图①,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图像如图②所示,则当x=9时,点R应运动到( )
[详解]解:∵骆驼的体此题考查常量和变量问题,函数的定义:设x和y是两个变量,若对于每个值x的每个值,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,x是自变量.
3.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()
6.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有()

北师大版初中数学七年级下册期中测试卷(较易)(含答案解析)

北师大版初中数学七年级下册期中测试卷(较易)(含答案解析)

北师大版初中数学七年级下册期中测试卷(较易)(含答案解析)考试范围:第一.二.三单元;   考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:−3xy(4y−2x−1)=−12xy2+6x2y+▫,▫的地方被钢笔水弄污了,你认为▫内应为( )A. 3xyB. −3xyC. −1D. 12. 下列计算中正确的是( )A. (−a n)2=a n+2B. (−a3)4=(−a4)3C. (a4)4=a4⋅a4D. (a4)4=(a2)83. 如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是( )A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧4. 如图,∠1=120°,要使a//b,则∠2的大小是( )A. 60°B. 80°C. 100°D. 120°5. 如图所示,已知AB//EF,那么∠BAC+∠ACE+∠CEF=( )A. 180°B. 270°C. 360°D. 540°6. 变量x与y之间的关系是y=−1x2+1,当自变量x=2时,因变量y的值是( )2A. −2B. −1C. 1D. 27. 如图是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( )A. 这天15点时的温度最高B. 这天3点时的温度最低C. 这天最高温度与最低温度的差是13℃D. 这天21点时的温度是30℃8. 甲、乙两人在100米赛跑中,路程s(m)与时间t(s)的关系如图所示,根据图象,下列结论错误的是( )A. 甲比乙先到达终点B. 甲、乙速度相差2m/sC. 甲的速度为10m/sD. 乙跑完全程需12s9. 计算x2⋅x3结果是( )A. 2x5B. x5C. x6D. x810. 在等式x2⋅(−x)⋅=x11中,括号内的代数式为( )A. x8B. (−x)8C. −x9D. −x811. 如图,DE//BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为( )A. 20°B. 35°C. 55°D. 70°12. 下图是统计一位病人的体温变化图,则这位病人在16时的体温约是( )A. 37.8℃B. 38℃C. 38.7℃D. 39.1℃第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 一个长方体的长,宽,高分别是3x−4,2x和x,则它的表面积是.14. 已知直线m//n,将一块含30°角的直角三角板ABC,按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=18°,则∠2的度数为______15. 如图,已知直线AB与直线CD相交于点O,EO⊥CD,垂足为O.若∠AOC=35°,则∠BOE 的度数为____ ∘.16. 小颖画了一个边长为5cm的正方形,如果将正方形的边长增加x(cm),那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为.三、解答题(本大题共9小题,共72.0分。

北师大版七年级下册数学期中考试卷(加答案)

北师大版七年级下册数学期中考试卷(加答案)

北师大版七年级下册数学期中考试卷(加答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c2.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5 4.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)5.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB6.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b10.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.绝对值不大于4.5的所有整数的和为________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4+x x -有意义,+1x =___________.5.若264a =,则3a =________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3759x y x y -=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x y x y ⎧+=⎪⎨⎪+-=⎩2.解不等式组()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩并在数轴上表示出不等式组的解集.3.如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.4.如图,已知∠1,∠2互为补角,且∠3=∠B ,(1)求证:∠AFE=∠ACB(2)若CE 平分∠ACB ,且∠1=80°,∠3=45°,求∠AFE 的度数.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、A4、C5、C6、C7、C8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、03、15°4、15、±26、±3三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.2、-1≤x<23、(1)证明见解析;(2)75.4、(1)详略;(2)70°.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、安排25人加工甲部件,则安排60人加工乙部件,共加工200套.。

北师大版七年级下册数学《期中考试题》(带答案)

北师大版七年级下册数学《期中考试题》(带答案)

北师大版七年级下册数学期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分)1.计算2(2)x 的结果是( )A .22xB .24xC .4xD .2x2.下列语句不是命题的是( )A .连结ABB .对顶角相等C .相等的角是对顶角D .同角的余角相等 3.下列运算不正确的是( )A .235a a a =B .3412()y y =C .33(2)8x x -=-D .3362x x x += 4.已知α∠与β∠互补,150α∠=︒,则β∠的余角的度数是( )A .30︒B .60︒C .45︒D .90︒5.当3x =时,函数2y x =-的值是( )A .2-B .1-C .0D .16.某种商品的售价为每件150元,若按现售价的8折进行促销,设购买x 件需要y 元,则y 与x 间的函数表达式为( )A .0.8y x =B .30y x =C .120y x =D .150y x =7.若2()(3)x px q x -+-展开后不含x 的一次项,则p 与q 的关系是( )A .3p q =B .30p q +=C .30q p +=D .3q p =8.如图,已知//AB CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若145∠=︒,235∠=︒,则3(∠= )A .65︒B .70︒C .75︒D .80︒9.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y (元)与通话时间t (分钟)之间的函数图象是图中的( )A .B .C .D .10.运用乘法公式计算2(2)a -的结果是( )A .244a a -+B .224a a -+C .24a -D .244a a --二.填空题(共7小题,满分28分,每小题4分)11.已知2m a =,5n a =,则m n a += .12.某计算程序编辑如图所示,当输入x = 时,输出的3y =.13.如图,直线a ,b 被直线c 所截,若//a b ,1110∠=︒,240∠=︒,则3∠= ︒.14.甲骑自行车、乙骑摩托沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图所示.根据图象可知:①先出发的是 (填”甲”或”乙” );②甲的行驶速度是 (公里/分);③乙的行驶速度是 (公里/分).15.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则AOC DOB ∠+∠= .16.若22(3)16x m x +-+是完全平方式,则m 的值等于 .17.设2017a x =-,2019b x =-,2018c x =-,若2234a b +=,则2c 的值是 .三.解答题(共3小题,满分18分,每小题6分)18.计算:(1)96()()()x y y x x y -÷-÷-;(2)62543512()8(2)()2x x x x x --+÷-.19.若2210x x --=,先化简,后求出2(1)(2)x x x -+-的值.20.一个角的补角加上10︒后等于这个角的余角的3倍,求这个角.四.解答题(共3小题,满分24分,每小题8分)21.已知:如图,//AC BD ,A D ∠=∠,求证:E F ∠=∠.22.如图,某中学校园内有一块长为(3)a b +米,宽为(2)a b +米的长方形地块,学校计划在中间留一块边长为()a b +米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a 、b 的代数式表示)(2)当2a =,4b =时,求绿化的面积.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?五.解答题(共2小题,满分20分,每小题10分)24.某市A ,B 两个蔬菜基地得知四川C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x 的值:(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案; (3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(0)m >,其余线路的运费不变,试讨论总运费最小的调动方案.25.