1.2.2加减消元法(2)
《加减消元法—二元一次方程组的解法》二元一次方程组PPT优秀课件

① ②
4x 5 y 3 2 x 5 y 1
① - ②
① ②
感悟规律 揭示本质
两个二元一次方程中同一未知数的
系数相反或相等时,将两个方程的两边
分别相加或相减,就能消去这个未知数,
得到一个一元一次方程,这种方法叫做
加减消元法,简称加减法.
例1、解方程组
2x-5y=7
分析:
x= 1
y=-1
做一做
1、解二元一次方程组
⑴
3x-2y=5 ① X+3y=9 ②
6x+5y=25 ①
⑵
3x 4y=20 ② 2x+3y=-1 ① (4) 4x -9y=8 ②
(3)
3s+4t=7 ① 3t-2s=1 ②
运用新知 拓展创新
3x-2y= -1 6x+7y=9 ① ②
分析:1、要想用加减法解二元一次方程组 必须具备什么条件? 2、此方程组能否直接用加减法消 元?
3x 5y 21 2 x 5 y -11
互为相反 数……
① ②
分析: (3x + 5y)+(2x - 5y)=21 + (-11)
①左边 + ② 左边 = ① 右边 + ②右边
3x+5y +2x - 5y=10 5x =10 x=2
3x 5y 21 2 x 5 y -11
8命运把人抛入最低谷时,往往是人生转折的最佳期。 若自怨自艾,必会坐失良机!
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
励志学习的名言警句 1、在强者的眼中,没有最好,只有更好。 2、成功是努力的结晶,只有努力才会有成功。 3、只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。 4、拥有梦想只是一种智力,实现梦想才是一种能力。 5、生命之灯因热情而点燃,生命之舟因拼搏而前行。 6、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 7、没有天生的信心,只有不断培养的信心。 8、成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。 9、自己打败自己的远远多于比别人打败的。 10、当一个小小的心念变成行为时,便能成了习惯,从而形成性格,而性格就决定你一生的成败。 11、忍耐力较诸脑力,尤胜一筹。 12、高峰只对攀登它而不是仰望它的人来说才有真正意义。 13、你可以这样理解impossible(不可能)——I'm possible(我是可能的)。 14、自己打败自己是最可悲的失败,自己战胜自己是最可贵的胜利。 15、你可以选择这样的三心二意:信心恒心决心;创意乐意。 16、成功与不成功之间有时距离很短——只要后者再向前几步。 17、呈概率分布,关键是你能不能坚持到成功开始呈现的那一刻。 18、书是易事,思索是难事,但两者缺一,便全无用处 19、动是成功的阶梯,行动越多,登得越高。 20、天比昨天好,就是希望。 21、力的人影响别人,没能力的人,受人影响。 22、做的事情总找得出时间和机会; 23、要自卑,你不比别人笨。不要自满,别人不比你笨。 24、面对机遇,不犹豫;面对抉择,不彷徨;面对决战,不惧怕! 25、个人先从自己的内心开始奋斗,他就是个有价值的人。 26、超越自己,向自己挑战,向弱项挑战,向懒惰挑战,向陋习挑战。 27、不必每分钟都学习,但求学习中每分钟都有收获。 28、取时间就是争取成功,提高效率就是提高分数。 29、紧张而有序,效率是关键。 30、永远不要以粗心为借口原谅自己。
加减消元法课件 丽萍.ppt2

把y=-2代入①式得: x=3 所以该方程组的解是 x 3 的值?
