曲面的切平面与法线

合集下载

空间曲面的切平面与法线方程

空间曲面的切平面与法线方程

空间曲面的切平面与法线方程空间曲面的切平面与法线方程是三维几何中的重要概念,它们能够帮助我们更好地理解和描述图形。

本文将从生动、全面、有指导意义的角度介绍这一主题。

首先,我们来探讨空间曲面的切平面。

切平面可以理解为平面与曲面相切于某一点,并且与曲面在该点处具有共同的切线。

切平面通常用一个方程来表示。

设曲面的方程为F(x, y, z) = 0,切平面经过某一点(x0, y0, z0)。

为了求解切平面方程,我们首先需要计算曲面在该点处的法向量,记为N。

曲面的法向量垂直于曲面,因此可以通过求函数F(x, y, z)关于x、y和z的偏导数来得到该点处的切向量。

对于曲面上的一点P(x0, y0, z0),切向量可以表示为(Tx, Ty, Tz)。

然后,我们可以通过向量的点积来求解法向量N与切向量的关系,即N·T = 0。

得到法向量后,我们可以利用一般式方程来表示切平面的方程,即Ax + By + Cz + D = 0,其中A、B、C和D分别为切平面的系数。

其次,我们来了解空间曲面的法线方程。

法线是与曲面垂直的一条直线或向量,用来表示曲面的外法线方向。

对于曲面上的一点P(x0, y0, z0),法线可以从曲面的切平面求得。

通过切平面的法向量N(x0, y0, z0),我们可以得到法线的方向向量为(-Nx, -Ny, -Nz)。

然后,我们可以使用一般向量方程来表示法线方程,即(x - x0)/(-Nx) = (y - y0)/(-Ny) = (z - z0)/(-Nz)。

理解了切平面的方程和法线的方程后,我们就能够更好地分析和描述空间曲面了。

切平面能够帮助我们理解曲面在某一点处的切线情况,从而推断出曲面在该点附近的几何性质。

而法线能够告诉我们曲面在该点的外法线方向,这对于求解曲面的切线、法线以及其他的几何性质等问题非常有用。

最后,通过举一些具体的例子,我们可以更好地理解和应用切平面和法线方程。

以球面为例,球面的一般方程为(x-a)^2 + (y-b)^2 + (z-c)^2 - r^2 = 0,其中(a, b, c)为球心坐标,r为球的半径。

曲面的切平面方程和法线方程公式

曲面的切平面方程和法线方程公式

曲面的切平面方程和法线方程公式曲面是三维空间中的一类特殊图形,它是由一个或多个曲线旋转、平移、拉伸、变形等操作形成的。

在数学中,曲面是非常重要的研究对象,它不仅在几何学、拓扑学、微积分等数学领域中有广泛应用,还在物理学、工程学、计算机图形学等应用领域中得到了广泛的应用。

对于曲面的研究,其中一个重要的问题是如何确定曲面上任意一点的切平面和法线方程。

本文将介绍曲面的切平面方程和法线方程公式,以及如何应用这些公式解决实际问题。

一、曲面的切平面方程曲面的切平面是指与曲面在某一点相切的平面。

在数学上,我们可以通过求出曲面在该点的切向量来确定该点的切平面。

切向量是指曲面在该点的切线方向的向量,它与曲面在该点的法向量垂直。

设曲面的方程为F(x,y,z)=0,其中F(x,y,z)是曲面上任意一点(x,y,z)的函数,点P(x0,y0,z0)是曲面上的一个点,它的切向量为:grad F(x0,y0,z0) =(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))其中Fx、Fy、Fz分别表示F对x、y、z的偏导数。

因为切向量与切平面垂直,所以曲面在点P的切平面的法向量为:n = (Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0)) 假设切平面的方程为Ax+By+Cz+D=0,其中A、B、C是切平面的法向量的三个分量,D是一个常数。