如图,已知//AB CD ,现将一直角三角形PMN 放入图中,其中90P ∠=︒,PM 交AB 于点E ,PN 交CD 于点F(1)当PMN ∆所放位置如图①所示时,则PFD ∠与AEM ∠的数量关系为 ;(2)当PMN ∆所放位置如图②所示时,求证:90PFD AEM ∠-∠=︒;(3)在(2)的条件下,若MN 与CD 交于点O ,且30DON ∠=︒,15PEB ∠=︒,求N ∠的度数.答案与解析一.选择题(共10小题,满分30分,每小题3分)1.计算2(2)x 的结果是( )A .22xB .24xC .4xD .2x【解析】2222(2)24x x x =⨯=.故选:B .2.下列语句不是命题的是( )A .连结ABB .对顶角相等C .相等的角是对顶角D .同角的余角相等 【解析】A 、连结AB ,不是命题,符合题意;B 、对顶角相等,是命题,不符合题意; C 、相等的角是对顶角,是命题,不符合题意;D 、同角的余角相等,是命题,不符合题意; 故选:A .3.下列运算不正确的是( )A .235a a a =B .3412()y y =C .33(2)8x x -=-D .3362x x x +=【解析】A .23235a a a a +==,故本选项不合题意;B .343412()y y y ⨯==,故本选项不合题意;C .3333(2)(2)8x x x -=-=-,故本选项不合题意;D .3332x x x +=,故本选项符合题意.故选:D . 4.已知α∠与β∠互补,150α∠=︒,则β∠的余角的度数是( )A .30︒B .60︒C .45︒D .90︒【解析】α∠与β∠互补,180αβ∴∠+∠=︒,150α∠=︒,18030βα∴∠=︒-∠=︒,β∴∠的余角为:903060︒-︒=︒,故选:B .5.当3x =时,函数2y x =-的值是( )A .2-B .1-C .0D .1【解析】当3x =时,函数2321y x =-=-=,故选:D .6.某种商品的售价为每件150元,若按现售价的8折进行促销,设购买x 件需要y 元,则y 与x 间的函数表达式为( )A .0.8y x =B .30y x =C .120y x =D .150y x =【解析】每件商品的实际售价为:1500.8120⨯=(元),y ∴与x 间的函数表达式为:120y x =.故选:C . 7.若2()(3)x px q x -+-展开后不含x 的一次项,则p 与q 的关系是( )A .3p q =B .30p q +=C .30q p +=D .3q p =【解析】232232()(3)333(3)(3)3x px q x x x px px qx q x p x p q x q -+-=--++-=+--++-,结果不含x 的一次项,30q p ∴+=.故选:C .8.如图,已知//AB CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若145∠=︒,235∠=︒,则3(∠= )A .65︒B .70︒C .75︒D .80︒ 【解析】//AB CD ,145C ∴∠=∠=︒,3∠是CDE ∆的一个外角,32453580C ∴∠=∠+∠=︒+︒=︒,故选:D .9.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y (元)与通话时间t (分钟)之间的函数图象是图中的( )A .B .C .D .【解析】由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.40.4(010)y t t ∴=-,故只有选项D 符合题意.故选:D .10.运用乘法公式计算2(2)a -的结果是( )A .244a a -+B .224a a -+C .24a -D .244a a --【解析】原式244a a =-+,故选:A .二.填空题(共7小题,满分28分,每小题4分)11.已知2m a =,5n a =,则m n a +=__________.【解析】5210m n m n a a a +==⨯=,故答案为:10.12.某计算程序编辑如图所示,当输入x =__________时,输出的3y =.【解析】当3x 时,3y =3,解得12x =;当3x <时,3y =即353x +=,解得:23x =-.故答案为:12或23-. 13.如图,直线a ,b 被直线c 所截,若//a b ,1110∠=︒,240∠=︒,则__________︒.【解析】//a b ,41110∴∠=∠=︒,342∠=∠-∠,31104070∴∠=︒-︒=︒,故答案为:70.14.甲骑自行车、乙骑摩托沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图所示.根据图象可知:①先出发的是__________(填”甲”或”乙” )②甲的行驶速度是__________(公里/分)③乙的行驶速度是__________(公里/分)【解析】(1)甲先出发,10分钟后乙出发;(2)甲20分钟行驶了4公里,则甲的速度40.220==(公里/分);(3)乙10分钟行驶了4公里,则甲的速度40.410==(公里/分). 故答案为甲;0.2;0.4. 15.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则AOC DOB ∠+∠=__________.【解析】设AOD a ∠=,90AOC a ∠=︒+,90BOD a ∠=︒-,所以9090180AOC BOD a a ∠+∠=︒++︒-=︒. 故答案为:180︒.16.若22(3)16x m x +-+是完全平方式,则m 的值等于__________.【解析】22(3)16x m x +-+是完全平方式,2(3)24m x x ∴-=±,解得:7m =或1-,故答案为:7或1-.17.设2017a x =-,2019b x =-,2018c x =-,若2234a b +=,则2c 的值是__________.【解析】2017a x =-,2019b x =-,2234a b +=,22(2017)(2019)34x x ∴-+-=,22(20181)(20181)34x x ∴-++--=,22(2018)2(2018)1(2018)2(2018)134x x x x ∴-+-++---+=, 22(2018)32x ∴-=,2(2018)16x ∴-=,又2018c x =-,216c ∴=.故答案为:16.三.解答题(共3小题,满分18分,每小题6分)18.计算:(1)96()()()x y y x x y -÷-÷-(2)62543512()8(2)()2x x x x x --+÷-【解析】(1)原式96222()()()()2x y x y x y x y x xy y =-÷-÷-=-=-+; (2)原式62512567767128(8)()2282104x x x x x x x x x x =--+÷-=---=--.19.若2210x x --=,先化简,后求出2(1)(2)x x x -+-的值.【解析】2(1)(2)x x x -+- 22212x x x x =-++-2241x x =-+,2210x x --=,221x x ∴-=,∴原式222412(2)12113x x x x =-+=-+=⨯+=.20.一个角的补角加上10︒后等于这个角的余角的3倍,求这个角.【解析】设这个角为x ︒,则它的余角为90x ︒-︒,补角为180x ︒-︒,根据题意,得180103(90)x x ︒-︒+︒=⨯︒-︒,解得40x =,答:这个角为40度.四.解答题(共3小题,满分24分,每小题8分)21.已知:如图,//AC BD ,A D ∠=∠,求证:E F ∠=∠.【解析】证明://AC BD ,12∴∠=∠.又A D ∠=∠,1180A E ∠+∠+∠=︒,2180D F ∠+∠+∠=︒,E F ∴∠=∠.22.如图,某中学校园内有一块长为(3)a b +米,宽为(2)a b +米的长方形地块,学校计划在中间留一块边长为()a b +米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a 、b 的代数式表示)(2)当2a =,4b =时,求绿化的面积.【解析】(1)依题意得:2(3)(2)()a b a b a b ++-+22226322a ab ab b a ab b =+++---2(53)a ab =+平方米.答:绿化面积是2(53)a ab +平方米;(2)当2a =,4b =时,原式202444=+=(平方米).答:绿化面积是44平方米.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?【解析】如果//PQ MN ,那么AB 与CD 平行.理由如下: 如图,//PQ MN ,EAQ ACN ∴∠=∠. 又AB 平分EAQ ∠,CD 平分ACN ∠,112EAQ ∴∠=∠,122ACN ∠=∠, 12∴∠=∠,//AB CD ∴,即AB 与CD 平行.五.解答题(共2小题,满分20分,每小题10分)24.某市A ,B 两个蔬菜基地得知四川C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x 的值:(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案; (3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(0)m >,其余线路的运费不变,试讨论总运费最小的调动方案. 【解析】(1)填表如下:依题意得:20(240)25(40)1518(300)x x x x -+-=+- 解得:200x =两个蔬菜基地调运蔬菜的运费相等时x 的值为200.(2)w 与x 之间的函数关系为:20(240)25(40)1518(300)29200w x x x x x =-+-++-=+由题意得:240040003000x x x x -⎧⎪-⎪⎨⎪⎪-⎩,40240x ∴,在29200w x =+中,20>,w ∴随x 的增大而增大,∴当40x =时,总运费最小,此时调运方案为:(3)由题意得(2)9200wm x=-+,02m ∴<<,(2)中调运方案总费用最小; 2m =时,在40240x 的前提下调运方案的总费用不变; 215m <<时,240x =总费用最小,其调运方案如下:25.如图,已知//AB CD ,现将一直角三角形PMN 放入图中,其中90P ∠=︒,PM 交AB 于点E ,PN 交CD 于点F(1)当PMN ∆所放位置如图①所示时,则PFD ∠与AEM ∠的数量关系为 90PFD AEM ∠+∠=︒ ; (2)当PMN ∆所放位置如图②所示时,求证:90PFD AEM ∠-∠=︒;(3)在(2)的条件下,若MN 与CD 交于点O ,且30DON ∠=︒,15PEB ∠=︒,求N ∠的度数.【解析】(1)作//PG AB ,如图①所示:则//PG CD ,1PFD ∴∠=∠,2AEM ∠=∠,1290P ∠+∠=∠=︒,1290PFD AEM ∴∠+∠=∠+∠=︒,故答案为:90PFD AEM ∠+∠=︒; (2)证明:如图②所示://AB CD ,180PFD BHF ∴∠+∠=︒,90P ∠=︒,290BHF ∴∠+∠=︒,2AEM ∠=∠,90BHF PHE AEM ∴∠=∠=︒-∠,90180PFD AEM ∴∠+︒-∠=︒,90PFD AEM ∴∠-∠=︒;(3)如图③所示:90P ∠=︒,90901575PHE FEB ∴∠=︒-∠=︒-︒=︒, //AB CD ,75PFC PHE ∴∠=∠=︒,PFC N DON ∠=∠+∠,753045N ∴∠=︒-︒=︒.。

