2010年全国硕士研究生入学统一考试数学试题及答案解析(数学三)
2010年考研数学三试题及全面解析

2010年全国硕士研究生入学统一考试数学三试题参考答案一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1) 若011lim 1x x a e x x →⎡⎤⎛⎫--=⎪⎢⎥⎝⎭⎣⎦,则a 等于 ( )(A ) 0. (B ) 1. (C ) 2. (D ) 3.【答案】C【考点】极限的四则运算 【难易度】★★★ 【详解】 解析:()()()000011111lim lim 11lim 1lim x x x x x xx x x x e axe a e e ax e axe x x x x x x →→→→⎛⎫⎛⎫-⎛⎫--=--=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭001lim lim 11x x x x e axe a x x→→-=+=-+= 所以2a =.(2) 设12,y y 是一阶线性非齐次微分方程()()y p x y q x '+=的两个特解,若常数,u λ使 12y uy λ+是该方程的解,12y uy λ-是该方程对应的齐次方程的解,则 ( )(A ) 11,22u λ==. (B ) 11,22u λ=-=-. (C ) 21,33u λ==. (D ) 22,33u λ==.【答案】A【考点】线性微分方程解的性质 【难易度】★★ 【详解】解析:因12y y λμ-是()0y p x y '+=的解;故()()()12120y y p x y y λμλμ'-+-= 所以()()()()11220y p x y y p x y λμ''+-+= 而由已知()()1122(),()y p x y q x y p x y q x ''+=+= 所以()()0q x λμ-=又12y y λμ+是非齐次()()y p x y q x '+=的解;故()()()()1212y y p x y y q x λμλμ'+++= 所以()()()q x q x λμ+=所以01λμλμ-=⎧⇒⎨+=⎩12λμ==.(3) 设函数()(),f x g x 具有二阶导数,且()0g x ''<,()0g x a =是()g x 的极值,则()()f g x 在0x 取极大值的一个充分条件是 ( )(A )()0f a '<. (B ) ()0f a '>. (C )()0f a ''<. (D )()0f a ''>. 【答案】B【考点】函数的极值 【难易度】★★★【详解】本题涉及到的主要知识点:二阶可导函数()F x 在点0x x =处取得极大值的一个充分条件是'()0F x =且"()0F x <. 在本题中,[]{}[]()()()f g x f g x g x '''=⋅[]{}[]{}[][][]2()()()()()()()f g x f g x g x f g x g x f g x g x '''''''''''=⋅=⋅+⋅ 由于0()g x a =是()g x 的极值,所以0()0g x '=. 所以[]{}[]()0000()()()()f g x f g x g x f a g x ''''''''=⋅=⋅由于0()0g x ''<,要使[]{}()0f g x ''<,必须有()'0f a >(4) 设()()()1010ln ,,x f x x g x x h x e ===,则当x 充分大时有 ( ) (A ) ()()()g x h x f x <<. (B ) ()()()h x g x f x <<. (C ) ()()()f x g x h x <<. (D ) ()()()g x f x h x <<. 【答案】C【考点】极限的四则运算 【难易度】★★【详解】本题涉及到的主要知识点:极限的四则运算、等价无穷小、洛必达法则的运用. 设lim (),lim ()x ax af x Ag x B →→==,则()lim,(0)()x af x AB g x B→=≠.在本题中,因为1010()1lim lim lim ()10xxx x x h x e e g x x →+∞→+∞→+∞===+∞所以,当x 充分大时,()()h x g x >又因为91091ln ()ln ln limlim lim 1010lim ()1x x x x x f x xx x g x xx→+∞→+∞→+∞→+∞⋅===81ln ln 1109lim1092lim10!lim 01x x x x x x x x→+∞→+∞→+∞⋅=⋅==⋅==所以当x 充分大时,()()f x g x < 所以当x 充分大,()()()f x g x h x <<. (5) 设向量组12:,,r I ααα可由向量组12:,,s II βββ线性表示,下列命题正确的是( )(A ) 若向量组I 线性无关,则r s ≤. (B ) 若向量组I 线性相关,则r s >. (C ) 若向量组II 线性无关,则r s ≤. (D ) 若向量组II 线性相关,则r s >. 【答案】A【考点】向量组的线性相关与线性无关 【难易度】★★ 【详解】解析:由于向量组I 能由向量组II 线性表示,所以()()r I r II ≤,即11(,,)(,,)r s r r s ααββ≤≤若向量组I 线性无关,则1(,,)r r r αα=,所以11(,,)(,,)r s r r r s ααββ=≤≤,即r s ≤,选A.(6) 设A 为4阶实对称矩阵,且20A A +=,若A 的秩为3,则A 相似于 ( )(A ) 1110⎛⎫⎪⎪ ⎪ ⎪⎝⎭. (B ) 1110⎛⎫⎪⎪ ⎪- ⎪⎝⎭.(C ) 1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (D ) 1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭. 【答案】D【考点】实对称矩阵的特征值,实对称矩阵的特性 【难易度】★★★ 【详解】解析:设λ为A 的特征值,由于20A A +=,所以20λλ+=,即(1)0λλ+=,这样A 的特征值为-1或0.由于A 为实对称矩阵,故A 可相似对角化,即AΛ,()()3r A r =Λ=,因此,1110-⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭,即1110A -⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭. (7) 设随机变量X 的分布函数0,01(),0121,1xx F x x e x - <⎧⎪⎪= ≤<⎨⎪⎪- ≥⎩,则{}1P x == ( )(A ) .0 (B )12. (C ) 112e --. (D ) 11e --. 【答案】C【考点】随机变量的分布函数的性质 【难易度】★★ 【详解】解析:{}{}{}()()1111111110122P X P X P X F F e e --==≤-<=--=--=-.选C. (8) 设1()f x 为标准正态分布的概率密度,2()f x 为[]1,3-上均匀分布的概率密度,若12()0()(0,0)()af x x f x a b bf x x ≤⎧=>>⎨>⎩为概率密度,则,a b 应满足 ( )(A ) 234a b +=. (B )324a b +=. (C )1a b +=. (D )2a b +=. 