由于点P在切平面上,所以有:Ax0 + By0 + Cz0 + D = 0将切平面的法向量代入上式得:Fx(x0,y0,z0)x0 + Fy(x0,y0,z0)y0 + Fz(x0,y0,z0)z0 + D = 0因此,切平面的方程为:Fx(x0,y0,z0)x + Fy(x0,y0,z0)y + Fz(x0,y0,z0)z + D = 0 其中D=-Fx(x0,y0,z0)x0 - Fy(x0,y0,z0)y0 -Fz(x0,y0,z0)z0。

曲面的切平面与法线方程

曲面的切平面与法线方程

曲面的切平面与法线方程设中曲面Σ的方程为F (x , y , z) = 0,函数F (x , y , z)在曲面Σ上点处可微,且,过点任意引一条位于曲面Σ上的曲线Γ。

设其方程为,且对应于点;不全为零。

由于曲线Γ在Σ上,则有及。

该方程表示了曲面上任意一条过点的曲线在该点的切线都与向量垂直,并且这些切线都位于同一平面上,这个平面就称为曲面Σ在点处的切平面. 点称为切点. 向量称为曲面Σ在点处的一个法向量。

记为。

基本方法:1、设点在曲面F(x, y, z)=0上,而F(x, y, z)在点处存在连续偏导数,且三个偏导数不同时为零,则曲面F(x, y, z)=0在点处的切平面方程为.法线方程为.2、设点在曲面z = f (x, y)上,且z = f (x, y) 在点M0 (x0, y0) 处存在连续偏导数,则该曲面在点处的切平面方程为.过X0的法线方程为.注:方法2实际上是方法1中取的情形.3、若曲面∑由参数方程x = x(u, v) , y = y(u, v) , z = z(u, v)给出,∑上的点与uv平面上的点(u0 , v0)对应,而x(u , v) , y(u , v) , z(u , v)在(u0 , v0)处可微.曲面∑在点X0处的切平面方程及法线方程分别为和三、答疑解惑问题:曲面∑的参数方程为x = x(u , v) , y = y(u , v) , z = z(u , v),∑上的点与u , v平面上的点(u0 , v0)对应,怎样确定∑在点X0处的法向量?注释:设x(u , v) , y(u , v) , z(u , v) 在(u0 , v0)处可微,考虑在∑上过点X0的两条曲线.Γ1:x = x(u , v0) , y = y(u , v0) , z = z(u , v0);Γ2:x = x(u0, v) , y = y(u0 , v) , z = z(u0 , v).它们在点X0处的切向量分别为当时,得∑在点X0处的法向量为则∑在点X0处的法向量为.四、典型例题例1 求椭球面x2+2y2+3z2 = 6在(1, 1, 1)处的切平面方程与法线方程.解设F(x, y, z) = x2+2y2+3z2-6,由于在全平面上处处连续,在(1, 1, 1)处,椭球面在点(1, 1, 1)处的法向量为(2, 4, 6). 则所求切平面方程为,即x + 2y + 3z = 6.所求法线方程为,即.例2求曲面平行于z = 2x+2y的切平面方程.解设切点为. 曲面,因此.则曲面在处的法向量为.曲面在点X0处的切平面方程为又切平面与已知平面z = 2x+2y平行,因此解得切点坐标为,所求切平面方程为,即.例3求曲面在点处的切平面方程和法线方程.解点对应曲面上的点其中.则曲面在点处的法向量为.所求曲面在点X0处的切平面方程为即.所求的法线方程为即.例4求过直线,且与曲面相切之切平面方程.解过直线的平面方程可设为,即,其法向量为.记,则设所求的切平面的切点为,则曲面上处的法向量为.且有由(1)、(3)解得,代入(2)得.解得t1 = 1, t2 = 3,故λ1 = 3 , λ2=7.则所求切平面方程为,或.即6x + y + 2z = 5 或10x + 5y + 6z = 5.例5试证曲面上任一点处的切平面都过原点,其中f(x)为可微函数.证明,.故曲面上点处的法向量为.则过曲面上点的切平面方程为,整理后得. 注意到,从上述方程得切平面方程为.可知其必定过原点.。