北师大版2017-2018学年七年级(下)数学期中模拟题(含答案)

北师大版2017-2018学年七年级(下)数学期中模拟题(含答案)

北师版七年级数学期中模拟试卷题号一二三总分得分第I卷(选择题)评卷人得分一、选择题(每小题3分,共30分)1.计算a5•a3正确的是()A.a2B.a8C.a10D.a15 2.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0D.x≠1 3.若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a 4.计算(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)等于()A.x+74xy2B.x﹣3y+74xy2C.x2﹣3y+74xy2D.x﹣3y+47x5.如图,下列说法中不正确的是()A.∠1和∠3是同旁内角B.∠2和∠3是内错角C.∠2和∠4是同位角D.∠3和∠5是对顶角6.两条直线相交于一点,则共有对顶角的对数为()A.1对B.2对C.3对D.4对7.如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线8.下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥c D.若两条线段不相交,则它们互相平行9.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.10.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米第II卷(非选择题)评卷人得分二、填空题(每小题3分,共18分)11.计算:(﹣ab)2÷a2b=.12.若(x﹣ay)(x+ay)=x2﹣16y2,则a=.13.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.14.如图,圆锥的底面半径r=2cm,当圆锥的高h由小到大变化时,圆锥的体积V也随之发生了变化,在这个变化过程中,变量是(圆锥体积公式:V=13πr2h)15.已知一个长方形的长为5cm,宽为xcm,周长为ycm,则y与x之间的函数表达式为.16.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到校上,放回到了家.情境a,b,c所对应的函数图象分别是(按次序填写a,b,c对应的序号)评卷人得分三、解答题(共8小题,共62分)17.(6分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)18.(8分)观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.19.(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.20.(10分)如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°求:(1)∠3的度数;(2)求∠2的度数.21.(10分)如图,直线AB与CD相交于点O,OE⊥A B.(1)如果∠AOD=140°,那么根据,可得∠BOC=度.(2)如果∠EOD=2∠AOC,求∠AOD的度数.22.(6分)某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)随时间x(小时)之间的关系如图所示,如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,请根据题意回答下列问题:(1)服药后,大约分钟后,药物发挥作用.(2)服药后,大约小时,每毫升血液中含药量最大,最大值是微克;(3)服药后,药物发挥作用的时间大约有小时.23.(6分)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数式)解:∵DE∥BC,∴∠DEF=.()∵EF∥AB,∴=∠AB C.()∴∠DEF=∠AB C.(等量代换)∵∠ABC=40°,∴∠DEF=°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF=°.24.(10分)我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出由图2所表示的数等式:;写出由图3所表示的数等式:;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.参考答案第I卷(选择题)一、选择题(每小题3分,共30分)1.计算a5•a3正确的是()A.a2B.a8C.a10D.a15【答案】B.【解析】试题解析:a5•a3=a5+3=a8.故选:B.2.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1C.x≠0D.x≠1【答案】D【解析】试题解析:由题意可知:x﹣1≠0,x≠1故选:D.3.若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a【答案】C【解析】试题解析:∵4a2﹣9b2=(2a+3b)(2a﹣3b),∴(2a+3b)(2a﹣3b)=4a2﹣9b2,故选:C.4.计算(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)等于()A.x+74xy2B.x﹣3y+74xy2C.x2﹣3y+74xy2D.x﹣3y+47x【答案】B【解析】试题解析:(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)=x﹣3y+74xy2.故选:B.5.如图,下列说法中不正确的是()A.∠1和∠3是同旁内角B.∠2和∠3是内错角C.∠2和∠4是同位角D.∠3和∠5是对顶角【答案】C6.两条直线相交于一点,则共有对顶角的对数为()A.1对B.2对C.3对D.4对【答案】B【解析】试题解析:如图所示,∠1与∠2,∠3与∠4都是对顶角,故两条直线相交于一点,则共有对顶角的对数为2对.故选:B.#网7.如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线【答案】C【解析】试题解析:∵从直线外一点到这条直线上各点所连线段中,垂线段最短,∴过点A作AH⊥PQ于点H,这样做的理由是垂线段最短.21世纪教育网故选:C.8.下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥c D.若两条线段不相交,则它们互相平行【答案】C9.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.【答案】B【解析】试题解析:A、∠1和∠2的是对顶角,不能判断AB∥CD,此选项不正确;B、∠1和∠2的对顶角是同位角,又相等,所以AB∥CD,此选项正确;C、∠1和∠2的是内错角,又相等,故AC∥BD,不是AB∥CD,此选项错误;D、∠1和∠2互为同旁内角,同旁内角相等两直线不平行,此选项错误.故选:B.10.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米【答案】C第II卷(非选择题)评卷人得分二、填空题(每小题3分,共18分)11.计算:(﹣ab)2÷a2b=.【答案】b【解析】试题解析:原式=a2b2÷a2b=b故答案为:b12.若(x﹣ay)(x+ay)=x2﹣16y2,则a=.【答案】±4【解析】试题解析:∵(x﹣ay)(x+ay)=x2﹣(ay)2(x﹣ay)(x+ay)=x2﹣16y2,∴a2=16,∴a=±4.13.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.【答案】18014.如图,圆锥的底面半径r=2cm,当圆锥的高h由小到大变化时,圆锥的体积V也随之发生了变化,在这个变化过程中,变量是(圆锥体积公式:V=πr2h)【答案】V、h.【解析】试题解析:圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.故答案为:V,h.点睛:主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.15.已知一个长方形的长为5cm,宽为xcm,周长为ycm,则y与x之间的函数表达式为.【答案】y=2x+10【解析】试题解析:一个长方形的长为5c m,宽为xcm,周长为ycm,则y与x之间的函数表达式为y=2x+10;故答案为:y=2x+1016.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到校上,放回到了家.情境a,b,c所对应的函数图象分别是(按次序填写a,b,c对应的序号)【答案】③①②评卷人得分三、解答题(共8小题,共72分)17.(6分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)【答案】(1) 17a6b3;(2)a2﹣4b2+4bc﹣c2;21世纪教育网18.(8分)观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【答案】(1)5;21. (2)(2n+1)2﹣4n2=4n+1.【解析】试题分析:(1)根据前三个找出规律,写出第五个等式;(2)用字母表示变化规律,根据完全平方公式计算,即可证明.试题解析:(1)112﹣4×52=21,故答案为:5;21;(2)第n个等式为:(2n+1)2﹣4n2=4n+1,证明:(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1.19.(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.【答案】63.点睛:本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.20.(10分)如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°求:(1)∠3的度数;(2)求∠2的度数.【答案】(1)65°.【解析】试题分析:(1)根据平角为180度可得∠3=180°﹣∠1﹣∠FOC(2)根据对顶角相等可得∠AOD的度数,然后再根据角平分线定义进行计算即可试题解析:(1)∵∠AOB=180°,∴∠1+∠3+∠COF=180°,∵∠FOC=90°,∠1=40°,∴∠3=180°﹣∠1﹣∠FOC=50°,(2)∠BOC=∠1+∠FOC=130°,∴∠AOD=∠BOC=130°,∵OE平分∠AOD,∴∠2=12∠AOD=65°.21.(10分)如图,直线AB与CD相交于点O,OE⊥A B.(1)如果∠AOD=140°,那么根据,可得∠BOC=度.(2)如果∠EOD=2∠AOC,求∠AOD的度数.【答案】(1)对顶角相等,140°.(2)150°.故答案为:(1)对顶角相等,140°.(2)150°.22.(6分)某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)随时间x(小时)之间的关系如图所示,如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,请根据题意回答下列问题:(1)服药后,大约分钟后,药物发挥作用.(2)服药后,大约小时,每毫升血液中含药量最大,最大值是微克;(3)服药后,药物发挥作用的时间大约有小时.【答案】(1)20,(2)2,80;(3)6.7.23.(6分)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数式)解:∵DE∥BC,∴∠DEF=.()∵EF∥AB,∴=∠AB C.()∴∠DEF=∠AB C.(等量代换)∵∠ABC=40°,∴∠DEF=°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF=°.【答案】∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,40;24.(10分)我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出由图2所表示的数等式:;写出由图3所表示的数等式:;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.【答案】4D:完全平方公式的几何背景.21世纪教育网【解析】试题分析:(1)运用几何直观理解、通过不同的方法计算图形的面积可以得到一个数等式然后再通过化简可得.(2)可利用(1)所得的结果进行等式变换直接带入求得结果.%网试题解析:(1)由图2可得正方形的面积为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac【点评】本题主要是在完全平方公式的几何背景图形的基础上,利用其解题思路求得结果.。