y 2 x?能否把y的值代入②式求出 x 思考:能否用④- ③ 消去未知数
【活动四】
2 x y 8 小组讨论如何消去方程组 中的未知数y(如何 3x 2Βιβλιοθήκη y 5让y的系数相反),
并将讨论结果展示。
节的消元问题,是一节有关二元一次方程组的计 算问题。再求二元一次方程组的解的过程中,通 过化未知为已知的转化过程,理解化归的思想, 通过将二元化为一元的过程,理解消元的思想, 熟练掌握加减消元法解同一未知数的系数不相等 或不相反的二元一次方程组的方法。
教学目标
(一)知识与技能 会将同一未知数的系数化为相等或相反 会用加减消元法解二元一次方程组 体会解二元一次方程组的思想——消元;化未知为已知的化归 思想 (二)过程与方法 通过将二元一次方程组中同一未知数的系数化为相等或者相反, 并用加减消元法解二元一次方程组的练习,会选用适当的方法 解二元一次方程组,培养运算能力。 (三)情感与态度 通过研究解决问题的方法,培养学生合作交流的意识与探究精 神。
教学重点、难点
(一)教学重点 将二元一次方程组中同一未知数的系数化为 相反或相等,用加减消元法解二元一次方程 组的方法 (二)教学难点 化同一未知数的系数相同或相等; 化未知为已知的化归思想的理解与应用
教学方法
本节课主要应用了演示文稿的形式来启发 引导学生在已经掌握代入消元法,同一未 知数的系数相等或相反用加减消元法解二 元一次方程组的基础上,探究、交流、讨 论、总结、归纳,通过感性上升到理性, 使学生掌握用加减消元法解同一未知数的 系数不同的方法,并能熟练的运用加减法 解二元一次方程组。
消元法的基本步骤-概述说明以及解释

消元法的基本步骤-概述说明以及解释1.引言1.1 概述消元法是一种常用的数学求解方法,用于解决代数方程组或方程的问题。
通过使用代数运算,消元法能够将复杂的方程组转化为简单的形式,从而得到其解或者简化问题的求解过程。
消元法作为解决方程问题的经典方法,在数学和工程领域得到广泛应用。
本文将介绍消元法的基本步骤,包括定义、具体操作步骤以及应用领域。
通过了解消元法的原理和应用,读者可以更好地理解和运用这一方法来解决各类数学问题。
在接下来的章节中,我们将详细介绍消元法的定义和基本步骤。
首先,我们将通过对消元法的概述,了解其基本原理和工作方式。
接着,我们将介绍本文的结构和组织方式,以便读者能够更好地理解和阅读后续内容。
本文的目的是为读者提供一个清晰的消元法概述,并将其应用于实际问题中。
通过掌握消元法的基本步骤,读者将能够更加灵活地运用这一方法解决各种数学问题,并深入了解其在实际领域中的应用价值。
在下一章中,我们将详细介绍消元法的定义,包括其基本原理和使用方法。
请继续阅读下一章节,以了解更多有关消元法的知识。
1.2 文章结构文章结构部分的内容可以从以下几个方面进行阐述:1. 文章框架概述:在本节中,将对整篇文章的结构进行概括性的介绍,包括引言、正文和结论三个主要部分的内容以及各自的目的。
2. 引言部分:本部分主要用于引入文章的主题,并对消元法的基本概念进行简要阐述。
同时,说明为何对消元法进行研究和探讨的必要性。
3. 正文部分:本部分是文章的核心,详细讲解了消元法的基本步骤及其应用领域。
在对消元法的基本步骤进行阐述时,可以按照具体的操作流程进行分步骤的描述,并且可以配以图表进行说明,以便读者更好地理解和掌握。
在讲解消元法的应用领域时,可以列举一些常见或重要的实际案例并进行具体分析,说明消元法在不同领域的重要性和实用性。
4. 结论部分:本部分用于对全文进行总结和归纳。
首先,对消元法的重要性进行总结,强调其在实际问题求解中的作用和意义。
数学消元法种类

数学消元法种类1.引言1.1 概述概述部分的内容可以根据数学消元法的定义和背景进行描述。