【答案】A【考点】均匀分布、标准正态分布、连续型随机变量的概率密度的性质 【难易度】★★★ 【详解】解析:由题意知 ()221x f x -=,()21,1340,x f x ⎧ -≤≤⎪=⎨⎪ ⎩其它利用概率密度的性质()()()()03121001312424a a f x dx af x dx bf x dx f x dxb dx b +∞+∞+∞-∞-∞-∞==+=+=+⎰⎰⎰⎰⎰所以234a b +=.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 设可导函数()y y x =由方程220sin x yxt e dt x t dt +-=⎰⎰确定,则x dydx== .【答案】-1【考点】积分上限的函数及其导数 【难易度】★★ 【详解】 解析:220sin x yxt e dt x t dt +-=⎰⎰,令0x =,得0y =等式两端对x 求导,得 2()220(1)s i n s i nx x y dy e t dt x x dx-++=+⎰ 将0x =,0y =代入上式,得10dydx+= 所以1x dydx ==-. (10)设位于曲线)y e x =≤<+∞下方,x 轴上方的无界区域为G ,则G绕x 轴旋转一周所得空间区域的体积是 .【答案】24π【考点】定积分的换元法;旋转体的体积 【难易度】★★★ 【详解】 解析:()221ln eedxV y dx x x ππ+∞+∞==+⎰⎰ ()22ln arctan ln 1ln 244eed x x x ππππππ+∞+∞⎛⎫==⋅=-=⎡⎤ ⎪⎣⎦+⎝⎭⎰. (11) 设某商品的收益函数为()R p ,收益弹性为31p +,其中p 为价格,且(1)1R =,则()R p = .【答案】()3113p pe-【考点】导数的经济意义 【难易度】★★★ 【详解】解析:由收益弹性的定义,得31dR pp dp R⋅=+ 21dR p dp R p ⎛⎫∴=+ ⎪⎝⎭两端积分,得 21ln ln 3R p p C =++ 又()11R =,所以13C =-11ln ln 33R p p ∴=+-即()3113p R pe -=(12) 若曲线321y x ax bx =+++有拐点(1,0)-,则b = . 【答案】3【考点】函数图形的拐点 【难易度】★★ 【详解】解析:321y x ax bx =+++232y x ax b '=++62y x a ''=+因曲线有拐点(1,0)-,所以,当1x =-时,0y ''=13ax ⇒=-=-3a ⇒= 曲线过点()1,0-,代入曲线方程,得3b =.(13) 设A ,B 为3阶矩阵,且3A =,2B =,12A B -+=,则1A B -+= .【答案】3【考点】行列式的计算 【难易度】★★ 【详解】解析:由于1111()()A A B BE AB B B A ----+=+=+,所以11111()A B A A B B A A B B -----+=+=+因为2B =,所以1112BB--==,因此 11113232A B A A B B ---+=+=⨯⨯=.(14) 设1,,n X X 是来自总体2(,)N μσ(0)σ>的简单随机样本,记统计量211n i i T X n ==∑,则ET = .【答案】22σμ+【考点】单个正态总体的抽样分布 【难易度】★★ 【详解】解析:()()22222211111()()n n i i i i E T E X E X nE X D X E X n n nσμ==⎛⎫⎛⎫====+=+ ⎪ ⎪⎝⎭⎝⎭∑∑.三、解答题:15-23小题,共94分.请将解答写在答.题纸..指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10 分)求极限11ln lim (1)xxx x →+∞-【考点】等价无穷小;洛必达法则 【难易度】★★ 【详解】解析:11ln 1ln 111ln lim ln ln lim 1lim x x x x x xxxxx x x ee→+∞⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭→+∞→+∞⎛⎫-== ⎪⎝⎭1111ln 1ln lim1lim 11x xx x x x x xx x x x xe e→+∞→+∞⎛⎫- ⎪⋅- ⎪⎝⎭-⎛⎫ ⎪- ⎪⎝⎭==1ln 1ln lim1ln lim11ln x x x x xxx e x x xee→+∞→+∞--⎛⎫ ⎪-⋅ ⎪⎝⎭==(x →+∞时,1ln 0x x→1ln 11ln x x e x x⇒-) 1.e -=(16) (本题满分10分) 计算二重积分3()Dxy dxdy +⎰⎰,其中D 由曲线x =0x =及0x =围成.【考点】二重积分的性质、利用直角坐标计算二重积分 【难易度】★★★ 【详解】 解析:设12D D D =,其中(){1,0D x y y x =≤≤≤≤ (){2,10,D x y y x =-≤≤≤≤()()3322333DDx y dxdy x x y xy y dxdy +=+++⎰⎰⎰⎰因为区域D 关于x 轴对称,被积函数233x y y +是y 的奇函数,所以()2330Dx y y dxdy +=⎰⎰()()())113323232032323D D D x y dxdy x xy dxdy x xy dxdy dy xxy dx ⎡⎤+=+=+=+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰1422013242x x y ⎛=+ ⎝⎰1420912244y y dy ⎛⎫=-++ ⎪⎝⎭⎰1415=(17) (本题满分10 分)求函数2u xy yz =+在约束条件22210x y z ++=下的最大值和最小值. 【考点】拉格朗日乘数法;多元函数的最大值、最小值【难易度】★★★ 【详解】解析:令()()222,,,210F x y z xy yz x y z λλ=++++-22220220220100x yzF y x F x z y F y z F x y z λλλλ'=+=⎧⎪'=++=⎪∴⎨'=+=⎪⎪'=++-=⎩解得1,21,2x y z x y z ⎧===⎪⎨=-==-⎪⎩()()21,2M M ∴=--=()()1,2M M =--=-.(18) (本题满分10 分)(I ) 比较()1ln ln 1n t t dt +⎡⎤⎣⎦⎰与10ln nt t dt ⎰()1,2,n =的大小,说明理由;(II ) 记()1ln ln 1nn u t t dt =+⎡⎤⎣⎦⎰()1,2,n =,求极限lim n n u →∞. 【考点】夹逼准则、定积分的基本性质【难易度】★★★★ 【详解】解析:当0t →时,[]ln ln(1)0,ln 0nnt t t t +→→,所以()1ln ln 1nt t dt +⎡⎤⎣⎦⎰与1ln n t t dt ⎰均为定积分,故(I )当01t <<时0ln(1)t t <+<,故[]ln(1)nn t t +<,所以[]ln ln(1)ln nnt t t t +<[]11ln ln(1)ln nn t t dt t t dt ∴+<⎰⎰()1,2,n =(II )()1111001ln ln ln 1nnn t t dt t t dt td t n +=-⋅=-+⎰⎰⎰ ()211n =+ 故由()1210ln 1n n u t t dt n <<=+⎰,根据夹逼定理得()210lim lim01n n n u n →∞→∞≤≤=+故lim 0n n u →∞=.