曲面的切平面与法线方程

曲面的切平面与法线方程

曲面的切平面与法线方程设上中曲面Σ的方程为F (X , y , Z) = 0 ,函数F (X , y , Z)在曲面Σ上点'一J∣.∙.'一'.∣处可微,W t) =且1加卽龛丿,过点血任意引一条位于曲面Σ上的曲线Γ°设其∖=Λ(∕)y=y⅛)方程为A邛,且对应于点不全为零。

由于曲线Γ在Σ上,则有⅛ g(x吨)+卩(血吨)+叭(⅜F(⅛)及朮LF 。

该方程表示了曲面上任意一条过点「厂的曲线在该点的切线都与向量WO) 垂直,并且这些切线都位于同一平面上,这个平面就称为曲面Σ在点:处的切平面.点.称为切点.向量二心 2 -l称为曲面Σ在点-处的一个法向量。

记为G。

基本方法:1、设点l l- ■' ■" 1■■在曲面F(x, y, z)=0上,而F(x, y, Z)在点一∣处存在连续偏导数,且三个偏导数不同时为零,则曲面F(x, y, z)=0在点处的切平面方程为F:g )(r-r,>+ 兀厲XJ-Λ)÷Eg(H-^) = D法线方程为⅞ _ y~y ti_X(Jf O)=X^) =2、设点''■' ' l∙' ' ■'在曲面Z = f (x, y)上,且Z = f (x, y)在点M o (χo, y o)处存在连续偏导数,则该曲面在点Al∙, "-" - -■处的切平面方程为-f E j Ja-心)-力(心小Xy-几)2-齢MDX = x(u, V) , y = y(u, V) , Z = z(u, V)给出,∑上的点禺臨片九与UV平面上的点(U o , V0)对应,而X(U , V) , y(u , V) , Z(U , V)在( u o , v o)处可微.曲面∑在点X o处的切平面方程及法线方程分别为三、答疑解惑问题:曲面∑的参数方程为X = X(U , V) , y = y(u , V) , Z = Z(U , V),∑±的点:'I- ■ -,'ι■ •与u , V平面上的点(U o , VO)对应,怎样确定∑在点X o处的法向量?注释:设X(U , V) , y(U , V) , Z(U , V)在(U o , VO)处可微,考虑在∑上过点X o的两条曲线.Γ i: X = X(U , V o) , y = y(U , V o) , Z = Z(U , V o);Γ 2 : X = X(U o , V) , y = y(U o , V) , Z = Z(UO, V).它们在点X o处的切向量分别为ξ=C⅛冲"⅛(⅜, ⅛(¾,⅛))E■(兀(知岭h H(M e Mh 久(%%))过X o的法线方程为注:方法2实际上是方法1 中取..'l--λ.'<-的情形3、若曲面∑由参数方程当< 'I -时,得∑在点Xo 处的法向量为则∑在点Xo 处的法向量为<‰v)r ^f V),页陽叭四、典型例题 例1求椭球面x 2+2y 2+3z 2 = 6在(1, 1, 1 )处的切平面方程与法线方程解设F (x, y, Z ) = x 2+2y 2+3z 2 - 6,由于「八 FJ- •二在全平面上处处连续, 在(1,1,1 )处'一儿一「'■ 一",椭球面在点(1,1,1)处的法向量为(2, 4, 6).则所求切平面方程为2(z-l) + 4(y-1) ÷6(z-l) ■ 0即 X + 2y + 3z = 6.Λ- 1 _ y- I _1所求法线方程为---X-1 y-L Z-1 即 I-J ^ -.* i Z=—卡 y例2求曲面- 平行于Z = 2x+2y 的切平面方程则曲面在一1'^l 处的法向量为 'l ,' 曲面在点X 0处的切平面方程为解设切点为 兀馆%殆.曲面"J 」 j2,因此舐瀚(Λ-心)十 2⅛O- M)- (Z -2o)-0又切平面与已知平面 Z = 2x+2y 平行,因此解得切点坐标为- ■■■■'■',所求切平面方程为2(^-3)+2(y-l)-(z-3)-0例 3 求曲面■ ^ 11■: 1.∙ ^ ■ ■ - ■ :.「「’「 -^- - ^ 在点1 >. ^.:处的切平面方程和法线方程.解 点^∙l ∙,'^∙厂…对应曲面上的点11 1■■ 1 '其中Λ⅛ =^Sin⅞¾ COE ⅛J I y o sm⅛r ¾ = L 7COS ⅞⅞^^COS ⅛=^5m¼.os⅛u<A. j-i SC0SξK⅛ cos⅛ 5⅛≤9∣4 QCOS⅞⅛si∩¾则曲面在点"-处的法向量为 V’ 4,亠」5 所求曲面在点X o 处的切平面方程为‰⅛I JS αcos⅝⅞ GOS ⅞Sm ς⅛ sin ⅛ ^Sill 2 ≠¾ sin ⅛-<jsifl ⅛ sin ⅛ -*2sιn sm ⅞2 」2≡t? Sm 处 c□≡φ¾护 tin 贏 COS ⅛(X ^ΛSIH ‰ cos¾) + asm J ⅞¾ sm¾ sm ξ≡⅛ s πι ¾) + O lSln 砂 CaS3^ DiJS 妬)■ 0,即 Q .一 -i ∣ J ■: , ; J I ς, • ■ I ■] _ _ ∙fΛ- asuι⅞⅛ cos6⅛ _ y- ^Sin⅛⅛ sin 6⅛所求的法线方程为「一一 .,J -IJ - -J . L - -I - .'■ J -■-■.Λ- sm⅛ J -ΛCCS ⅞¾SIn ⅞J ¾COS ⅛SHl ⅞¾ sin ⅛cos⅛¾解过直线的平面方程可设为即]:":l "1'''其法向量为-■ 一且有J3Λ -2y-Z ~ 5例4求过直线',且与曲面L相切之切平面方程Q i Fm 2 ⅞⅛ cosg⅛3χ-2y- ∑ - 5^ Λ(Λ + y+ z) - QFgFQ =加- 2y 2 + 2z -设所求的切平面的切点为■ ■,则曲面上;=2处的法向量为(%γ用②.8,则(3 + Λχ÷(Λ-2)j b ÷(Z-l¼-5 = 03 + ∕⅛ 2-2 Λ-l由⑴、(3)解得代入(2)得e -⅛÷3-o则所求切平面方程为3x - 2I y-Z- 5 + 3(j ÷ιy +z) ■ O或…'--,.■-- I -即 6x + y + 2 Z = 5 或 10x + 5y + 6 Z = 5.例5试证曲面IT 丿上任一点处的切平面都过原点,其中 f(x)为可微函数(1)2÷⅛ 2t -1 15解得 t ι = 1, t 2 = 3 ,故λ 2=7.1 1■- ,''∙ 处的法向量为故曲面上点则过曲面上点--'-.' - ,.∙-的切平面方程为f-⅛∕∙卜fy-⅞∕"ι"^o ∕f -注意到<r <> ,从上述方程得切平面方程为■/ X ( ∖^∣( \f 西-—f 地也 y-^-Ok⅞∕ Jf O ∖λ(]√^J∖⅞∕可知其必定过原点.(X-X o )4 ∕{⅛-Λ)整理后得。