2021北师大版七年级下册数学《期中测试卷》含答案解析

2021北师大版七年级下册数学《期中测试卷》含答案解析

2020-2021学年度第二学期期中测试北师大版七年级数学试题一、选择题(本大题共12小题,每小题4分,满分48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.以下四个标志中,是轴对称图形的是( ) A.B.C.D.2.下列计算正确的是( ) A. 347a a a +=B. 632a a a ÷=C. 326()a a =D. ()222a b a b -=-3.新型冠状病毒的直径大约是0.00000006m ~0.00000014m ,将0.00000014m 用科学记数法表示为( ) A. 60.1410-⨯mB. 70.1410-⨯mC. 61.410-⨯mD. 71.410-⨯m4.下列事件是必然事件的是( ) A. 乘坐公共汽车恰好有空座 B. 购买一张彩票,中奖C. 同位角相等D. 三角形的三条高所在的直线交于一点5.下列长度的三根木棒首尾相接,不能做成三角形框架的是( ) A .7cm 、9cm 、2cm B. 7cm 、15cm 、10cm C. 7cm 、9cm 、15cmD. 7cm 、10cm 、13cm6.如图,在下列四组条件中,能得到AB //CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠ADC +∠BCD =180°D. ∠BAC =∠ACD7.如图,AB ∥ED ,CD=BF ,若要说明△ABC ≌△EDF ,则不能补充的条件是( )A. AC=EFB. AB=EDC. ∠A=∠ED. AC∥EF8.如果249x mx-+是完全平方式,则m的值为()A. 6 B. ±6 C. 12 D. ±12 9.下列条件中①∠A+∠B=∠C ②∠A﹕∠B﹕∠C=1﹕2﹕3 ③∠A=∠B=13∠C ④∠A=∠B=2∠C ⑤∠A=∠B=12∠C 中能确定△ABC为直角三角形的条件有().A. 2个B. 3个C. 4个D. 5个10.如图,点C在∠AOB的边OB上,用直尺和圆规作∠BCN=∠AOC,这个尺规作图的依据是()A. SASB. SSSC. AASD. ASA11.五一小长假的某一天,亮亮全家上午8时自驾小汽车从家里出发,到某旅游景点游玩,该小汽车离家的距离(千米)与时间(时)之间的关系如图所示,根据图像提供的有关信息,判断下列说法错误的是()A. 景点离亮亮的家180千米B. 亮亮到家的时间为17时C. 小汽车返程的速度为60千米/时D. 10时至14时,小汽车匀速行驶12.如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点1A,1B,1C,使1A B AB=,1B C BC =,1C A CA =,顺次连接1A ,1B ,1C ,得到△111A B C .第二次操作:分别延长11A B ,11B C ,11C A 至点2A ,2B ,2C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接2A ,2B ,2C ,得到△222A B C ,…按此规律,要使得到的三角形的面积超过2020,最少经过多少次操作( )A. 4B. 5C. 6D. 7二、填空题(本大题共6个小题,每小题4分,共24分.把正确答案填在题中横线上)13.计算:()03.14π-=_____________________.14.一个等腰三角形两边的长分别是13cm 和6cm ,则它的周长是 _____________cm .15.如图,在△ABC 中,AB =10,AC =8,AD 为中线,则ABD △与ACD 的周长之差=_____________________16.已知a ∥b ,某学生将一直角三角板如图所示放置,如果∠1=30°,那么∠2的度数为______________________°.17.已知3a b +=,7ab =-,则22a b +=_________________.18.如图,AD 平分∠BAC ,BD ⊥AD ,垂足为D ,连接CD ,若三角形△ABC 内有一点P ,则点P 落在△ADC 内(包括边界的阴影部分)的概率为__________.三、解答题(本大题共9个小题,共78分.请写出文字说明、证明过程或演算步骤) 19.计算下列各式: (1)()()235743x x x --⋅ ; (2)()45344321234.2a b a b a bab ⎛⎫-+÷ ⎪⎝⎭20.先化简,再求值:()()()()()222222a b a b a b a b a b --+-+-+,其中2,1a b =-=-.21.已知:如图,已知∠B =45°,∠BDC =45°,∠A =∠1. 求证:∠2=∠BDE .22.在一个不透明的袋中装有3个绿球,5个红球和若干白球,它们除颜色外其他都相同,将球搅匀,从中任意摸出一个球.(1)若袋内有4个白球,从中任意摸出一个球,求摸出的是白球的概率; (2)如果任意摸出一个球是绿球的概率是15,求袋内有几个白球? 23.如图,线段AD 、BE 相交与点C,且△ABC ≌△DEC ,点M 、N 分别为线段AC 、CD 的中点.求证:(1)ME=BN ; (2)ME ∥BN .24.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式 ; (4)运用你所得到的公式,计算下列各题: ① 20.2×19.8 ;②()()22m n p m n p +--+.25.下表是小颖往表姐家打长途电话的收费记录: 通话时间x (分钟) 1 2 3 4 5 6 7 电话费y (元) 3333.64.24.85.4(1)上表的两个变量中, 是自变量, 是因变量; (2)写出y 与x 之间的关系式;(3)若小颖的通话时间是15分钟,则需要付多少电话费? (4)若小颖有24元钱,则她最多能打多少分钟电话?26.(1)如图1,AB ∥CD ,点P 在AB 、CD 外部,若∠B =60°,∠D =30°,则∠BPD = °; (2)如图2,AB ∥CD ,点P 在AB 、CD 内部,则∠B ,∠BPD ,∠D 之间有何数量关系?证明你的结论; (3)在图2中,将直线AB 绕点B 按逆时针方向旋转一定角度交直线CD 于点M ,如图3,若∠BPD =86°,∠BMD =40°,求∠B +∠D 的度数.图1 图2 图327.CD 是经过∠BCA 定点C 的一条直线,CA=CB ,E 、F 分别是直线CD 上两点,且∠BEC =∠CF A =∠β. (1)若直线CD 经过∠BCA 内部,且E 、F射线CD 上,①若∠BCA=90°,∠β=90°,例如左边图,则BE CF ,EF |BE - AF | (填“>”,“<”,“=”);②若0°<∠BCA <180°,且∠β+∠BCA=180°,例如中间图,①中的两个结论还成立吗?并说明理由; (2)如右边图,若直线CD 经过∠BCA 外部,且∠β=∠BCA ,请直接写出线段EF 、BE 、AF 的数量关系(不需要证明).附加题(本大题共3个题,每小题5分,共20分, 得分不计入总分.)28.已知2241210340x y x y +--+=,则2x y += __________________.29.已知()()222019202130x x -+-=,则()22020x -=_____________.30.如图,MN //EF , 点C 为两直线之间一点,若∠CAM 的平分线与∠CBF 的平分线所在的直线相交于点 D ,则∠ACB 与 ∠ADB 之间的数量关系是 .31.如图,∠A +∠B +∠C +∠D +∠E +∠F 的度数是_________________.答案与解析一、选择题(本大题共12小题,每小题4分,满分48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.以下四个标志中,是轴对称图形的是( ) A.B.C.D.【答案】C 【解析】 【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念对各选项分析判断即可.【详解】解:A 、不是轴对称图形,故本选项错误; B 、不是轴对称图形,故本选项错误; C 、是轴对称图形,故本选项正确; D 、不是轴对称图形,故本选项错误. 故选:C .【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键. 2.下列计算正确的是( ) A. 347a a a += B. 632a a a ÷=C. 326()a a =D. ()222a b a b -=-【答案】C 【解析】 【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方运算法则和完全平方公式计算各项,进而可得答案.【详解】解:A 、3a 与4a 不是同类项,不能合并,所以本选项计算错误,不符合题意; B 、6332a a a a ÷=≠,所以本选项计算错误,不符合题意; C 、()236a a =,所以本选项计算正确,符合题意;D 、()222222a b a ab b a b -≠-=+-,所以本选项计算错误,不符合题意.故选:C .【点睛】本题考查了合并同类项的法则、同底数幂的除法法则、幂的乘方运算法则和完全平方公式等知识,属于基础题型,熟练掌握基本知识是解题关键.3.新型冠状病毒的直径大约是0.00000006m ~0.00000014m ,将0.00000014m 用科学记数法表示为( ) A. 60.1410-⨯m B. 70.1410-⨯mC. 61.410-⨯mD. 71.410-⨯m【答案】D 【解析】 【分析】用科学记数法表示较大的数时,一般形式为a×10−n ,其中1≤|a|<10,n 为整数,n 的值取决于原数变成a 时,小数点移动的位数,n 的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n 是正数;当原数的绝对值小于1时,n 是负数. 【详解】0.00000014=71.410-⨯. 故选D .【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10−n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.4.下列事件是必然事件的是( ) A. 乘坐公共汽车恰好有空座 B. 购买一张彩票,中奖C. 同位角相等D. 三角形的三条高所在的直线交于一点【答案】D 【解析】 【分析】根据必然事件、不可能事件和随机事件的概念逐项判断,进而可得答案.【详解】解:A 、乘坐公共汽车恰好有空座是随机事件,不是必然事件,本选项不符合题意; B 、购买一张彩票,中奖,是随机事件,不是必然事件,本选项不符合题意;C 、同位角相等,只在两直线平行的前提下才成立,是随机事件,不是必然事件,本选项不符合题意;D 、三角形的三条高所在的直线交于一点,是必然事件,本选项符合题意. 故选:D .【点睛】本题考查了必然事件、不可能事件和随机事件的概念,属于基础概念题型,熟练掌握基本知识是解题的关键.5.下列长度的三根木棒首尾相接,不能做成三角形框架的是()A. 7cm、9cm、2cmB. 7cm、15cm、10cmC. 7cm、9cm、15cmD. 7cm、10cm、13cm【答案】A【解析】【分析】根据三角形的三边关系依次判断即得答案.【详解】解:A、∵9-7=2,∴长度为7cm、9cm、2cm 的三条线段不能做成三角形框架,本选项符合题意;B、∵15-10<7<15+10,∴长度为7cm、15cm、10cm 的三条线段能做成三角形框架,本选项不符合题意;C、∵15-9<7<15+9,∴长度为7cm、9cm、15cm 的三条线段能做成三角形框架,本选项不符合题意;D、∵13-10<7<13+10,∴长度为7cm、10cm、13cm 的三条线段能做成三角形框架,本选项不符合题意.故选:A.【点睛】本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的三边关系是解题关键.6.如图,在下列四组条件中,能得到AB//CD的是()A. ∠1=∠2B. ∠3=∠4C. ∠ADC+∠BCD=180°D. ∠BAC=∠ACD【答案】D【解析】分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A、若∠1=∠2,则AD//BC,故本选项错误;B、若∠3=∠4,则AD∥BC,故本选项错误;C、若∠ADC+∠BCD=180°,则AD∥BC,故本选项错误;D、∠BAC=∠ACD,则AB∥CD,故本选项正确.