可以提及其在数学领域中的重要性和应用,以及本文将要探讨的数学消元法种类。
以下是一个可能的概述内容:数学消元法是一种重要的数学方法,它在解决方程组、矩阵运算、线性代数等领域中具有广泛的应用。
通过应用不同的消元法,可以将复杂的数学问题简化为更易于解决的形式,从而更好地理解和解决问题。
本文将重点介绍数学消元法的种类。
消元法是一种基于变量消除的方法,通过逐步操作,将问题转化为更简单的形式。
这些方法通常涉及对系数矩阵进行初等变换,以减少未知数的数量或简化问题的结构。
然而,不同的消元法方法有着各自的特点和适用范围。
在接下来的章节中,我们将详细介绍两种常见的数学消元法。
第一种消元法将关注于要点1和要点2,通过某种特定的操作方式来完成变量的消除。
第二种消元法则着重介绍了另外两个要点,展示了一种不同的方法来解决数学问题。
通过理解和掌握这些不同的数学消元法,我们可以更有效地解决各种数学难题,并在实际应用中具有更广泛的运用价值。
在本文的最后一部分,将会对所介绍的数学消元法进行总结,并对未来可能的研究方向进行展望。
总之,数学消元法是一种重要的数学工具,它通过变量的消除或问题形式的简化,帮助我们深入理解和解决各种数学问题。
不同的消元法方法有着各自的特点和应用范围,本文将重点介绍两种常见的数学消元法,并提供对未来研究的展望。
文章结构部分的内容如下:1.2 文章结构本文共分为三个部分:引言、正文和结论。
引言部分将首先简要介绍数学消元法的概念和背景,为读者提供一个对该主题的整体认识。
随后,将介绍文章的结构和各个部分的内容。
正文部分是本文的主体部分,包括两个小节:第一种消元法和第二种消元法。
在每个小节中,将详细介绍各自的要点,以及对应的原理、方法和特点。
通过对这两种消元法的深入讲解,读者能够全面了解它们的应用场景和解题步骤,为进一步的学习和应用打下基础。
加减消元法ppt2 人教版

知识拓展:
1、 3x2a+b+2 +5y3a-b+1=8
是关于x、y的二元一次方程 求a、b 解:根据题意:得 2a+b+2=1 3a-b+1=1
得:
a= b= -
1
5 3 5
(3)已知(3m+2n-16)2与|3m-n-1|互为相反数
(4) 求:m+n的值
解:根据题意:得 3m+2n-16=0
3x-2y=5
消去y后所得的方程是(B )
A.6x=8
B.6x=18
C.6x=5
D.x=18
思考:像这样的方程组 又怎样来解呢?
{
3x+4y=16 5x-6y=33
例3:用加减法解方程组
{
3x+4y=16 ① 5x-6y=33 ②
消去x应如何解? 解的结果和上边的 一样吗?
① 3,得 9x+12y=48 ③ 解:× ②×2, 得 10x-12y=66 ④ ③+④ ,得 19x=114
试一试
用加减消元法解下列方程组.(你
可以选择你喜欢的一题解答)
7x-2y=3
9x+2y=-19
6x-5y=3 6x+y=-15
练 一 练
一、指出下列方程组求解过程 中有错误步骤,并给予订正:
7x-4y=4 ①
5x-4y=-4 ② 解:①-②,得 2x=4-4, x=0 解: ①-②,得 2x=4+4, x=4
3m-n-1=0 m=2 解得: n=5 即:m+n=7
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
湘教版七年级数学下册第一章1.2.2加减消元法(1)教案

第1章二元一次方程组第4课时1.2 二元一次方程组的解法1.2.2 加减消元法(1)主备:审核:日期:2021.2.18 全册课时序号:4课题 1.2.2 加减消元法(1)课型新授课教学目标知识与技能1、理解并掌握用加减消元法的概念;2、能熟练地用加减消元法解二元一次方程组;3、进一步体验转化思想在二元一次方程组过程中的运用。