3曲面的切平面与法线

3曲面的切平面与法线
有: T ⊥ n
曲面 ∑ 在点M的法向量
n = {Fx (x0 , y0 , z0 ), Fy (x0 , y0 , z0 ), Fz (x0 , y0 , z0 )}
切平面方程:
Fx (x0 , y0 , z0 )(x − x0 )+ Fy (x0 , y0 , z0 )(y − y0 )+ Fz (x0 , y0 , z0 )(z − z0 ) = 0
F (x(t), y(t), z(t)) = 0
两边在 t = t0 处求导,得
Fx (x0 , y0 , z0 )x′(t0 )+ Fy (x0 , y0 , z0 )y′(t0 )+ Fz (x0 , y0 , z0 )z′(t0 ) = 0
令:
T = {x′(t0 ), y′(t0 ), z′(t0 )}, n = {Fx (x0 , y0 , z0 ), Fy (x0 , y0 , z0 ), Fz (x0 , y0 , z0 )}
过M点且垂直于切平面的称为曲面 ∑ 在点 M 的法线.
法线方程:
x − x0
Fx (x0 , y0 ,
z0 )
=
y − y0
Fy (x0 , y0 ,
z0 )
=
z − z0
Fz (x0 , y0 ,
z0 )
例.求球面 x2 + y2 + z2 =14 在点(1,2,3)处的切平面
及法线方程.
解:令
曲面的切平面与法线
设有光滑曲面 Σ : F(x, y, z) = 0
通过其上定点 M (x0, y0, z0 ) 任意引一条光滑曲线 Γ : x = x(t), y = y(t), z = z(t),t ∈[α , β ] 设 t = t0 对应点 M,