故选:D.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.7.如图,AB ∥ED ,CD=BF ,若要说明△ABC ≌△EDF ,则不能补充的条件是( )A. AC=EFB. AB=EDC. ∠A =∠ED. AC ∥EF【答案】A 【解析】 【分析】根据平行线的性质得出∠B=∠D ,再求出BC=DF ,根据全等三角形的判定定理逐个判断即可. 【详解】解:∵AB ∥DE , ∴∠B=∠D , ∵BF=DC , ∴BC=DF ,在△ABC 和△DEF 中, BC DF AC B EF D =⎧⎪⎨⎪=∠∠⎩=,不能证得△ABC ≌△DEF ,故A 选项正确;在△ABC 和△DEF 中,BC DF AB B DE D =⎧⎪⎨⎪=∠∠⎩=,能证得△ABC ≌△DEF (SAS ),故B 选项错误;在△ABC 和△DEF 中,D C E DF B A B ∠=∠∠=∠=⎧⎪⎨⎪⎩,能证得△ABC ≌△DEF (AAS ),故C 选项错误;∵AC ∥EF ,∴∠ACB =∠EFD ,在△ABC 和△DEF 中,B D ACB EFD BC DF ∠=∠∠=∠=⎧⎪⎨⎪⎩,能证得△ABC ≌△DEF (ASA ),故C 选项错误; 故选:A .【点睛】本题考查了平行线的性质,全等三角形的判定定理的应用,能熟练地运用全等三角形的判定定理进行推理是解此题的关键.8.如果 249x mx -+是完全平方式,则m 的值为( )A. 6B. ±6C. 12D. ±12 【答案】D【解析】【分析】根据完全平方式的定义解答即可.【详解】解:∵249x mx -+是完全平方式,∴22312m =±⨯⨯=±.故选:D .【点睛】本题考查的是完全平方式的定义,属于应知应会题型,熟练掌握完全平方式的概念是关键.9.在下列条件中①∠A +∠B =∠C ②∠A ﹕∠B ﹕∠C =1﹕2﹕3 ③∠A =∠B =13∠C ④∠A =∠B =2∠C ⑤∠A =∠B =12∠C 中能确定△ABC 为直角三角形的条件有( ). A. 2个B. 3个C. 4个D. 5个 【答案】C【解析】①是,因为根据三角形内角和定理可求出∠C=90°,所以是直角三角形;②是,因为根据三角形内角和定理可求出三个角分别为30°,60°,90°,所以是直角三角形;③是,因为由题意得∠C=90°,所以是直角三角形;④不是,因为根据三角形内角和定理可求出三个角分别是36°,72°,72°,所以不是直角三角形.⑤是,因为根据三角形内角各定理可求出∠C=90°,所以是直角三角形.故选C .10.如图,点C 在∠AOB 边OB 上,用直尺和圆规作∠BCN =∠AOC ,这个尺规作图的依据是( )A. SASB. SSSC. AASD. ASA【答案】B【解析】【分析】用尺规画一个角等于已知角的步骤:首先以C为圆心,OD为半径画弧交OB于点E,再以点E为圆心,DM 为半径画弧,记两弧交于点N,据此即可求解.【详解】解:连接NE,根据做法可知:CE=OD,EN=DM,CN=OM∴△CEN≌△ODM(SSS),∴∠ECN=∠DOM即∠BCN=∠AOC故选:B.【点睛】本题主要考查尺规作图,属于基础题型,解题的关键是熟练掌握用尺规画一个角等于已知角的步骤.11.五一小长假的某一天,亮亮全家上午8时自驾小汽车从家里出发,到某旅游景点游玩,该小汽车离家的距离(千米)与时间(时)之间的关系如图所示,根据图像提供的有关信息,判断下列说法错误的是()A. 景点离亮亮的家180千米B. 亮亮到家的时间为17时C. 小汽车返程的速度为60千米/时D. 10时至14时,小汽车匀速行驶【答案】D【解析】【分析】根据图像提供的信息判断即可.【详解】解:由图像可得,小明8时出发10时到达旅游景点,走过的路程为180千米,所以景点离亮亮的家180千米,A 选项正确;14时开始回家,回家的行驶速度为180120601514-=-千米/时,回家所用时间为180603÷=时,所以亮亮到家的时间为14317+=时,B 、C 选项正确;10时至14时,路程没有发生变化,说明是在景点游玩,小汽车静止不动,D 选项错误.故答案为D【点睛】本题考查了函数图像,此类题要理解每个数据及每段函数图像所表达的含义,正确从函数图像获取信息是解题的关键.12.如图,△ABC 的面积为1.第一次操作:分别延长AB ,BC ,CA 至点1A ,1B ,1C ,使1A B AB =,1B C BC =,1C A CA =,顺次连接1A ,1B ,1C ,得到△111A B C .第二次操作:分别延长11A B ,11B C ,11C A 至点2A ,2B ,2C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接2A ,2B ,2C ,得到△222A B C ,…按此规律,要使得到的三角形的面积超过2020,最少经过多少次操作( )A. 4B. 5C. 6D. 7【答案】A【解析】【分析】 先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可.【详解】解:连接A 1C ,如图,∵AB =A 1B ,∴△ABC 与△A 1BC 的面积相等,∵△ABC 面积为1,∴1A BC S △=1.∵BB 1=2BC ,∴1112A B B A BC S S △△==2,同理可得,11C B C S =2,11AA C S △=2,∴111111111A B C C B C AA C A B B ABC S S S S S +++△△△△△==2+2+2+1=7;同理可得:△A 2B 2C 2的面积=7×△A 1B 1C 1的面积=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2020,最少经过4次操作.故选:A .【点睛】考查了三角形的中线的性质和三角形的面积,属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据规律求解.第II 卷(非选择题 共102分)二、填空题(本大题共6个小题,每小题4分,共24分.把正确答案填在题中横线上) 13.计算:()03.14π-=_____________________. 【答案】1【解析】【分析】根据0指数幂的意义解答即可.【详解】解:因为 3.140π-≠,所以()03.141π-=.故答案为:1.【点睛】本题考查了0指数幂的意义,属于应知应会题型,熟知任何非零数的0次幂等于1是解题的关键. 14.一个等腰三角形两边的长分别是13cm 和6cm ,则它的周长是 _____________cm .【答案】32【解析】【分析】先根据等腰三角形的定义和三角形的三边关系确定三角形的第三边,再计算周长即可.【详解】解:记第三边为c cm ,若c =13cm ,则该三角形的周长=13+13+6=32cm ;若c =6cm ,由于6+6<13,不能构成三角形,所以此种情况应舍去;所以该三角形的周长是32cm .故答案为:32.【点睛】本题考查了等腰三角形的定义和三角形的三边关系,属于基础题型,熟练掌握基本知识是解题关键.15.如图,在△ABC 中,AB =10,AC =8,AD 为中线,则ABD △与ACD 的周长之差=_____________________【答案】2.【解析】【分析】根据三角形的周长的计算方法得到ABD △的周长和ACD 的周长的差就是AB 与AC 的差.【详解】解:∵AD 是ABC 中BC 边上的中线,∴BD=DC=12BC , ∴ABD △与ACD 的周长之差()()AB BD AD AC DC AD =++-++=AB-AC =1082-= .则ABD △与ACD 的周长之差=2.故答案为:2.【点睛】本题考查三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线,同时考查了三角形周长的计算方法.16.已知a ∥b ,某学生将一直角三角板如图所示放置,如果∠1=30°,那么∠2的度数为______________________°.【答案】60°【解析】【分析】如图,由对顶角相等可得∠3,由平行线的性质可得∠4,由三角形的内角和定理可得∠5,再根据对顶角相等即得∠2.【详解】解:如图,∵∠1=30°,∴∠3=∠1=30°,∵a ∥b ,∴∠4=∠3=30°,∴∠5=180°-∠4-90°=60°,∴∠2=∠5=60°.故答案为:60°.【点睛】本题考查了对顶角相等、平行线的性质和三角形的内角和定理等知识,属于常考题型,熟练掌握上述基础知识是解题关键.17.已知3a b +=,7ab =-,则22a b +=_________________.【答案】23【解析】【分析】先把所求式子变形为()2222a b a b ab +=+-,再把已知的式子整体代入计算即可.【详解】解:()()2222232791423a b a b ab +=+-=-⨯-=+=.故答案为:23.【点睛】本题考查了完全平方公式变形与求值,属于基本题型,熟练掌握完全平方公式和整体代入的思想是解题关键.18.如图,AD 平分∠BAC ,BD ⊥AD ,垂足为D ,连接CD ,若三角形△ABC 内有一点P ,则点P 落在△ADC 内(包括边界的阴影部分)的概率为__________.【答案】12【解析】【分析】 据已知条件证得△ABD ≌△AED ,根据全等三角形的性质得到BD =ED ,得出S △ABD =S △AED ,S △BCD =S △DCE ,推出S △ACD =12S △ABC ,根据概率公式可得的答案. 【详解】延长BD 交AC 于E ,∵AD 平分∠BAC ,∴∠BAD =∠EAD ,∵BD ⊥AD ,∴∠ADB =∠ADE =90°,在△ABD 和△AED 中,ADB ADE AD ADBAD EAD ∠=∠⎧⎪=⎨⎪∠∠⎩=, ∴△ABD ≌△AED (ASA ),∴BD =ED ,∴S △ABD =S △AED ,S △BCD =S △DCE ,,∴S △ACD =12S △ABC , 则点P 落在△ADC 内(包括边界)的概率为:12ACDABC S S=. 故答案为12. 【点睛】本题考查了概率公式的应用与全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.三、解答题(本大题共9个小题,共78分.请写出文字说明、证明过程或演算步骤)19.计算下列各式:(1)()()235743x x x --⋅ ; (2)()45344321234.2a b a b a b ab ⎛⎫-+÷ ⎪⎝⎭ 【答案】(1)1043x ;(2)33223468a b a b a b -+.【解析】【分析】(1)先计算积的乘方,再计算刘项式乘以单项式,最后合并同类项即可;(2)依据多项式除以单项式的运算法则进行计算即可.【详解】(1)()()235743x x x --⋅ =()03711627x xx --⋅ =100116+27x x=1043x ;(2)()453443212342a b a b a b ab ⎛⎫-+÷ ⎪⎝⎭=452342432111234222a b ab a b ab a b ab ⎛⎫⎛⎫⎛⎫÷-÷+÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=33223468a b a b a b -+.【点睛】此题主要考查了整式的混合运算,注意运算顺序以及符号的处理.20.先化简,再求值:()()()()()222222a b a b a b a b a b --+-+-+,其中2,1a b =-=-. 【答案】226a ab b --+,﹣15.【解析】【分析】先根据完全平方公式、平方差公式和多项式的乘法法则计算各项,再合并同类项,然后把a 、b 的值代入化简后的式子计算即可.【详解】解:原式=()()22222244422a ab b a b a ab b -+--+--=222222444224a ab b a b a ab b -+-++--=226a ab b --+当2,1a b =-=-时,原式=()()()()2226211---⨯-⨯-+-=﹣15.【点睛】本题考查了整式乘法的混合运算和代数式求值,属于基础题型,熟练掌握整式乘法的运算法则是解题关键.21.