4、树立模型意识,认识二元一次方程组的应用价值。
过程与方法1、通过探究,学生发现:当方程组中有一个未知数的系数相同或相反时,可以把两个方程相减或相加,消去一个未知数,从而解出方程组的解;2、通过示范、讲授例3,师生讨论,学生能总结出加减消元法的概念;3、通过教学例4,学生能掌握用加减消元法解方程组中没有同一个未知数的系数相同的二元一次方程组。
情感态度与价值观进一步体会数学模型与现实生活的联系,感受数学的应用价值,增强克服困难的勇气和信心,提高学习数学的兴趣。
教学重点1、解二元一次方程组的基本思路。
2、用加减法解二元一次方程组。
教学难点1、理解加减消元法的消元原理。
2、用加减法解解方程组中没有同一个未知数的系数相同的二元一次方程组。
教学准备 1.制作ppt教学课件;2.选编习题教学方法探究法、讨论法、练习法教学过程一、情景展示,温故导新说一说:1、解二元一次方程组的基本思路是什么?ppt 展示:消去一个未知数(简称消元),得到一个一元一次方程,然后解这个一元一次方程。
2、 用代入法解二元一次方程组的方法是什么?ppt 展示:从一个方程得出用含一个未知数的代数式表示另一 个未知数,代入另一个方程,从而消去一个未知数,把 二元一次方程组转化为一个一元一次方程。
二、教学新知,启智赋能(一)探究问题出示问题:如何解下面的二元一次方程组?⎩⎨⎧=--=+②532①132y x y x 1、 学生回答并用代入消元法解得方程组的解为⎩⎨⎧-==.11y x ,2、 提出问题:还有没有更简单的解法呢?3、 分析探讨用加减消元法解这个方程组引导:观察方程组,想一想,除代入法外还有什么方法消去一个未知数?分析:方程①和②,可以发现:未知数x 的系数相同,我们把这两个方程的两边分别相减,可以消去哪一个未知数?学生回答后,用ppt 展示:4、 边讲解边用ppt 展示用加减法解方程组的过程:解:①-②式得, 2x+3y-(2x-3y)=-1-5 ③化简,得 6y=-6,解得 y=-1.把y=-1代入①式,得 2x+3×(-1)=-1.解得 x=1.因此原方程组的解是 ⎩⎨⎧-==.11y x ,5、 做一做解上述方程组时,在消元的过程中,如果把方程①与方程②相加,可以消去一个未知数吗?学生做后回答,教师点评。
初二数学:下册122代入消元法2导学案湘教版

1.2.2代入消元法(2) 一、预习与质疑(课前学习区)(一)预习内容:P8-P10(二)预习时间:10分钟(三)预习目标:1.会较熟练地运用代入法求二元一次方程组的解.2.了解代入法是消元的一种方法。
3.掌握解用代入法解二元一次方程组的一般步骤,提高学生观察、分析和解决问题的能力,理解化“未知”为“已知”和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心;4、培养学生合作交流,自主探索的良好习惯。
培养思维的灵活性,增强学好数学的信心。
(四)学习建议:1.教学重点:用代入法解二元一次方程组的消元过程。
2.教学难点:灵活消元使计算简便。
(五)预习检测:㈠.将下列方程中的y 用含有x 的代数式表示:(1)2x-y=-1 (2)x+2y-2=0㈡.阅读教材P 6-P 8,并关注以下问题。
1、完成P6“探究”的填空。
2、解二元一次方程组的基本思路是消去 (简称为 )。
3、解二元一次方程组时,把其中一个方程的 未知数用含有 未知数的代数式表示,然后把它代入到 方程中,得到一个 ,这种解方程组的方法叫 消元法,简称 。
㈢.自学检测1、在例2中,用含x 的代数式表示y 来解原方程组。
2、用代入法解方程组。
⎩⎨⎧=+=+7b a 311b 2a 5活动一:合作交流1、在例1中,为什么不把③式代入②式中?2、解方程组310 2330 m nm n-+=⎧⎨+-=⎩时先消去哪个未知数比较好?为什么?(六)生成问题:通过预习和做检测题你还有哪些疑惑请写在下面。