高等数学:9-3空间曲面的切平面与法线

高等数学:9-3空间曲面的切平面与法线

Fz ( x0 , y0 , z0 ) (t0 ) 0
令 T ( (t0 ) , (t0 ) , (t0 ))
n ( Fx ( x0 , y0 , z0 ) , Fy ( x0 , y0 , z0 ) , Fz ( x0 , y0 , z0 ))
切向量 T n 由于曲线 的任意性 , 表明这些切线都在以 为法向量
T
点 M 的切向量为

M T ( (t0 ) , (t0 ) , (t0 )) x x0 y y0 z z0 切线方程为 (t0 ) (t0 ) (t0 ) 下面证明: 上过点 M 的任何曲线在该点的切线都 在同一平面上. 此平面称为 在该点的切平面.
的平面上 , 从而切平面存在 .
曲面 在点 M 的法向量:
n ( Fx ( x0 , y0 , z0 ) , Fy ( x0 , y0 , z0 ) , Fz ( x0 , y0 , z0 ))
切平面方程
Fx ( x0 , y0 , z0 ) ( x x0 ) Fy ( x0 , y0 , z0 ) ( y y0 ) Fz ( x0 , y0 , z0 )( z z0 ) 0
n
(1, 2, 3 )
(2 , 4 , 6)
所以球面在点 (1 , 2 , 3) 处有: 切平面方程 2( x 1) 4( y 2) 6( z 3) 0 即
法线方程
x 1 y 2 z 3 2 1 3
(0,0,0)在法线上, 可见法线经过原点,即球心。
例2 求曲面z = f ( x, y) = x 2 + y 2 + 1在点(1, 2, 6)处的切平 面及法线方程.

曲面的切平面方程和法线方程公式

曲面的切平面方程和法线方程公式

曲面的切平面方程和法线方程公式曲面是三维空间中的一个二维曲面,可以用函数方程或参数方程表示。

在三维空间中,曲面与平面不同,它具有曲率和法线方向。

曲面的切平面和法线方程是研究曲面性质的重要工具,在许多领域都有广泛的应用。

一、曲面的切平面方程曲面的切平面是曲面在某一点处与该点切线平行的平面。

在二维平面上,我们可以通过直线的斜率来确定该直线的切线方向。

在三维空间中,曲面的切线方向可以通过曲面的偏导数来确定。

假设曲面的函数方程为z=f(x,y),则其在点(x0,y0,z0)处的切平面方程为:z-z0=fx(x0,y0)(x-x0)+fy(x0,y0)(y-y0)其中fx和fy分别表示函数z=f(x,y)在点(x0,y0)处的偏导数。

如果曲面的参数方程为:x=x(u,v),y=y(u,v),z=z(u,v)则其在点(P0)处的切平面方程可以表示为:r(u,v)=r(u0,v0)+r/u|P0(u-u0)+r/v|P0(v-v0)其中r表示曲面的参数方程,r/u和r/v分别表示曲面在点P0处的偏导数。

二、曲面的法线方程曲面的法线方向垂直于曲面的切平面,是曲面的一个重要性质。

对于一个点P(x0,y0,z0),曲面的法线方程可以表示为:n=f(x0,y0,z0)其中f表示函数f(x,y,z)的梯度,也就是函数在点(x0,y0,z0)处的偏导数向量。