(19)(本题满分10 分)设函数()f x 在[]0,3上连续,在()0,3内存在二阶导数,且22(0)()(2)(3)f f x dx f f ==+⎰,(I ) 证明:存在(0,2)η∈使()(0);f f η= (II ) 证明存在(0,3)ξ∈,使()0f ξ''= 【考点】罗尔定理、介值定理、定积分中值定理【难易度】★★★ 【详解】 证明:(I )22(0)()f f x dx =⎰,又()f x 在[]0,2上连续∴由积分中值定理得,至少有一点(0,2)η∈,使得()()()2020f x dx f η=⋅-⎰()()202f f η∴=,∴存在()0,2η∈使得()()0f f η=.(II )()()()2320f f f +=,即()()()2302f f f += 又()f x 在[]2,3上连续,由介值定理知,至少存在一点[]12,3η∈使得[]()10f f η= ()f x 在[]0,2上连续,在()0,2上可导,且()()02f f =∴由罗尔定理知,()10,2ξ∃∈,有()10f ξ'=又()f x 在[]12,η上连续,在()12,η上可导,且()()()120f f f η==∴由罗尔定理知,()212,ξη∃∈,有()20f ξ'=又()f x 在[]12,ξξ上二阶可导,且()()120f f ξξ''==∴由罗尔定理,至少有一点12(,)(0,3)ξξξ∈⊂,使得()0f ξ''=.(20) (本题满分11分)设110111a A b λλλ ⎛⎫⎛⎫ ⎪ ⎪= - 0= ⎪ ⎪ ⎪ ⎪1 1 ⎝⎭⎝⎭,已知线性方程组Ax b =存在2个不同的解(I ) 求λ,a ;(II ) 求方程组Ax b =的通解.【考点】非齐次线性方程组有解的充分必要条件,非齐次线性方程组的通解 【难易度】★★★ 【详解】解析:方法一:(I )已知Ax b =有2个不同的解()(,)3r A r A b ∴=<,对增广矩阵进行初等行变换,得2211111(,)0101010111111111111010101010110011a A b a a a λλλλλλλλλλλλλλλ⎛⎫⎛⎫⎪⎪=-→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪→-→- ⎪ ⎪⎪ ⎪-----+⎝⎭⎝⎭当1λ=时,11111111(,)000100010000000A b a ⎛⎫⎛⎫ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭此时,()1(,)2r A r A b =≠=,Ax b =无解,所以1λ≠.当1λ=-,1111(,)02010002A b a -⎛⎫ ⎪→- ⎪ ⎪+⎝⎭由于()(,)3r A r A b =<,所以2a =-.因此,1λ=-,2a =-. 方法二:(I )已知Ax b =有2个不同的解()(,)3r A r A b ∴=<∴0A =,即21110(1)(1)011A λλλλλ=-=-+=,知1λ=或-1. 当1λ=时,()1(,)2r A r A b =≠=,此时,Ax b =无解,1λ∴=-.代入由()(,)r A r A b ∴=得2a =-.(II )310111112111111(,)020101001022000000000000A b ⎛⎫- ⎪-⎛⎫-⎛⎫ ⎪ ⎪ ⎪ ⎪⎪→-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭ 原方程组等价为1323212x x x ⎧-=⎪⎪⎨⎪=-⎪⎩,即132333212x x x x x ⎧=+⎪⎪⎪=-⎨⎪=⎪⎪⎩,123332110210x x x x ⎛⎫⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪∴=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭.Ax b ∴=的通解为31(1,0,1)(,,0)22T T x k =+- ,k 为任意常数.(21) (本题满分11 分)设0141340A a a -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,正交矩阵Q 使得TQ AQ 为对角矩阵,若Q 的第1列为T,求a,Q.【考点】实对称矩阵的特征值、特征向量及其相似对角矩阵【难易度】★★★【详解】解析:由于0141340A aa-⎛⎫⎪=- ⎪⎪⎝⎭,存在正交矩阵Q,使得TQ AQ为对角阵,且Q的第一列为T,故A对应于1λ的特征向量为12,1)Tξ=,故1Aλ=,即10141113224011aaλ-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,由此可得11,2aλ=-=.故014131410A-⎛⎫⎪=--⎪⎪-⎝⎭,由14131041E Aλλλλ--=-=-,可得14144141311312314140400441(4)(4)(2)(5)023λλλλλλλλλλλλλλλλ-----=-=----++-=+=+--=-故A的特征值为1232,4,5λλλ==-=,且对应于12λ=的特征向量为12,1)Tξ=.由2()0E A xλ-=,即1234141710414xxx--⎛⎫⎛⎫⎪⎪-=⎪⎪⎪ ⎪--⎝⎭⎝⎭4141711011710270010414000000---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-→-→⎪ ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭可得对应于24λ=-的特征向量为2(1,0,1)T ξ=-.由3()0E A x λ-=,即1235141210415x x x -⎛⎫⎛⎫ ⎪⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭514121121101121099011011415099000000--⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭可得对应于35λ=的特征向量为3(1,1,1)T ξ=-.由于A 为实对称矩阵,123,,ξξξ为对应于不同特征值的特征向量,所以123,,ξξξ相互正交,只需单位化:312123123,1,0,1),1,1)T T T ξξξηηηξξξ====-==-, 取()123,,0Q ηηη⎫⎪⎪==⎪⎪⎭,则245TQ AQ ⎛⎫⎪=Λ=- ⎪ ⎪⎝⎭. (22) (本题满分11 分)设二维随机变量(,)X Y 的概率密度为2222(,)x xy y f x y Ae -+-=,x -∞<<+∞,y -∞<<+∞,求常数A 及条件概率密度|(|)Y X f y x【考点】连续型随机变量的概率密度的性质,二维连续型随机变量的边缘密度,二维连续型随机变量的条件密度 【难易度】★★★ 【详解】解析:()()222222,y x x xy y x f x y AeAe e---+--==()2222221111y x x A e eπ---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎥⎥⎥⎥⎦⎦ 利用概率密度的性质得到()()2222111,[]y x x f x y dxdy A ee dy dx π---⨯⨯+∞+∞+∞+∞-∞-∞-∞-∞==⎰⎰⎰⎰因为,()222221)1y x t e dy y x te dt --⨯+∞+∞--∞-∞-==⎰;同理,22111x e dx -⨯+∞-∞=⎰,所以()()222222111,[]y x x f x y dxdy A ee dy dx A ππ---⨯⨯+∞+∞+∞+∞-∞-∞-∞-∞===⎰⎰⎰⎰(利用正态分布的概率密度为1,即()221x dx μσ--+∞-∞=⎰),得到1A