二、落实与整合(课中学习区)活动二:归纳总结1、解二元一次方程组的基本思路是什么?2.什么叫代入消元法?3.用代入法解方程要注意哪些方面?三、检测与反馈(课堂完成)解下列二元一次方程组。
1、310 2330 m nm n-+=⎧⎨+-=⎩2、⎪⎩⎪⎨⎧+==+1s 21t 6t s 23、⎩⎨⎧=-=-9-b 2a 56b 3a4、解方程组22(1)2(2)(1)5x y x y -=-⎧⎨-+-=⎩,;四、课后互助区1.学案整理:整理“课中学习去”后,交给学习小组内的同学互检。
1.2二元一次方程组的解法(2)加减消元法同步练习含答案

1.2 二元一次方程组的解法第2课时加减消元法核心笔记:加减消元法:两个二元一次方程中同一未知数的系数相同或相反时,把这两个方程相减或相加,就能消去这个未知数,从而得到一个一元一次方程,这种解方程组的方法叫做加减消元法,简称加减法.基础训练1.方程组由②-①,得正确的方程是( )A.3x=10B.x=5C.3x=-5D.x=-52.二元一次方程组的解为( )A. B. C. D.3.若方程mx+ny=6的两个解是和则m,n的值分别为( )A.4,2B.2,4C.-4,-2D.-2,-44.用加减消元法解方程组的具体步骤如下:第一步:①-②,得x=1;第二步:把x=1代入①,得y=-;第三步:所以其中开始出现错误的是( )A.第一步B.第二步C.第三步D.没有出错5.已知方程组:①②其中方程组①采用消元法解简单,方程组②采用消元法解简单.6.若a+b=3,a-b=7,则ab=______________.7.用加减法解方程组:(1)(2)8.已知-2x m-1y3与x n y m+n是同类项,求m,n的值.培优提升1.利用加减消元法解方程组下列做法正确的是( )A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×22.已知x,y满足方程组则x+y的值为( )A.9B.7C.5D.33.已知5|x+y-3|+2(x-y)2=0,则( )A. B. C. D.4.二元一次方程组的解是______________.5.对于X,Y定义一种新运算“@”:X@Y=aX+bY,其中a,b为常数,等式右边是通常的加法和乘法的运算.已知:3@5=15,4@7=28,那么2@3=_____________.6.已知是二元一次方程组的解,则m+3n=_____________.7.用加减消元法解方程组:(1)(2)8.在解方程组时,哥哥正确地解得弟弟因把c写错而解得求a+b+c的值.9.阅读理解题特殊的题有特殊的解法,阅读下面的解题过程,我们从中可以得到启发:解方程组解:由①+②得:500x+500y=1 500,即x+y=3, ③由①-②得:6x-6y=54,即x-y=9, ④由③+④得:2x=12,解得:x=6,又由③-④得:2y=-6,解得:y=-3,所以原方程组的解为【归纳】对于大系数的二元一次方程组,当用代入法和加减法解非常麻烦时,可以通过观察各项系数的特点,寻求特殊解法.根据上述例题的解题方法解下面的方程组:参考答案【基础训练】1.【答案】B解:注意符号问题.2.【答案】C3.【答案】A4.【答案】A5.【答案】加减;代入6.【答案】-10解:两个方程相加,解得a=5,将a=5代入a+b=3,解得b=-2, 故ab=-10.7.解:(1)①+②得3x=15,所以x=5.将x=5代入①,得5+y=6,所以y=1,所以方程组的解为(2)②×3,得3x+9y=21,③③-①,得11y=22.所以y=2.把y=2代入②,得x+6=7,所以x=1,所以原方程组的解为8.