已知:如图,已知∠B =45°,∠BDC =45°,∠A =∠1. 求证:∠2=∠BDE .【答案】见解析【解析】【分析】根据平行线的判定得出AB ∥DC ,根据平行线的性质得出∠A =∠C ,求出∠C =∠1,根据平行线的判定得出AC ∥DE ,根据平行线的性质得出即可.【详解】∵∠B =45°,∠BDC =45°,∴∠B =∠BDC ,∴AB ∥DC ,∴∠A =∠C ,∵∠A =∠1,∴∠C =∠1,∴AC ∥DE ,∴∠2=∠BDE .【点睛】本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键. 22.在一个不透明的袋中装有3个绿球,5个红球和若干白球,它们除颜色外其他都相同,将球搅匀,从中任意摸出一个球.(1)若袋内有4个白球,从中任意摸出一个球,求摸出的是白球的概率;(2)如果任意摸出一个球是绿球的概率是15,求袋内有几个白球?【答案】(1)13;(2)袋内有7个白球.【解析】【分析】(1)用白球的个数除以袋中球的总个数即可;(2)设袋内有x个白球,根据概率公式可得关于x的方程,解方程即可求出结果.【详解】解:(1)41 3543=++.答:从中任意摸出一个球,摸出的是白球的概率是13;(2)设袋内有x个白球,根据题意,得:31355x=++,解得:x=7.答:袋内有7个白球.【点睛】本题考查了简单事件的概率,属于基础题型,正确理解题意、熟练掌握概率公式是解题的关键.23.如图,线段AD、BE相交与点C,且△ABC≌△DEC,点M、N分别为线段AC、CD的中点.求证:(1)ME=BN;(2)ME∥BN.【答案】(1)证明见解析;(2)证明见解析.【解析】【详解】(1)∵△ABC≌△DEC,∴AC=DC,BC=CE.∵点M、N分别为线段AC、CD的中点,∴CM=CN.在△BCN和△ECM中∵AC=DC,∠BCN=∠ECM,BC=CE∴△BCN≌△ECM(SAS)∴ME=BN.(2)∵△BCN≌△ECM,∴∠CBN=∠CEM,∴ME∥BN.24.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式 ;(4)运用你所得到的公式,计算下列各题:① 20.2×19.8 ;②()()22m n p m n p +--+.【答案】(1)a 2−b 2;(2)a−b ,a +b ,(a +b )(a−b );(3)(a +b )(a−b )=a 2−b 2;(4)①99.96;②4m 2−n 2+2np−p 2.【解析】【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【详解】(1)利用正方形的面积公式可知:阴影部分的面积=a 2−b 2;故答案为:a 2−b 2;(2)由图可知矩形的宽是a−b ,长是a +b ,所以面积是(a +b )(a−b );故答案为:a−b ,a +b ,(a +b )(a−b );(3)(a +b )(a−b )=a 2−b 2(等式两边交换位置也可);故答案为:(a +b )(a−b )=a 2−b 2;(4)①解:原式=(10+0.2)×(10−0.2),=102−0.22,=100−0.04,=99.96;②解:原式=[2m +(n−p )]•[2m−(n−p )],=(2m )2−(n−p )2,=4m 2−n 2+2n p−p 2.【点睛】此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观.25.下表是小颖往表姐家打长途电话的收费记录:(1)上表的两个变量中, 是自变量, 是因变量;(2)写出y 与x 之间的关系式;(3)若小颖的通话时间是15分钟,则需要付多少电话费?(4)若小颖有24元钱,则她最多能打多少分钟电话?【答案】(1)通话时间;电话费; (2)()()3030.6 1.23x y x x ⎧≤≤⎪=⎨+⎪⎩>;(3)小颖通话15分钟,则需付话费10.2元;;(4)小颖有24元钱,则她最多能打38多少分钟电话.【解析】【分析】(1)根据函数的定义解答即可;(2)根据表格可知,当通话时间不超过3分钟,通话费用为3元,当通话时间大于3分钟,通话每增加1分钟,电话费增加0.6元,可得电话费y (元)与通话时间x (分钟)之间的关系式;(3)把15x =代入(2)的结论即可;(4)把24y =代入(2)的结论即可【详解】解:(1)自变量是通话时间,因变量是电话费.故答案为:通话时间;电话费;(2)由图表信息知:当3,x ≤≤0 3,y =当3x >时,设y kx b =+,4 3.65 4.2k b k b +=⎧∴⎨+=⎩, 解得:0.6,1.2k b =⎧⎨=⎩ 0.6 1.2,y x ∴=+经检验:当6,7x x ==符合题意,()()303.0.6 1.23x y x x ⎧≤≤⎪∴=⎨+⎪⎩> (3)当15x =时,0.615 1.210.2y =⨯+=,所以小颖通话15分钟,则需付话费10.2元;(4)把24y =代入0.6 1.2y x =+中得: 0.6 1.224,x +=∴38x =.所以小颖有24元钱,则她最多能打38多少分钟电话.【点睛】本题主要考查了函数的定义,列一次函数解析式,理清题意,得出电话费y (元)与通话时间x (分钟)之间的关系式是解答本题的关键.26.(1)如图1,AB ∥CD ,点P 在AB 、CD 外部,若∠B =60°,∠D =30°,则∠BPD = °; (2)如图2,AB ∥CD ,点P 在AB 、CD 内部,则∠B ,∠BPD ,∠D 之间有何数量关系?证明你的结论; (3)在图2中,将直线AB 绕点B 按逆时针方向旋转一定角度交直线CD 于点M ,如图3,若∠BPD =86°,∠BMD =40°,求∠B +∠D 的度数.图1 图2 图3【答案】(1)30°;(2)∠BPD =∠B +∠D ,证明见解析;(3)46°.【解析】【分析】(1)根据平行线的性质可求得∠BOD 的度数,由三角形外角的性质即可求得结果;(2)过点P 作PE ∥AB ,如图4,由平行公理的推论可得AB ∥PE ∥CD ,然后根据平行线的性质和角的和差即可得出结论;(3)延长BP交CD于点E,如图5,根据三角形外角的性质可得∠BPD=∠BMD+∠B+∠D,进一步即可求出结果.【详解】解:(1)∵AB∥CD,∠B=60°,∴∠BOD=∠B=60°,∴∠BPD=∠BOD﹣∠D=60°﹣30°=30°.故答案为:30°;(2)∠BPD=∠B+∠D.证明:过点P作PE∥AB,如图4,∵AB∥CD,∴AB∥PE∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(3)延长BP交CD于点E,如图5,∵∠1=∠BMD+∠B,∠BPD=∠1+∠D,∴∠BPD=∠BMD+∠B+∠D,∵∠BPD=86°,∠BMD=40°,∴∠B+∠D=∠BPD﹣∠BMD=86°﹣40°=46°.【点睛】此题考查了平行线的性质与三角形外角的性质,属于常考题型,正确作出辅助线、熟练掌握平行线的性质和三角形的外角性质是解题的关键.27.CD是经过∠BCA定点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CF A=∠β.(1)若直线CD经过∠BCA内部,且E、F在射线CD上,①若∠BCA=90°,∠β=90°,例如左边图,则BE CF,EF|BE - AF|(填“>”,“<”,“=”);②若0°<∠BCA<180°,且∠β+∠BCA=180°,例如中间图,①中的两个结论还成立吗?并说明理由;(2)如右边图,若直线CD经过∠BCA外部,且∠β=∠BCA,请直接写出线段EF、BE、AF的数量关系(不需要证明).【答案】(1)①=,= ②两结论依然成立,证明见解析(2)EF=BE+AF【解析】【分析】(1)①本题考查全等三角形的判定,可利用AAS定理进行解答;②本题考查全等三角形判定,可通过三角形内角和定理运用AAS解答.(2)本题考查全等三角形的判定,运用三角形内角和以及平角定义,通过AAS解答.【详解】(1)①∵∠BCA=90°,∠β=90°∴∠FCA+∠BCF=90°,∠FCA+∠CAF=90°∴∠BCF=∠CAF又∵∠BEC=∠CFA,CA=CB∴△BEC≅△CFA(AAS)∴BE=CF,CE=AF=-=-∴EF CF CE BE AF②在△FCA中,∠CFA+∠FCA+∠CAF=180°又∵∠BEC=∠CFA=∠β,∠β+∠BCA=180°∴∠FCA+∠CAF=∠BCA∵∠BCA=∠BCE+∠FCA∴∠CAF=∠BCE∵CA=CB∴△BEC≅△CFA(AAS)∴BE=CF,CE=AF∴EF CF CE BE AF =-=-(2)在△BEC 中,∠B+∠BEC+∠BCE=180°又∵∠BEC=∠CFA=∠β,∠BCE+∠BCA+∠ACF=180°,∠β=∠BCA∴∠B=∠ACF∵CA=CB∴△BEC ≅△CFA(AAS)∴BE=CF ,CE=AFEF=EC+CF=AF+BE【点睛】本题考查全等三角形证明以及性质的应用,并结合一定的探究思路,按照题目指引利用AAS 判别定理解答即可.附加题(本大题共3个题,每小题5分,共20分, 得分不计入总分.)28.已知2241210340x y x y +--+=,则2x y += __________________.【答案】8【解析】【分析】化简方程,再根据非负数的性质列出算式,求出x y 、的值,再进行计算即可.【详解】解:由题可得:22224121034(23)(5)0x y x y x y +--+=+-=-,即230x -=,50y -=,解得:32x =,5y =. ∴322582x y +=⨯+=. 【点睛】本题主要考查的是非负数的性质,解题的关键是掌握几个非负数的和为0时,这几个非负数都为0. 29.已知()()222019202130x x -+-=,则()22020x -=_____________. 【答案】14【解析】【分析】设2020x a -=,则20191x a -=+,20211x a -=-,于是原式可变形为关于a 2的等式,求出a 2即为所求的式子的值.【详解】解:设2020x a -=,则20191x a -=+,20211x a -=-,因为()()222019202130x x -+-=,所以()()221130a a ++-=,整理,得:22230a +=,所以214a =,即()22020x -=14.故答案为:14.【点睛】本题考查了整式乘法的完全平方公式及其变形,设2020x a -=、灵活利用整体代入的数学思想是解题的关键.30.如图,MN //EF , 点C 为两直线之间一点,若∠CAM 的平分线与∠CBF 的平分线所在的直线相交于点 D ,则∠ACB 与 ∠ADB 之间的数量关系是 .【答案】∠ACB =180°﹣2∠ADB【解析】【分析】如图,过点C 作CG ∥MN ,过点D 作DH ∥MN ,根据平行公理的推论可得MN ∥CG ∥DH ∥EF ,根据平行线的性质、角平分线的定义和角的和差可得:∠ACB =180°﹣2(∠1-∠2),∠ADB =∠1-∠2,进一步即可推出结论.【详解】解:如图,过点C 作CG ∥MN ,过点D 作DH ∥MN ,∵MN ∥EF ,∴MN ∥CG ∥DH ∥EF ,∴∠1=∠ADH ,∠2=∠BDH ,∠6=∠4,∠FBC =∠5,∴∠ACB =∠4+∠5=∠6+∠FBC ,∵∠MAC 与∠FBC 的平分线相交于点D ,∴∠MAC =2∠1,∠CBF =2∠3=2∠2,∴∠ACB =∠6+∠FBC=180°﹣∠MAC +2∠2=180°﹣2∠1+2∠2=180°﹣2(∠1-∠2),∵∠ADB=∠ADH-∠BDH=∠1-∠2,∴∠ACB=180°﹣2∠ADB.故答案为:∠ACB=180°﹣2∠ADB.【点睛】本题考查了平行线的性质和角平分线的定义等知识,正确的作出辅助线、熟练掌握平行线的性质是解题的关键.31.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数是_________________.【答案】360°【解析】【分析】如图,根据三角形的外角性质和四边形的内角和是360°解答即可.【详解】解:如图,∵∠CGF=∠1+∠A=∠B+∠E+∠A,∠CGF +∠F+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360°.【点睛】本题考查了三角形的外角性质和四边形的内角和,属于基础题型,熟练掌握三角形的外角性质和四边形的内角和是360°是解题的关键.。