π-=即()()22222211,y x x f x y e e---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎥⎥⎥⎥⎦⎦ X 的边缘概率密度为()()()222221,y x xx X f x f x y dy e dy --⨯+∞+∞---∞-∞===⎰⎰条件概率密度()()()222,,,x xy y Y X X f x y f y x x y f x -+-==-∞<<+∞-∞<<+∞(23) (本题满分11分)箱内有6个球,其中红、白、黑球的个数分别为1、2、3个,现从箱中随机的取出2个球,记X 为取出的红球个数,Y 为取出的白球个数. (I ) 求随机变量(,)X Y 的概率分布; (II ) 求cov(,)X Y 【考点】二维离散型随机变量的概率分布、协方差的计算公式【难易度】★★ 【详解】解析:(I )X 的所有可能取值为0,1,Y 的所有可能取值为0,1,2{}2326310,0155C P X Y C =====(取到的两个球都是黑球){}112326620,1155C C P X Y C =====(取到的一个是白球,一个是黑球){}222610,215C P X Y C ====(取到的两个球都是黑球){}111326311,0155C C P X Y C =====(取到的一个是红球,一个是黑球){}11122621,115C C P X Y C ====(取到的一个是红球,一个是白球){}261,20P X Y C ==== (),X Y 的联合分布律为(II )()()()(),Cov X Y E XY E X E Y =-()21101333E X =⨯+⨯=,()2812012515153E Y =⨯+⨯+⨯=()22111515E XY =⨯⨯=,∴()()()()2124,153345Cov X Y E XY E X E Y =-=-⨯=-。
2010考研数三真题及解析

2010年全国硕士研究生入学统一考试数学三试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.)1 1 x ,则a等于( )(1)若limx0 x x a e1(A)0. (B) 1. (C) 2. (D) 3.(2)设y1, y2 是一阶非齐次微分方程y p x y q x的两个特解,若常数,使y1 y2 是该方程的解,y1 y2 是该方程对应的齐次方程的解,则( )1(A),(B) .(C) ,. (D) .【答案解析】见真题理论验证强化指导部分数二试题一(2).(3)设函数f x , g x具有二阶导数,且g x 0 ,若g x0a 是g x 的极值,则f g x 在x0 取极大值的一个充分条件是( )(A) f a 0. (B) f a 0 . (C) f a 0 . (D)f a 0 .x(4) 设 f xln 10 x g x , x h x ,e 10 ,则当 x 充分大时有( ) (A) g xh xf x. (B) hxg xf x.(C) fx g xh x.(D) g x f x h x .(5) 设向量组 I :1, 2,r 可由向量组II :1,2,s 线性表示,下列命题正确的是( )(A) 若向量组I 线性无关,则rs .(B) 若向量组I 线性相关,则r s . (C) 若向量组II 线性无关,则r s . (D) 若向量组II 线性相关,则r s .(6) 设 A 为4阶实对称矩阵,且 A 2A O ,若 A 的秩为3,则 A 相似于 ()1 1(A)1 .(B)1 .1 11 1(C) 1.(D)1.110, x 01(A) 0.(B).(C)e1.(D) 1e1.为1,3上均匀分布(8) 设 f 1(x ) 为标准正态分布的概率密度, f 2 (x ) 的概率密度,若af x 1( )x 0 f x( )( a 0, b 0)bf 2( )x x 0为概率密度,则a ,b 应满足 ( )(A) 2a3b 4. (B) 3a2b 4. (C) a b 1.(D) ab 2.二、填空题(9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.)x yt 2 x2 确定,则dy. (9) 设可导函数 yy x ( )由方程e dtx sin t dt dxx 01 (10)设位于曲线 y( e x ) 下方, x 轴上方的无界区域为G ,则G 绕 x轴旋转一周所得空间区域的体积是.(11) 设某商品的收益函数为R (p ),收益弹性为1p 3 ,其中 p 为价格,且R (1) 1 ,则R (p ) =.(7) 设随机变量 X 的分布函数 F x ( ) 2 1e x ,( )0 x 1 ,则 PX1=x1(12) 若曲线 y x 3 ax 2 bx 1有拐点(1,0) ,则b.(13) 设 A ,B 为3阶矩阵,且 A 3, B 2 , A1B 2 ,则A B1.n212(14)设X X 1, 2, ,X n是来自总体N (,) (0) 的简单随机样本,统计量TXi ,n i 1则ET .三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分10分)求极限 lim (xx 11)ln 1x .(16) (本题满分10分)计算二重积分(x y dxdy )由曲线 x 1y 2 与直线 x2y 0 及Dx 2y 0围成.(17) (本题满分10分) 求函数uxy2yz 在约束条件x 2y 2z 210 下的最大值和最小值.(18)(本题满分10分)(I ) 比较1ln tln 1tndt与1t nln t dt n 1,2,的大小,说明理由.1n( II ) 记u nln t ln 1t dt n 1,2,,求极限nli m u n .(19) (本题满分10分)设 函 数 f (x ) 在0,3上 连 续 , 在0,3内 存 在 二 阶 导 数 , 且22f (0)f x dx ( ) f (2) f (3),( I ) 证明存在(0,2) ,使 f ()f (0); ; ( II ) 证明存在(0,3) ,使 f()0 .(20)(本题满分11分)11 a设A1 , b11已知线性方程组Ax b 存在2个不同的解. ( I ) 求,a ;( II ) 求方程组Ax b 的通解. (21)(本题满分11 分) 1 (1,2,1)T,求a ,Q .(22) (本题满分11分) 设二维随机变量(X Y , ) 的概率密度为2f x y ( , )Ae 2x 2xy y2,x,y ,求常数 A 及条件概率密度 f Y X |(y x | ) .(23)(本题满分11分) 箱中装有6个球,其中红、白、黑球的个数分别为1,2,3 个,现从箱中随机取出2个球, 记 X 为取出的红球个数,Y 为取出的白球个数.( I ) 求随机变量 (X Y ,) 的概率分布;0 设A 141 43a ,正交矩阵 Q 使得 Q T AQ 为对角矩阵,若 Q 的第 1 列为 a( II ) 求Cov X Y( , ) .2010年全国硕士研究生入学统一考试数学三试题参考答案一、选择题(1)【答案】 (C). 【解析】limx1 1 a exlim x1 1e x1axlimx11e xaxe xlim x1e x axe xx x xx x x1e x axe x lim lim 1 a 1x 0 x x 0 x所以a 2.(2) 【答案】 (A).【解析】因y 1 y 2 是 y P x y 0 的解,故y 1 y 2 P xy 1y 20,所以y 1P x y1y 2p x y ( ) 20 ,而由已知 y 1P x y1q x, y 2P x y2q x,所以q x0,①又由于一阶次微分方程 ypx yq x是非齐的,由此可知 qx0 ,所以0.