由于曲面的法线方向垂直于曲面的切平面,因此曲面的法线方程也可以表示为:n(r-r0)=0其中r表示曲面上的任意一点,r0表示曲面上的某一点。

三、曲面的切线和法线方向曲面的切线和法线方向在曲面上的任意一点处是唯一的。

曲面的切线方向垂直于曲面的法线方向,因此我们可以通过曲面的法线方程来确定曲面的切线方向。

对于一个点P(x0,y0,z0),曲面的法线方程可以表示为:n=f(x0,y0,z0)其中f表示函数f(x,y,z)的梯度,也就是函数在点(x0,y0,z0)处的偏导数向量。

曲面的切平面与法线方程

曲面的切平面与法线方程

曲面的切平面与法线方程设中曲面Σ的方程为F (x , y , z) = 0,函数F (x , y , z)在曲面Σ上点处可微,且,过点任意引一条位于曲面Σ上的曲线Γ。

设其方程为,且对应于点;不全为零。

由于曲线Γ在Σ上,则有及。

该方程表示了曲面上任意一条过点的曲线在该点的切线都与向量垂直,并且这些切线都位于同一平面上,这个平面就称为曲面Σ在点处的切平面. 点称为切点. 向量称为曲面Σ在点处的一个法向量。

记为。

基本方法:1、设点在曲面F(x, y, z)=0上,而F(x, y, z)在点处存在连续偏导数,且三个偏导数不同时为零,则曲面F(x, y, z)=0在点处的切平面方程为.法线方程为.2、设点在曲面z = f (x, y)上,且z = f (x, y) 在点M0 (x0, y0) 处存在连续偏导数,则该曲面在点处的切平面方程为.过X0的法线方程为.注:方法2实际上是方法1中取的情形.3、若曲面∑由参数方程x = x(u, v) , y = y(u, v) , z = z(u, v)给出,∑上的点与uv平面上的点(u0 , v0)对应,而x(u , v) , y(u , v) , z(u , v)在(u0 , v0)处可微.曲面∑在点X0处的切平面方程及法线方程分别为和三、答疑解惑问题:曲面∑的参数方程为x = x(u , v) , y = y(u , v) , z = z(u , v),∑上的点与u , v平面上的点(u0 , v0)对应,怎样确定∑在点X0处的法向量?注释:设x(u , v) , y(u , v) , z(u , v) 在(u0 , v0)处可微,考虑在∑上过点X0的两条曲线.Γ1:x = x(u , v0) , y = y(u , v0) , z = z(u , v0);Γ2:x = x(u0, v) , y = y(u0 , v) , z = z(u0 , v).它们在点X0处的切向量分别为当时,得∑在点X0处的法向量为则∑在点X0处的法向量为.四、典型例题例1 求椭球面x2+2y2+3z2 = 6在(1, 1, 1)处的切平面方程与法线方程.解设F(x, y, z) = x2+2y2+3z2-6,由于在全平面上处处连续,在(1, 1, 1)处,椭球面在点(1, 1, 1)处的法向量为(2, 4, 6). 则所求切平面方程为,即x + 2y + 3z = 6.所求法线方程为,即.例2求曲面平行于z = 2x+2y的切平面方程.解设切点为. 曲面,因此.则曲面在处的法向量为.曲面在点X0处的切平面方程为又切平面与已知平面z = 2x+2y平行,因此解得切点坐标为,所求切平面方程为,即.例3求曲面在点处的切平面方程和法线方程.解点对应曲面上的点其中.则曲面在点处的法向量为.所求曲面在点X0处的切平面方程为即.所求的法线方程为即.例4求过直线,且与曲面相切之切平面方程.解过直线的平面方程可设为,即,其法向量为.记,则设所求的切平面的切点为,则曲面上处的法向量为.且有由(1)、(3)解得,代入(2)得.解得t1 = 1, t2 = 3,故λ1 = 3 , λ2=7.则所求切平面方程为,或.即6x + y + 2z = 5 或10x + 5y + 6z = 5.例5试证曲面上任一点处的切平面都过原点,其中f(x)为可微函数.证明,.故曲面上点处的法向量为.则过曲面上点的切平面方程为,整理后得. 注意到,从上述方程得切平面方程为.可知其必定过原点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2 证明对任意常数 , ,球面 x2 y2 z2 2
与锥面 x2 y2 tan2 z2 是正交的.
5 曲面的切平面与法线
若曲面方程为
F(x, y, z) 0
设 F (x, y, z) 对各个变量有连续偏导数. M0 (x0, y0, z0 )为
曲面上一点,过点 M0任作一条在曲线 l ,设其方程为
x x(t), y y(t), z z(t),
显然
F (x(t), y(t), z(t)) 0
与切向量正交.由于 l 的任意性,可见曲面上过M0 的任
一条曲线在该点的切线都与 n 正交,因此这些切线应
在同一平面上,这个平面就称为曲面在 M0 点的切平面,
而 n 就是切平面的法向量.从而即可写出曲面在 M0点
的切平面方程为
(Fx )M0 (Fy )M0 (Y y0 ) (Fx )M0 (Z z0 ) 0
于是曲面在点 (x0, y0, z0() 这里z0 f (x0, y0 ) )的切平
面方程为
(
z x
)
(
x0
,
y0
)
(
X