北师大版数学七年级下册第二学期期中 达标测试卷(含答案)

北师大版数学七年级下册第二学期期中 达标测试卷(含答案)

第二学期期中达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列图形中,∠1与∠2是同旁内角的是()2.下列计算正确的是()A.(a3)4=a12B.a3·a5=a15C.(x2y)3=x6y D.a6÷a3=a23.如图,直线a,b相交于点O,如果∠1+∠2=100°,那么∠2是() A.50°B.100°C.130°D.150°(第3题) (第4题)(第5题)(第7题)4.如图,下列条件能判定a∥b的是()A.∠2+∠3=180°B.∠1+∠2=180°C.∠1=∠2 D.∠3=∠45.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长不足11小时的节气是()A.惊蛰B.小满C.秋分D.大寒6.已知(a+b)2=40,(a-b)2=60,则a2+b2的值为()A.40 B.50 C.60 D.1007.甲骑自行车从A地到B地,乙骑电动车从B地到A地,两人同时出发,匀速行驶,各自到达终点后停止运动.设甲、乙两人间的距离为s(单位:m),甲行驶的时间为t(单位:min),s与t之间的关系如图所示,则下列结论中不正确的是()A.出发30 min时,甲、乙同时到达终点B.出发15 min时,乙比甲多行驶了3 000 mC.出发10 min时,甲、乙在途中相遇D.乙的速度是甲的速度的两倍8.如图,有两个正方形A,B.现将B放在A的内部得图①,将A,B并列放置后,构造新的正方形得图②.图①和图②中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B如图③摆放,则图③中阴影部分的面积为()(第8题)A.28 B.29 C.30 D.31二、填空题(共5小题,每小题3分,计15分)9.近来,中国芯片技术获得重大突破,7 nm芯片已经量产,已知7 nm=0.000 000 7cm,则0.000 000 7用科学记数法表示为____________.10.已知某地的地面气温是20 ℃,如果每升高1 000 m气温下降6 ℃,则气温t(℃)与高度h(m)的函数关系式为________________.11.已知2x+y-4=0,则4x·2y的值是__________.12.如图,一块含有30°角的直角三角板,两个顶点分别在直尺的一对平行边上,∠α=110°,则∠β=________°.(第12题)(第13题)13.如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设两正3 方形的面积分别为S 1,S 2.若AB =9,两正方形的面积和为51,则图中阴影部分的面积为__________.三、解答题(共13小题,计81分,解答应写出过程) 14.(5分)化简:(1)(-x 2)3÷(-2x 3)·x 3; (2)(-2a 2)(4ab -ab 2+1).15.(5分)计算: (1)-12 024+2 0242-2 025×2 023;(2)(2 023-π)0-|-4|+⎝ ⎛⎭⎪⎫-12-3.16.(5分)先化简,再求值:[(x +y )(3x -y )-(x +2y )2+5y 2]÷2x ,其中x =1,y =-2.17.(5分)已知x+y=6,xy=4,求下列各式的值:(1)(x-3)(y-3);(2)[(2x-y)2-(2x+y)(2x-y)]÷(-2y)-y(x-3).18.(5分)如图,已知∠α.请你用直尺和圆规画一个∠BAC,使得∠BAC=∠α.(要求:保留作图痕迹,不写作法)(第18题)19.(5分)一种大豆的总售价y(元)与所售质量x(千克)之间的关系如下表所示:所售质量x(千克)00.51 1.5总售价y(元)012 3(1)按表中给出的信息,写出y与x的关系式;(2)当售出大豆的质量为20千克时,总售价是多少?20.(5分)如图,已知直线EF⊥MN,垂足为F,且∠1=138°,若AB∥CD,求∠2的度数.(第20题)21.(6分)如图,已知AD是∠BAC的平分线,点E在BC上,点F在CA的延长线上,EF∥DA,且EF交AB于点G.试说明∠AGF=∠F.5(第21题)22.(7分)如图,直线MN分别与直线AC,DG交于点B,F,且∠1=∠2.∠ABF 的平分线BE交直线DG于点E,∠BFG的平分线FC交直线AC于点C.(第22题)(1)试说明BE∥CF;(2)若∠C=35°,求∠BED的度数.23.(7分)如图,直线AB,CD相交于点O,OM⊥AB.(第23题)(1)若∠1=30°,求∠BOD的度数;(2)如果∠1=∠2,那么ON与CD互相垂直吗?请说明理由.24.(8分)如图表示的是李军从家到超市的时间与他离家的距离之间的关系.观察图象并回答下列问题:(1)图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)李军到达超市用了多少时间?(3)李军出发的第20 min到第30 min内可能在做什么?(4)李军从家到超市的平均速度是多少?返回时的平均速度是什么?(第24题)725.(8分)已知动点P从点A出发沿图①的边框(边框拐角处都互相垂直)按A→B→C→D→E→F的路径移动,相应的三角形AHP的面积y(cm2)关于移动路程x(cm)的关系图象如图②,若AH=2 cm,根据图象信息回答下列问题:(第25题)(1)图①中AB=________cm;(2)图②中n=________;(3)求三角形AHP面积的最大值.26.(10分)如图①,已知直线CD∥EF,点A,B分别在直线CD,直线EF上,P 为两平行线间的一点.(第26题)(1)猜想∠DAP,∠FBP,∠APB之间有什么数量关系?并说明理由;(2)利用(1)的结论解答:①如图②,AP1,BP1分别平分∠DAP,∠FBP,请你直接写出∠P与∠P1的数量关系,不需要说明理由;②如图③,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=α,求∠AP2B的大小(用含α的代数式表示).9答案一、1.B 2.A 3.A 4.A 5.D 6.B 7.A8.B 点拨:设正方形A ,B 的边长各为a ,b (a >b ),得图①中阴影部分的面积为(a -b )2=a 2-2ab +b 2=1,解得a -b =1或a -b =-1(舍去),图②中阴影部分的面积为(a +b )2-(a 2+b 2)=2ab =12.所以(a +b )2=a 2+2ab +b 2=a 2-2ab +b 2+4ab =(a -b )2+4ab =1+2×12=25,解得a +b =5或a +b =-5(舍去),所以图③中阴影部分的面积为(2a +b )2-(3a 2+2b 2)=a 2+4ab -b 2=(a +b )·(a -b )+2×2ab =5×1+2×12=5+24=29,故选B. 二、9.7×10-7 10.t =-0.006h +20 11.16 12.5013.152 点拨:设AC =m ,CF =n ,因为AB =9,所以m +n =9,又因为S 1+S 2=51,所以m 2+n 2=51,由完全平方公式可得,(m +n )2=m 2+2mn +n 2,所以92=51+2mn ,所以mn =15,所以S 阴影部分=12mn =152,即阴影部分的面积为152. 三、14.解:(1)原式=-x 6÷(-2x 3)·x 3=12x 6-3+3 =12x 6.(2)原式=-2a 2·4ab +2a 2·ab 2-2a 2·1 =-8a 3b +2a 3b 2-2a 2.15.解:(1)原式=-1+2 0242-(2 024+1)(2 024-1)=-1+2 0242-(2 0242-1) =-1+2 0242-2 0242+1 =0.(2)原式=1-4-8 =-11.16.解:[(x +y )(3x -y )-(x +2y )2+5y 2]÷2x=(3x 2+3xy -xy -y 2-x 2-4xy -4y 2+5y 2)÷2x =(2x 2-2xy )÷2x =x -y .当x=1,y=-2时,原式=1-(-2)=3.17.解:(1)(x-3)(y-3)=xy-3x-3y+9=xy-3(x+y)+9=4-3×6+9=-5.(2)[(2x-y)2-(2x+y)(2x-y)]÷(-2y)-y(x-3)=(2x-y)[(2x-y)-(2x+y)]÷(-2y)-xy+3y=(2x-y)(-2y)÷(-2y)-xy+3y=2x-y-xy+3y=2(x+y)-xy=2×6-4=8.18.解:如图所示,∠BAC即为所求.(第18题)19.解:(1)表格中反映的是大豆所售质量x(千克)与总售价y(元)之间的关系,大豆所售质量x(千克)是自变量,总售价y(元)是因变量,y与x之间的关系式为y=2x.(2)由关系式可知,当售出大豆的质量为20千克时,y=2×20=40,所以当售出大豆的质量为20千克时,总售价是40元.20.解:若AB∥CD,则∠BFG=∠DGN,由题知∠1=138°,∠1+∠DGN=180°,所以∠DGN=42°.所以∠BFG=∠DGN=42°.因为EF⊥MN,所以∠2+∠BFG=90°,11所以∠2=90°-∠BFG=90°-42°=48°. 21.解:因为AD是∠BAC的平分线,所以∠BAD=∠CAD,因为EF∥DA,所以∠AGF=∠BAD,∠F=∠CAD,所以∠AGF=∠F.22.解:(1)因为∠1=∠2,∠2=∠BFG,所以∠1=∠BFG,所以AC∥DG,所以∠ABF=∠BFG.因为BE,FC分别为∠ABF,∠BFG的平分线,所以∠EBF=12∠ABF,∠CFB=12∠BFG,所以∠EBF=∠CFB,所以BE∥CF.(2)由题意知,AC∥DG,∠C=35°,所以∠C=∠CFG=35°,又因为BE∥CF,所以∠BEG=∠CFG=35°,故∠BED=180°-∠BEG=145°.23.解:(1)因为OM⊥AB,所以∠AOM=90°,又因为∠1=30°,所以∠AOC=∠AOM-∠1=90°-30°=60°,因为∠BOD=∠AOC,所以∠BOD=60°.(2)ON⊥CD.理由:因为∠1+∠AOC=90°,∠1=∠2,所以∠2+∠AOC=90°,即∠CON=90°,所以ON⊥CD.24.解:(1)图象表示的是李军从家到超市的时间与他离家的距离两个变量之间的关系,时间为自变量,离家的距离为因变量.(2)由图象可知,李军到达超市用了20 min.(3)可能在超市选购商品.(答案不唯一).(4)李军从家到超市的平均速度是90020=45(m/min),返回时的平均速度是90045-30=60(m/min).25.解:(1)3(2)26(3)由图象可得,当0<x≤3时,点P在AB上运动;当3<x≤5时,点P在BC上运动;当5<x≤11时,点P在CD上运动;当11<x≤17时,点P在DE上运动;当17<x≤30时,点P在EF上运动.所以点P在DE上运动时,三角形AHP的面积最大,即12×2×(11-2)=9(cm2).所以△AHP面积的最大值为9 cm2.26.解:(1)∠APB=∠DAP+∠FBP,理由如下:过点P作MP∥CD,如图,(第26题) 所以∠APM=∠DAP,因为CD∥EF,所以MP∥EF,所以∠MPB=∠FBP,所以∠APM+∠MPB=∠DAP+∠FBP.即∠APB=∠DAP+∠FBP.(2)①∠P=2∠P1.②由(1)得∠APB=∠DAP+∠FBP,13同理可得∠AP 2B =∠CAP 2+∠EBP 2, 因为AP 2,BP 2分别平分∠CAP ,∠EBP ,所以∠CAP 2=12∠CAP ,∠EBP 2=12∠EBP , 所以∠AP 2B =12∠CAP +12∠EBP=12(180°-∠DAP )+12(180°-∠FBP )=180°-12(∠DAP +∠FBP ) =180°-12∠APB =180°-12α.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学第二学期期中试题(一)一、 选择题(每小题3分,共30分)1、下列运算正确..的是( ) A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =-2、下列说法错误的是( )A .两直线平行,内错角相等B .两直线平行,同旁内角相等C .同位角相等,两直线平行D .平行于同一条直线的两直线平行3、下列关系式中,正确..的是( ) A . ()222b 2ab a b a +-=+ B. ()222b a b a -=- C . ()222b a b a +=+ D. ()()22b a b a b a -=-+ 4、等腰三角形的两边长分别为4和9,则它的周长 ( )A 、17B 、22C 、17或22D 、215、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )(A )带①去 (B )带②去 (C )带③去 (D )带①和②去6、如图,AB ∥ED ,则∠A +∠C +∠D =( )A .180°B .270°C .360°D .540°7、下列各式中不能用平方差公式计算的是( )A 、))((y x y x +--B 、))((y x y x --+-C 、))((y x y x ---D 、))((y x y x +-+8、23,24m n ==,则322m n -等于( )A 、1B 、98C 、278D 、27169、如果一个角的补角是150°,那么这个角的余角的度数是( )A 、30°B 、60°C 、90°D 、120°10、不能判定两个三角形全等的条件是 ( )A 、三条边对应相等B 、两角及一边对应相等C 、两边及夹角对应相等D 、两边及一边的对角相等A BC D E第5题 第6题二、填空题(每小题3分,共30分)11、等腰三角形的三边长分别为:x+1、 2x+3 、9 ,则x =12、一个角的补角是它的余角的4倍,则这个角是_________度。