由于y 1y 2 是非齐次微分方程 yPx yq x的解,所以y 1 y 2 P x y 1 y 2q x,整理得y 1P x y1y 2P x y2q x ,即q xq x,由q x 0 可知1,②由①②求解得,故应选(A).(3)【答案】 (B).【解析】f g x ( ) f g x ( )g x ( ) ,f g x( ) fg x ( )g x ( ) fg x ( )g x ( )2fg x ( )g x( )由于g (x 0 ) a 是g (x ) 的极值,所以g x ( 0)0 .所以f g x ( 0 )f gx ( 0 )g x( 0 )fa gx ( 0 )由于g x ( 0 ) 0,要使f g x( )0,必须有f a ( ) 0 ,故答案为B.(4)【答案】 (C).x【解析】因为 lim ( ) lim e 10 lim 10x 1 ,所以,当 x 充分大时,h x ( )g x ( ) .xg x ( )xxx1091又因为 limf x ( ) lim ln 10 xlim 10 ln x x 10 lim ln 9xxg x ( ) xxx1 xx81ln x10 9lim x 10 92 lim l x 10! lim 10 .x1xxxx 所以当 x 充分大时, f x ( ) g x ( ) ,故当 x 充分大, f x ( ) g x ( )h x ( ) .(5) 【答案】 (A).【解析】由于向量组 I 能由向量组 II 线性表示,所以r (I) r (II) ,即r (1, ,r) r (1, , s ) s 若向量组 I 线性无关,则 r (1, ,r) r ,所以 rr (1, ,r )r (1, ,s )s ,即r s ,选(A).(6) 【答案】 (D). 【解析】设为 A 的特征值,由于 A 2A O ,所以20 ,即 (1)0 ,这样 A 的特 征 值 只 能 为 -1 或 0. 由 于 A 为 实 对 称 矩 阵 , 故 A 可 相 似 对 角 化 , 即11A,r A ()r ()3,因此,1,即 A1.11(7) 【答案】 (C).【解析】离散型随机变量的分布函数是跳跃的阶梯形分段函数,连续型随机变量的分布函数是连续函数.观察本题中F (x ) 的形式,得到随机变量 X 既不是离散型随机变量,也不是连续型随机变量,所以求随机变量在一点处的概率,只能利用分布函数的定义.根据分布函数的定义,函数在某一点的概率可以写成两个区间内概率的差,即P X 1P X1P X 1 F1 F11 e1e1,故本题选(C).(8) 【答案】 (A).x 21 ,1x 3【解析】根据题意知, f 1x(x),f 2x2 140,其它利用概率密度的性质:f x dx1,故a31 a 3f x dx af 1x dxbf 2 x dx2f 1x dxb4 dx24 b1所以整理得到2a 3b 4,故本题应选(A).二、填空题 (9)【答案】1.x y2x2【解析】e t dtxsin t dt ,令x 0,得 y 0,等式两端对 x 求导:e(x y )2(1dydx ) 0xsin t dt 2x sin x 2 .dydy将x0, y 0代入上式,得10 .所以1.dxxdx x 02(10)【答案】4【解析】根据绕 x 轴旋转公式, 有2dxVey dxe1ln 2 xe1d ln ln 2x xarctan lnxe2442 .1 33P1.(11)【答案】 pedR p 3dR 1212【解析】由弹性的定义,得1 p ,所以pdp ,即 ln Rln p pC , dp R R p313又R11,所以 C1 .故ln Rln p 1 p 1 ,因此 R p e 3p1.3 33(12)【答案】b3.【解析】函数为 yx 3ax 2bx 1 ,它的一阶导数为 y 3x 2 2ax b ; 二阶导数为ay6x 2a,又因为1,0是拐点,所以 yx10 ,得3过点1,0,所以将x1,y 0 代入曲线方程,得b 3.(13) 【答案】3. A A (1B B )【解析】由于1( E AB B )1B1A ,所以1 1 11B B )A AB B因为 B2 ,所以 B1 B B1321 3 .2(14)【答案】22.1 ( B AA A111 2B,因此1 A BAA【解析】 E T EnXi2 1EnXi21nEX2E X222.n i1n i 1n 三、解答题11ln x1 lnx x 1ln x x1ln e x11lnxlimlim(15)【解析】 lim x x 1lim e ln xe xln xexln xxx其中 ln x xln x x1ln x x ln x xln( e 1) (e 1) e 1ln x e 1ln x ln x1 lim lim limlim e x ( 1)1.xln xx 1xx ln x x x故原式e1.(16)【解析】积分区域 DD 1 D 2 ,1 x y ,0 y1,2y x1y 2D 2x y , 1y 0,2y x1y 2xy3dxdyx 33x y 2 3xy 2y 3 dxdyDD因 为 区 域 D 关 于 x 轴 对 称 , 被 积 函 数 3x 2 y y 3 是 y 的 奇 函 数 ,所以3x 2y y dxdy30.Dx y dxdy3x 3 3xy dxdy 22x 3 3xy dxdy 221DDD 12xln xx211 x 43 x y 22dy2019 4 y 42y 2 1 4 dy 1415 .42(17)【解析】令 F x y z,, ,xy 2yz x 2 y 2 z 2 10,用拉格朗日乘数法得F xy 2x 0,F yx 2z2y0,F z2y 2z 0, F x 2y 2z 2100,又因为该问题必存在最值,并且不可能在其它点处,所以u m ax5 ,u m in5 5 .(18) 【解析】 (I)当0x 1时0 ln(1x )x,故ln(1t )nt n ,所以ln tln(1t )nln t t n ,则01ln t ln(1t )ndt1ln t t dt n n 1,2, .(II)1 ln t t dt n1ln t t dtnn 111ln td tn1n112 ,故由1n1求解 得六个点:152,1, B A1 , , 21CD0,, E F由于在点A 与B 点处,u ;在点C与 D 处, u;在点E 与F 处, 0u . 1 2 y y0 u n 0 ln n1 2 ,1根据夹逼定理得0 lim u n lim0 ,所以lim u n 0 .n n n1n2(19)【解析】(I) 因为2 f (0) 0 f x dx( ) ,又因为f x 在0,2上连续,所以由积分中值定理得,至少有一点0,2,使得20 f x dx f 20即2 f 0 2 f ,所以存在0,2,使得f f0 .f 2 f 3(Ⅱ)因为f 2 f 3 2 f 0 ,即 f 0 ,又因为f x 在2,3上连2续,由介值定理知,至少存在一点 1 2,3使得f 1 f 0 .因为f x 在0,2上连续,在0,2上可导,且f 0 f 2 ,所以由罗尔中值定数学(三)试题 第15页 (共4页)微信公众号:考研研学姐答疑资讯QQ 群:451613025理知,C存在10,2,有f10. 又因为 f x 在2,1上连续,在2,1上可导,且f 2 ff1 ,所以由罗尔中值定理知,存在22,1,有 f20 . 又因为 fx在1,2上二阶可导,且f1f20 ,所以由罗尔中值定理,至少有一点 Ax b 0,3,使得f0 .(20) 【解析】因为方程组有两个不同的解,所以可以判断方程组增广矩阵的秩小于3,进而可以通过秩的关系求解方程组中未知参数,有以下两种方法.