解:因为-2x m-1y3与x n y m+n是同类项,所以经变形可得所以【培优提升】1.【答案】D2.【答案】C解:①+②得4x+4y=20,则x+y=5.故选C.3.【答案】D解:由绝对值和数的平方的性质可以得到解得故选D.4.【答案】5.【答案】2解:因为3@5=15,4@7=28,所以3a+5b=15①,4a+7b=28②,由②-①,得a+2b=13③,由①-③,得2a+3b=2,所以2@3=2a+3b=2.6.【答案】8解:本题运用整体思想解题更简便.把代入方程组得两式相加得m+3n=8.7.解:(1)②×2-①,得n=20,把n=20代入②,得2m+3×20=240,解得m=90.所以原方程组的解为(2)①×4-②×3得:7y=-7,解得y=-1,将y=-1代入①得:3x-4=5,解得x=3,所以原方程组的解为8.解:把x=3,y=-2代入得把x=-2,y=2代入ax+by=2.得-2a+2b=2.因为弟弟把c写错了,所以弟弟的解不满足cx-7y=8.联立方程组:解得由3c+14=8得c=-2.故a+b+c=4+5-2=7.9.解:由①+②得:4 025x+4 025y=16 100, 即x+y=4,③由②-①得:x-y=100,④由③+④得:2x=104,解得x=52, 由③-④得:2y=-96,解得y=-48, 则原方程组的解为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通道县第四中学数学导学案
七年级数学备课组第一章第4课时总课时
课题1.2.2加减消元法(2)主
备
人
杨通仁
审
核
学习目标:
(一)知识与技能:1.进一步理解消元法的含义。
2.掌握用简单的方法进行消元解二元一次方程组。
(二)、过程与方法:通过运用不同方法消元,并加以比较,体会化归的方法。
(三)、情感态度与价值观:在探索过程中品尝成功的喜悦,体验数学学习的乐趣,树立学好数学的信心。
教学重点难点
重点:比较代入消元法与加减消元法.
难点:选择比较简单的方法解二元一次方程组。
教法学法:观察、比较、合作、交流、探索
教具准备:多媒体课件
教学过程:
教案学案设计意图
一、创设情境,复习导入
解二元一次方程组的基本思路是什么?
二、自主学习,课堂导学
1、预习P11——P12的内容
2、完成P12练习1、2题。
(对于较复杂的二元一次方程组,应先对方程组进行整理或化简,然后再根据方程组的特点选择合适的消元方法)三、合作交流,展示提升
1、解方程组
⎩
⎨
⎧
-
=
-
=
+
6
15
3
12
5
3
y
x
y
x
比较简单的方法为()
A、代入法
B、加减法
C、换元法
D、三种方法都一样
2、已知x、y满足方程组
⎩
⎨
⎧
=
+
=
+
4
2
5
2
y
x
y
x
,求y
x-的值。
3、若2
4
37
2
4
9
5
3=
+-
-
+
+n
m
n
m y
x是关于x,y的二元一次方程,则m与n的值分别是多少?
4、解下列二元一次方程组
⎩
⎨
⎧
=
+
-
-
=
-
+
2
)
(3
1
5
)
2
(2
)1(
y
y
x
y
y
x
⎩
⎨
⎧
=
+
=
+
1
3
5
2
)2(
y
x
y
x
⎩⎨
⎧=--=++01327052)3(n m n m ⎪⎪⎩⎪⎪⎨⎧-=+-=-13
3
273
132)4(y x y x
⎩⎨
⎧-=+=-133432)5(y x y x ⎩
⎨⎧=+--=-875.41
25.1)6(q p q p
四、课堂小结:
1、代入法和加减法的实质是什么?
2、用消元法解方程组的过程,就是把二元一次方程组转化为一元一次方程的过程。
自主检测
1、解方程组
(1)
(2)
2、已知和
都是方程y=ax+b 的解,求a 、b 的值。
教学反思与感悟。