13、若x 2+mx +25是完全平方式,则m=___________。

14、已知 9))((2-=+-x a x a x , 那么 a = 。

15、若12,2m n a a =-=-,则=-n m a 32 16、已知:如图1,∠EAD=∠DCF ,要得到AB//CD ,则需要的条件 。

(填一个..你认为正确的条件即可) 图117、若()223310a b ++-=,则ab =__________.18、在△ABC 中,∠A=800,∠ABC 与∠ACB 的平分线义交于点O ,则∠BOC=___度。

19、观察:22225251644161533914224131==+⨯==+⨯==+⨯==+⨯你发现了什么规律?根据你发现的规律,请你用含一个字母的等式将上面各式呈现的规律表示出来。

20、现在规定两种新的运算“﹡”和“◎”:a ﹡b=22b a +;a ◎b=2ab,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .三、解答题(21题12分,22、23、26各8分,24、25、各12分,共60分)21、计算题(1) ()()12012011 3.143π-⎛⎫-+--- ⎪⎝⎭(2)化简求值:)2)(2(2))(2()2(2y x y x y x y x y x +--+--+, 其中21=x ,2-=y22、作图题(不写做法,保留作图痕迹)已知:∠α。

请你用直尺和圆规画一个∠BAC ,使∠BAC=∠α。

23、已知:如图,AB ∥CD ,∠A = ∠D ,试说明 AC ∥DE 成立的理由。

C下面是彬彬同学进行的推理,请你将彬彬同学的推理过程补充完整。

解:∵ AB ∥ CD (已知)∴ ∠A = (两直线平行,内错角相等)又∵ ∠A = ∠D ( )∴ ∠ = ∠ (等量代换)∴ AC ∥ DE ( )24、图a 是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b 的形状拼成一个正方形。

(1)、你认为图b 中的阴影部分的正方形的边长等于多少?(2)、请用两种不同的方法求图中阴影部分的面积。

图a 图b方法1:方法2: (3)、观察图b 你能写出下列三个代数式之间的等量关系吗?代数式: ()(). , ,22mn n m n m -+ (4)、根据(3)题中的等量关系,解决如下问题:若5,7==+ab b a ,则2)(b a -= 。

25、如图,已知∠EFD =∠BCA ,BC=EF ,AF=DC 。

线段 AB 和线段DE 平行吗?请说明理由。

26、 观察下面的点阵图和相应的等式,探究其中的规律:(1) 在④和⑤后面的横线上写出相应的等式.(2)猜想写出与第n 个点阵相对应的等式 .D七年级数学第二学期期中试题(一)参考答案一、 选择题1—5 CBDBC 6—10 CADBD二、填空题11、3 12、600 13、10± 14、3,-3 15、-3216、∠DCF=∠B 17、12- 18、1300 19、21)1)(1(n n n =++- 2)1(1)2(+=++n n n 20、20-三、简答题21、(1)5 (2)2310xy y + ,37 22、略23、解:∵ AB ∥ CD (已知)∴ ∠A = ∠ ACD (两直线平行,内错角相等)又∵ ∠A = ∠D ( 已知 )∴ ∠ ACD = ∠ D (等量代换)∴ AC ∥ DE (内错角相等,两直线平行 )24、1)图中的阴影部分的面积为 )(n m - ;(2)方法一:2)(n m -方法二:mn n m 4)(2-+(3)代数式 2)(n m +,2)(n m -, mn 4 之间的关系为;2)(n m - = mn n m 4)(2-+(4)当 5,7==+ab b a ,2)(b a -=ab b a 4)(2-+=295472=⨯-25、解:AB DE ∥, 理由如下:()AF DC AF CF DC CF AC DFABC DEF BC EF EFD BCAABC DEF SAS AC DF A D AB DE =∴+=+=∆∆=⎧⎪∠=∠∴∆≅∆⎨⎪=⎩∴∠=∠∴∵即在和中∥26、(1)④ 21+3+5+7=4; ⑤ 21+3+5+7+9=5。

(2)()21+3+5+7++21n n ⋅⋅⋅-=七年级数学第二学期期中试题(二)一、细心填一填(每小题3分,共计30分)1. 计算:32x x ⋅ = ;2ab b 4a 2÷= .2.如果1kx x 2++是一个完全平方式,那么k3.如图,两直线a 、b 被第三条直线c 所截,若∠∠2=130°,则直线a 、b 的位置关系是 .4. 时说,2006万元,这个数据用科学记数法可表示为万元.5. AD 是△ABC 的中线,如果△ABC 的面积是18cm 2,则△ADC 的面积是 cm 26. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .7. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,还需要添第9题 a ﹡b=22b a +;a ◎b=2ab,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .9.工人师傅在做完门框后.为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB ,CD 两根木条),这样做根据的数学道理是_________________.10. 用科学计数法表示0.0000907=二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分)11. 下列四组线段中,能组成三角形的是( )A 、2cm ,3 cm ,4 cmB 、3 cm ,4 cm ,7 cmC 、4 cm ,6 cm ,2 cmD 、7 cm ,10 cm ,2 cm12. 下列运算正确..的是( ) A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =-13. 如果一个等腰三角形的一边为4㎝,另一边为5㎝,则它的周长为( )A 、14B 、13C 、14或13D 、 14. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数是( )A .15°B .20°C .25°D .30°15. 已知下列条件,不能作出三角形的是( )A 、两边及其夹角B 、两角及其夹边C 、三边D 、两边及除夹角外的另一个角16. 观察一串数:0,2,4,6,….第n 个数应为( )A .2(n -1)B .2n -1C .2(n +1)D .2n +117.下列关系式中,正确..的是( ) A .()222b a b a -=- B.()()22b a b a b a -=-+ C .()222b a b a +=+ D.()222b 2ab a b a +-=+ 18. 任何一个三角形的三个内角中至少有 ( )A 、一个角大于60°B 、两个锐角C 、一个钝角D 、一个直角19. 三角形的三条高线的交点在三角形的一个顶点上,则此三角形是 ( )A 、直角三角形B 、锐角三角形C 、钝角三角形D 、等腰三角形20. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )A .1B .2C . 3D .4三、(21题20分.22、23题5分,24题10分,25,26题10分,共计60分)21.计算1、x 2-(x +2)(x -2)2、992-13、(2a +b)4÷(2a +b)24、(4a 3b -6a 2b 2+2ab)÷2ab5、[(x +1)(x +2)-2]÷x22.先化简()()()()1x 5x 13x 13x 12x 2-+-+--,再选取一个你喜欢的数代替x ,并求原代数式的值.23.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么? 理由是: .24.某种产品的商标如图所示,O 是线段AC 、BD 的交点,并且AC =BD ,AB =CD .小明认为图中的两个三角形全等,他的思考过程是:在△ABO 和△DCO 中⎪⎩⎪⎨⎧=∆≅∆−→−∠=∠=CD AB DCO ABO DOC AOB BD AC你认为小明的思考过程正确吗?如果正确,他用的是判定三角形全等的哪个条件?如果不正确,请你增加一个条件,并说明你的思考过程.25.如图所示,要想判断AB是否与CD平行,我们可以测量那些角;请你写出三种方案,并说明理由.26.乘法公式的探究及应用.(1)如左图,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是,面积是(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式(用式子表达).(4)运用你所得到的公式,计算下列各题:①7.93.10⨯②)2)(2(pnmpnm+--+七年级数学第二学期期中试题(二)参考答案一、1. 5x ;2a .2.±2.3.平行.4.3.397×1075.96.26或22㎝7. AC=AE (或BC=DE ,∠E=∠C ,∠B=∠D )8.-209. 三角形具有稳定性 10. 9.07×105- 二、11-15 ACCDD 16-20 ABBAC 三21.解:1、4 2、9800 3、4a b ab ++422 4.2a 2-3ab+1 5.x+3 22.解:=5x 5x 19x 14x 4x 222-++-+-=29x +- 当x=0时,原式23.解:理由是: 垂线段最短 .24. DCO ABO CD AB DOC AOB C B ∆≅∆⇒⎪⎩⎪⎨⎧=∠=∠∠=∠ (答案不唯一) 25. (1)∠EAB=∠C ;同位角相等,两直线平行.(2)∠BAD=∠D ;内错角相等,两直线平行(3)∠BAC +∠C=180°;同旁内角互补两直线平行.…26.(1)22b a -.(2)()b a -,()b a + ,(b a b a -+ .(3)b a b a -+=22b a -. (4):七年级数学第二学期期中试题(三)一、精心选一选.(本大题共10个小题,每小题3分,共30分. 1.下列运算正确的是( ).A .a 5+a 5 =a 10B .a 6×a 4=a 24C .a 0÷a -1=aD .(a 2)3=a 5 2.下列关系式中,正确..的是( ) A.(a -b)2=a 2-b 2 B.(a +b)(a -b)=a 2-b 2 C.(a +b)2=a 2+b 2 D.(a +b)2=a 2+ab +b 23.大象是世界上最大的陆栖动物,它的体重的百万分之一相当于( )的体重 A. 袋鼠 B. 啄木鸟 C. 蜜蜂 D. 小鸡4.如果一个角的补角是130°,那么这个角的余角的度数是( ) A. 20° B. 40° C . 70° D .130°5. 下列哪组数能构成三角形 ( )A 、4,5,9B 、8,7,15C 、5,5,11D 、13,12,20 6.如果一个等腰三角形的一边为4㎝,另一边为5㎝,则它的周长为( ) A 、14 B 、13 C 、14或13 D 、、无法计算 7.下列说法中,正确的是 ( )A.内错角相等.B.同旁内角互补.C.同角的补角相等.D.相等的角是对顶角.8.以长为3,5,7,10的四条线段中的三条为边,能构成三角形的个数为( ) A .1 B .2 C .3 D .4 9.如图1,下列条件中,能判定DE ∥AC 的是 ( ) A. ∠EDC=∠EFC B.∠AFE=∠ACD C. ∠1=∠2 D.∠3=∠410.已知x a =3,x b =5,则x 2a -b =( )A.53B.56C.59 D. 1二、细心填一填(每小题3分,共计24)11. 有两根长3㎝、4㎝的木棒,选择第三根木棒组成三角形,则第三根木棒第范围是____________________________。

相关文档
最新文档