方法1:(I)已知Ax b 有2个不同的解,故r A ( ) r A ( ) 3 ,对增广矩阵进行初等行变换,得11 a 1 1 1A1 0 101 01 1 1 11 1a1 111 1 10 10 1 01010112a0 012a 11 1 1 11 111当1时,A0 00 10 01,此时,r A ( ) r A ( ),故Ax b 无解(舍00 0 a00 001 1 1 1微信公众号:考研研学姐答疑资讯QQ 群:451613025当1时, A 0 2 0 1 ,由于r A ( )0 0 0 a 2方法2:已知Axb 有2个不同的解,故r A ()r A () 3 ,因此 A 0,即11A0 10(1) (21)0 ,11知1或-1.当1时,r A () 1 r A () 2 ,此时,Ax b 无解,因此1.由r A () r A ( ) ,得a2.( II ) 对增广矩阵做初等行变换31121 11211 12A0 201 0 2 010 1 0121 1110 0000 0 003x x3x 1 1232微信公众号:考研研学姐答疑资讯QQ群:451613025x 21x 3 231 21因此Ax b的通解为x k 0 ,其中k为任意常数.10 10 1 4(21)【解析】由于A 1 3 a4 a 01 1微信公众号:考研研学姐答疑资讯QQ 群:45161302513 可知原方程组等价为2 ,写成向量的形式,即x 2x 0 1 .列为(1,2,1)T ,故 A 对应于1 的特征向量为1(1,2,1)T .12,即根据特征值和特征向量的定义,有A116141 3 a 41 1a2 12 ,由此可得a 1,12 .故A10 1 141 31 41.微信公众号:考研研学姐答疑资讯QQ 群:45161302514 由EA1 3 1 (4)( 2)(5) 0 ,41可得 A 的特征值为12,24, 35 . 4 由 (2E A x ) 0,即14特征向量为2(1,0,1)T .17 1 4x 11x 20 ,可解得对应于 24 的线性无关的4x 35 由 (3E A x )0 ,即 143(1,1,1)T .1 2 1 4x 11x 2 0 ,可解得对应于35 的特征向量为5 x 3由于 A 为实对称矩阵,1,2,3 为对应于不同特征值的特征向量,所以1,2,3相互正交,只需单位化:111(1,2,1) ,T2( 1,0,1) ,T3(1,1,1)T ,123163取,则Q T AQQ 1,2,351112微信公众号:考研研学姐答疑资讯QQ 群:451613025(22) 【解析】当给出二维正态随机变量的的概率密度 fx , y 后,要求条件概率密度f x y ( ,)f Y X | (y x | ) ,可以根据条件概率公式 f Y X | (y x | )来进行计算.本题中还有待定参 f X ( )x数, A 要根据概率密度的性质求解,具体方法如下.2 22 2 22x f x y dy, A e2x 2xy ydy A e(y x ) xdyf XAexe(y x )dyx 2A e ,x .根据概率密度性质有1f X x dx A ex2dxA,即 A1,1x 2故 f Xx e ,x. 当x时,有条件概率密度f x y ,Ae x 22xy y21x 2 2 21(x y )2 f YXy xf XxAex 2ee ,x ,y.(23)【解析】(I) X 的所有可能取值为 0,1 ,Y 的所有可能取值为 0,1,2 .C 323 1,其中X 0,Y 0 表示取到的两个球都是黑球;P X0,Y2C 615 5P X 0,Y 1C C 21231 6 2,其中 X 0,Y 1表示取到的一个是白球,一个是C6 15 5黑球;C22 1 ,其中X 0,Y 2 表示取到的两个球都是白球;P X0,Y 22 C6 15P X 1,YC C112313 1,其中X 1,Y 0 表示取到的一个是红球,一个是C6 15 5黑球;P X 1,Y 1C C112212,其中X 1,Y 1表示取到的一个是红球,一个是白球;C6 15 0P X1,Y20 , C6因此二维离散型随机变量X ,Y 的概率分布为2 2 2 1 1E XY 1 1 ,E X0 1 ,I(I),C o v EXYXY EXEY,33 3E Y 012Cov X Y, E XYE X E Y.。
2010年考研数一试题及答案

2010年全国硕士研究生入学统一考试数学(一)试题及参考答案一、选择题:1~8小题,每小题4分,共32分。
(1)、极限2lim ()()xx x x a x b →∞⎛⎫= ⎪-+⎝⎭( C ) A 、1 B 、e C 、e a b- D 、eb a-【解析与点评】方法一222ln 1()()()()lim lime lime()()xx x xx x a x b x a x b x x x xx a x b ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭→∞→∞→∞⎛⎫== ⎪-+⎝⎭()()2()()()()limelime a b x ab a b x abxx x a x b x a x b x x -+⎛⎫-+ ⎪ ⎪-+-+⎝⎭→∞→∞==e a b -=方法二22()()lim lim 1()()()()x xx x x x x a x b x a x b x a x b →∞→∞⎛⎫⎛⎫--+=+ ⎪ ⎪-+-+⎝⎭⎝⎭()()()()()()()()lim 1lim 1()()()()x a x b a b x abxxa b x ab x a x b x x a b x ab a b x ab x a x b x a x b -+-+⋅-+-+→∞→∞⎛⎫⎛⎫-+-+=+=+ ⎪ ⎪-+-+⎝⎭⎝⎭()lim()()()ee x a b x abxa b x a x b →∞-+--+==考点:第二个重要极限,初等函数运算,复合函数极限运算法则,极限运算,无穷小量替换 (2)、设函数(,)z z x y =,由方程(,)0y z F x x=确定,其中F 为可微函数,且20F '≠,则z zxy u y∂∂+=∂∂( B ) A 、x B 、z C 、x - D 、z -【解析与点评】 等式两边求全微分得:12d d 0y z F F x x ⎛⎫⎛⎫''⋅+⋅= ⎪ ⎪⎝⎭⎝⎭,即 1222d d dz d 0x y y x x z xF F x x --''+=12(d d )(dz d )0F x y y x F x z x ''⇒⋅-+⋅-= 12122dz d d yF zF F x y xF F '''+∴=-''所以有,1212222yF zF F zF z z xy x y z u y xF F F ''''+∂∂+=-==∂∂'''(3)、设,m n是正整数,则反常积分x ⎰的收敛性( D )A 、仅与m 的取值有关B 、仅与n 的取值有关C 、与,m n 的取值都有关D 、与,m n 的取值都无关 【解析与点评】:显然0,1x x ==是两个瑕点,有=+⎰对于的瑕点0x =,当0x +→21ln (1)mnx x -=-等价于221(1)mm nx--,而21120m nxdx -⎰收敛(因,m n 是正整数211m n ⇒->-),故收敛;对于)的瑕点1x =,当1(1,1)(0)2x δδ∈-<<时12122ln (1)2(1)nmnmx x <-<-,而2112(1)mxd x-⎰显然收敛,故收敛。
历年考研数学三真题及答案解析

二、填空题: 9~14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上 .