x0 )

(
z y
)(
x0
,
y0
)
(Y

y0 )

(Z

z0 )

0,
法线方程为
最后,若曲面方程为参数形式
x x(u,v), y y(u,v), z z(u,v),
对 t 求导,在 M0 点(设此时对应于 t t0 )有
(Fx )M0 x'(t0 ) (Fy )M0 y'(t0 ) (Fz )M0 z'(t0 ) 0
l 前已知道,向量 (x'(t0 ), y'(t0 ), z'(t0 )) 正是曲线 在
在 M0 点的切向量. 上式说明向量 n((Fx )M0 ,(Fy )M0 ,(Fz )M0 )
按隐函数求导法则有
z u

z x x u
z y , y u

z v

z x
x v

z y
y v
,
由这两个方程可解出
z x

z y
z D( y, z) D(x, y) , x D(u,v) D(u,v)
z D(z, x) D(x, y) , y D(u,v) D(u,v)
过 M0 点并与切平面垂直的直线,称为曲面在 M0点的 法线,它的方程是
X x0 Y y0 Z z0 (Fx )M0 (Fy )M0 (Fz )M0
设 ,,
分别为曲面在
M
的法线与
0
x,
y,
z
轴正向之间
的夹角,那么在 M0(x0, y0, z0 ) 点的法线方向余弦为
cos
(Fx )M0
,

(
Fx
)
2 M
0

(
Fy
)
2 M
0

(
Fz
)
2 M
0
cos
(Fy )M0
,

(
Fx
)
2 M
0

(
Fy
)
2 M
0

(
Fz
)
2 M
0
cos
(Fz )M0
,

(
Fx
)
2 M
0

(
Fy
)
2 M
0
(
Fz
)
2 M
0
若曲线方程是
z f (x, y),
它很容易化为刚才讨论过的情形 F (x, y, z) z f (x, y) 0,
如果由 x x(u,v), y y(u,v) 决定了两个函数
u u(x, y),v v(x, y),
因此可以将 z 看为 x, y 的函数,这样问题就化为刚
才已经讨论过的问题了.因此只要求出 z 及z .为此,将
x y
z z(u,v)分别对 u,v 求导,并注意到 z 为 x, y 的函数,
对于曲面方程为显示表示及参数表示时,同样可
写出它们在 M 0点的法线方向余弦,请读者写出.
例1 求曲面 z x2 y2 1在点 (2,1,4) 的切平面及 法线方程.
通常两曲线在交点的夹角,是指交点外两个切向量的 夹角;两曲面在交线上一点的夹角,是指两曲面在交点 的法线的夹角.如果两曲面在交线的每一点都正交,则 称这两曲面为正交曲面.
于是,在 M0 点的切平面方程应为
D(y, z) D(u, v)
M0
(X

x0 )
D(z, x) D(u, v)
M0
(Y

y0 )

D(x, D(u,
y) v)
M0
(Z

z0
)

0,
法线方程为
X x0 Y y0 Z z0 .
D( y, z) D(z, x) D(x, y)
D(u, v) M0 D(u, v) M0 D(u, v) M0
相关文档
最新文档