1
lim (tan x ) cos x sin x
x
(9) 4
ln x , x 1
f (x)
,y
( 10 )设函数
2 x 1, x 1
dy f ( f ( x)), 求
dx x0
___________.
(11)函数 z
n
绝对收敛,
n
( 1)
2
n
条件收敛,则
1
1
(A) 0<
2
(B) 2 <
1
范围为( )
3
(C) 1<
2
3 (D) 2 < <2
0
0
1
1
1
0,2
1,3
(5 )设
c1
c2
任意常数,则下列向量组线性相关的是(
)
1, 4 c3
1 c 4 其中 c1, c2, c3, c4 为
(A) 1, 2, 3
(B) 1, 2, 4
设该企业生产甲、 乙两种产品的产量分别为 元/ 件)与 6+y(万元 / 件) .
x( 件 ) 和 y( 件) ,且固定两种产品的边际成本分别为
x 20+ 2 (万
1)求生产甲乙两种产品的总成本函数 C ( x , y ) (万元)
2)当总产量为 50 件时,甲乙两种的产量各为多少时可以使总成本最小?求最小的成本
|BA*|=________.
P ( AB )
( 14 ) 设 A,B,C 是 随 机 事 件 , A,C 互 不 相 容 ,
1 , P(C )
2010年考研数一试题及答案

(6) 设 A 为 4 阶实对称矩阵,且 A2 + A = 0 ,若 A 的秩为 3 ,则 A 相似于
(D)
⎛1
⎞
⎜ A、 ⎜
1
⎟ ⎟
⎜
1⎟
⎜
⎟
⎝
0⎠
⎛1
⎞
⎜ B、 ⎜
1
⎟ ⎟
⎜
−1 ⎟
⎜
⎟
⎝
0⎠
⎛1
⎞
⎜ C、 ⎜
−1
⎟ ⎟
⎜
−1 ⎟
⎜
⎟
⎝
0⎠
⎛ −1
⎞
⎜ D、 ⎜
⎜
−1
⎟ ⎟
−1 ⎟
⎜
⎟
⎝
0⎠
【解析与点评】本题考查的知识点是矩阵的相似的性质,实对称矩阵可对角化的性质,矩阵
1 2 −1
2 xm n dx 收敛(因 m, n 是正整数 ⇒
2
−1
> −1),故
1 m ln2 (1− x)
2
dx
0
mn
0
nx
∫ 收 敛 ; 对 于
1 m ln2 (1− x)
1 2
dx nx
的瑕点
x =1
,当
x ∈ (1− δ ,1)(0 < δ < 1) 2
时
m ln2 (1− x) 1 2
A、秩 r( A) = m , 秩 r(B) = m
B、秩 r(A) = m , 秩 r(B) = n
2
C、秩 r( A) = n , 秩 r(B) = m
D、秩 r( A) = n , 秩 r(B) = n
【解析与点评】本题主要考查的知识点是矩阵的秩的性质
【数学二】2010年全国考研研究生入学考试真题及答案答案解析

2010年全国硕士研究生入学统一考试数学二试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.) (1) 函数()f x =( ) (A) 0. (B) 1. (C) 2. (D) 3.(2) 设12,y y 是一阶线性非齐次微分方程()()y p x y q x '+=的两个特解,若常数λμ,使12y y λμ+是该方程的解,12y y λμ-是该方程对应的齐次方程的解,则( ) (A) 11,22λμ==. (B) 11,22λμ=-=-. (C) 21,33λμ==. (D) 22,33λμ==. (3) 曲线2y x =与曲线ln (0)y a x a =≠相切,则a = ( )(A) 4e. (B) 3e. (C) 2e. (D) e.(4) 设,m n 是正整数,则反常积分⎰的收敛性 ( )(A) 仅与m 的取值有关. (B) 仅与n 的取值有关.(C) 与,m n 取值都有关. (D) 与,m n 取值都无关.(5)设函数(,)z z x y =,由方程(,)0y zF x x=确定,其中F 为可微函数,且20F '≠,则z z x y x y∂∂+=∂∂( ) (A) x . (B) z . (C) x -. (D) z -.(6) ()()2211lim n nn i j n n i n j →∞===++∑∑ ( ) (A) ()()1200111x dx dy x y ++⎰⎰. (B) ()()100111x dx dy x y ++⎰⎰. (C) ()()1100111dx dy x y ++⎰⎰. (D) ()()11200111dx dy x y ++⎰⎰. (7) 设向量组12I :,,,r ααα可由向量组12II :,,,s βββ线性表示,下列命题正确的是( )(A) 若向量组I 线性无关,则r s ≤. (B) 若向量组I 线性相关,则r s >.(C) 若向量组II 线性无关,则r s ≤. (D) 若向量组II 线性相关,则r s >.(8) 设A 为4阶实对称矩阵,且2A A O +=,若A 的秩为3,则A 相似于 ( ) (A) 1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. (B) 1110⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭. (C) 1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (D) 1110-⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. 二、填空题(9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.) (9) 3阶常系数线性齐次微分方程220y y y y ''''''-+-=的通解为y = .(10) 曲线3221x y x =+的渐近线方程为 . (11) 函数()ln 120y x x =-=在处的n 阶导数()()0n y = . (12) 当0θπ≤≤时,对数螺线r e θ=的弧长为 .(13) 已知一个长方形的长l 以2cm/s 的速率增加,宽w 以3cm/s 的速率增加.则当cm 12l = ,cm 5w =时,它的对角线增加的速率为 .(14)设,A B 为3阶矩阵,且132,2A B A B -==+=,,则1A B -+= .三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)求函数2221()()x t f x x t e d -=-⎰的单调区间与极值.(16)(本题满分10分) ( I ) 比较()10ln ln 1n t t dt +⎡⎤⎣⎦⎰与10ln n t t dt ⎰()1,2,n =的大小,说明理由;( II ) 记()10ln ln 1n n u t t dt =+⎡⎤⎣⎦⎰()1,2,n =,求极限lim n n u →∞. (17)(本题满分10分)设函数()y f x =由参数方程22,(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,其中()t ψ具有2阶导数,且5(1)(1) 6.2ψψ'==,已知223,4(1)d y dx t =+求函数()t ψ. (18)(本题满分10分)一个高为l 的柱体形贮油罐,底面是长轴为2a ,短轴为2b 的椭圆.现将贮油罐平放,当油罐中油面高度为32b 时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m 3) (19) (本题满分11分)设函数(,)u f x y =具有二阶连续偏导数,且满足等式2222241250u u u x x y y∂∂∂++=∂∂∂∂,确定a ,b 的值,使等式在变换,x ay x by ξη=+=+下化简为20u ξη∂=∂∂. (20)(本题满分10分)计算二重积分2 sin D I r θ=⎰⎰,其中(),|0sec ,04D r r πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭. (21) (本题满分10分)设函数()f x 在闭区间[]0,1上连续,在开区间()0,1内可导,且(0)0f =,1(1)3f =,证明:存在1(0,)2ξ∈,1(,1)2η∈,使得22()()=.f f ξηξη''++(22)(本题满分11分) 设110111a A b λλλ ⎛⎫⎛⎫ ⎪ ⎪= - 0= ⎪ ⎪ ⎪ ⎪1 1 ⎝⎭⎝⎭,,已知线性方程组Ax b =存在两个不同的解.( I ) 求λ,a ;( II ) 求方程组Ax b =的通解.(23)(本题满分11 分)设0141340A a a -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,正交矩阵Q 使得T Q AQ 为对角矩阵,若Q 的第1列为2,1)T ,求,a Q .。
2010年全国硕士研究生入学统一考试数学三试题及答案

2010年全国硕士研究生入学统一考试数学三试题及答案(正文部分,忽略题目及其他不相关内容)这里是2010年全国硕士研究生入学统一考试数学三试题及答案。
以下是试题及答案的详细内容:一、选择题(每题2分,共40题,共80分)1. 设a为正整数,且log2(a^2+3a)+log8(a^2+3a)<2,那么a的最小值为多少?答案:12. 函数f(x)=x+2cosx,那么f(x)的最大值和最小值分别是多少?答案:最大值为3,最小值为-13. 设R是一个n阶实对称矩阵,用A表示从矩阵R的每一行、每一列选择一个元素所得到的集合,B表示A中所有元素的和,那么B 最小值为多少?答案:04. 已知a1、a2、a3是等差数列,且a1+a2+a3=12,那么a1^2+a2^2+a3^2的最大值为多少?答案:485. 设函数f(x)=2x^3-3x^2-12x+4在区间[-2,4]上的最大值和最小值分别为M和m,那么M+m的值为多少?答案:13......四、非选择题1. 设函数f(x)=(x^2-2x+2)e^(√2x),求f'(0)的值。
答案:02. 设集合A={x|0<=x<=π},集合B={y|y=sinx},求A与B的交集的最小值。
答案:{0,π}......通过以上试题及答案,我们可以看出2010年全国硕士研究生入学统一考试数学三试题的内容涵盖了数学领域的各个方面,包括函数、方程、矩阵、集合等。
这些试题通过考查考生对概念、定理、公式及其应用的理解能力,旨在全面考察考生的数学知识水平和解题能力。
同时,这些试题的难度适中,考查的知识点也比较全面,可以帮助考生检验自己对数学知识点的掌握程度,并为进一步提升数学能力提供了参考。
总结:本文列举了2010年全国硕士研究生入学统一考试数学三试题及答案的部分内容,这些试题丰富多样,覆盖了数学的各个领域,考查了考生的理解能力和解题能力。
通过对这些试题的学习和理解,考生可以提高自己的数学水平,为进一步的学习和研究打下坚实的基础。
历年考研数学历年真题

下载链接到个年真题做真题填空选择都要做到400那么顺手。
2011年考研数学必备——1996年到2010年——15年考研数学真题(数1、数2、数3、数4)大汇总——免费下载2010年全国硕士研究生入学考试数学一试题2010年全国硕士研究生入学考试数学二试题2010年全国硕士研究生入学考试数学三试题2009年全国硕士研究生入学统一考试数学一试题2009年全国硕士研究生入学统一考试数学二试题2009年全国硕士研究生入学统一考试数学三试题2008年全国硕士研究生入学统一考试数学一试题2008年全国硕士研究生入学统一考试数学二试题2008年全国硕士研究生入学统一考试数学三试题2008年全国硕士研究生入学统一考试数学四试题2007年全国硕士研究生入学统一考试数学一试题2007年全国硕士研究生入学统一考试数学二试题2007年全国硕士研究生入学统一考试数学三试题2007年全国硕士研究生入学统一考试数学四试题2006年全国硕士研究生入学统一考试数学一试题2006年全国硕士研究生入学统一考试数学二试题2006年全国硕士研究生入学统一考试数学三试题2006年全国硕士研究生入学统一考试数学四试题2005年全国硕士研究生入学统一考试数学一试题2005年全国硕士研究生入学统一考试数学二试题2005年全国硕士研究生入学统一考试数学三试题2005年全国硕士研究生入学统一考试数学四试题2004年全国硕士研究生入学统一考试数学一试题2004年全国硕士研究生入学统一考试数学二试题2004年全国硕士研究生入学统一考试数学三试题2004年全国硕士研究生入学统一考试数学四试题2003年全国硕士研究生入学统一考试数学一试题2003年全国硕士研究生入学统一考试数学二试题2003年全国硕士研究生入学统一考试数学三试题2003年全国硕士研究生入学统一考试数学四试题2002年全国硕士研究生入学统一考试数学一试题2002年全国硕士研究生入学统一考试数学二试题2002年全国硕士研究生入学统一考试数学三试题2002年全国硕士研究生入学统一考试数学四试题2001年全国硕士研究生入学考试数学一试题2001年全国硕士研究生入学考试数学二试题2001年全国硕士研究生入学考试数学三试题2001年全国硕士研究生入学考试数学四试题2000年全国硕士研究生入学考试数学一试题2000年全国硕士研究生入学考试数学二试题2000年全国硕士研究生入学考试数学三试题2000年全国硕士研究生入学考试数学四试题1999年全国硕士研究生入学考试数学一试题1999年全国硕士研究生入学考试数学二试题1999年全国硕士研究生入学考试数学三试题1999年全国硕士研究生入学考试数学四试题1998年全国硕士研究生入学考试数学一试题1998年全国硕士研究生入学考试数学二试题1998年全国硕士研究生入学考试数学三试题1998年全国硕士研究生入学考试数学四试题1997年全国硕士研究生入学考试数学一试题1997年全国硕士研究生入学考试数学二试题1997年全国硕士研究生入学考试数学三试题1997年全国硕士研究生入学考试数学四试题1996年全国硕士研究生入学考试数学一试题1996年全国硕士研究生入学考试数学二试题1996年全国硕士研究生入学考试数学三试题1996年全国硕士研究生入学考试数学四试题。