衡水中学 高三年级全仿真模拟 (仿真模拟)数学(理)试题(word版)
衡水中学2020届高三下学期三模数学(理)试题含解析

【解析】
【分析】
由题意结合二项式系数和的性质可得 即 ,写出二项式展开式的通项公式 ,令 即可得解。
【详解】由题意 ,解得 ,则 ,
则二项式 的展开式的通项公式为 ,
令 即 ,则 .
故选:A。
【点睛】本题考查了二项式定理的应用,考查了运算求解能力,属于基础题。
7。祖冲之是中国南北朝时期的数学家和天文学家,他在数学方面的突出贡献是将圆周率的精确度计算到小数点后第 位,也就是 和 之间,这一成就比欧洲早了 多年,我校“爱数学"社团的同学,在祖冲之研究圆周率的方法启发下,自制了一套计算圆周率的数学实验模型.该模型三视图如图所示,模型内置一个与其各个面都相切的球,该模型及其内球在同一方向有开口装置.实验的时候,同学们随机往模型中投掷大小相等,形状相同的玻璃球,通过计算落在球内的玻璃球数量,来估算圆周率的近似值.已知某次实验中,某同学一次投掷了 个玻璃球,请你根据祖冲之的圆周率精确度(取小数点后三位)估算落在球内的玻璃球数量( )
【详解】不等式变形为 ,
即 ,设 ,
则不等式 对任意的实数 恒成立,
等价于 对任意 恒成立,
,则 在 上单调递增,
,即 对任意 恒成立,
恒成立,即 ,
令 ,则 ,
当 时, , 在 上单调递减,
当 时, , 在 上单调递增,
时, 取得最小值 ,
,即 ,
的最小值是 。
故选:B
【点睛】本题考查函数,导数,不等式恒成立的综合问题,意在考查转化与化归的思想,计算能力,本题的关键和难点是不等式的变形 ,并能构造函数并转化为 对任意 恒成立,属于难题。
【详解】设正方体的边长为 ,则 ,即正方体棱长为 ,。球 的球心为正方体的中心,以点 为坐标原点,建立如图所示的空间直角坐标系 ,则A(3,0,0), ,B(3,3,0), ,D(0,0,0),
2020年衡水中学高三第2轮模拟考试-数学(理)(含答案)

河北衡水中学高三第2轮模拟考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}|0B x x =≥,且A B A =,则集合A 可能是( )A . {}1,2B .{}|1x x ≤C .{}1,0,1-D .R 2.复数1iz i=+ 的共轭复数在复平面上对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限3.已知平面向量,a b 满足()5a a b +=,且2,1a b ==,则向量a 与b 夹角的余弦值为( ) A . 2 B . 2-C .12D .12-4.执行如图所示的程序框图,若输人的a 值为1,则输出的k 值为( )A . 1B . 2C .3D .45.已知数列{}n a 中,()111,21,n n na a a n NS *+==+∈为其前n 项和,5S的值为( )祝您高考马到成功!A .57B .61C .62D .636.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .23π B .3πC .29π D .169π7.为了得到cos 2y x =,只需将sin 23y x π⎛⎫=+⎪⎝⎭作如下变换( ) A .向右平移3π个单位 B .向右平移6π个单位C .向左平移12π个单位D .向右平移12π个单位8.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩,表示的平面区域,则当a 从2-连续变化到1时,动直线x y a +=扫过A中的那部分区域的面积为( )A .1B .32C .34D .749.焦点在x 轴上的椭圆方程为()222210x y a b a b+=>>,短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为3b,则椭圆的离心率为( ) A .14B .13C .12D .2310.在四面体S ABC -中,,2AB BC AB BC SA SC ⊥=====,二面角S AC B--的余弦值是,则该四面体外接球的表面积是( ) A . B .6πC .24πD祝您高考马到成功!11.已知函数()()()()()52log 11221x x f x x x -<⎧⎪=⎨--+≥⎪⎩,则关于x 的方程()()f x a a R =∈实根个数不可能为 ( ) A . 2个B .3个C . 4个D .5 个12.函数()()sin 2,02f x A x A πϕϕ⎛⎫=+≤> ⎪⎝⎭部分图象如图所示,且()()0f a f b ==,对不同的[]12,,x x a b ∈,若()()12f x f x =,有()12f x x += )A .()f x 在5,1212ππ⎛⎫-⎪⎝⎭上是减函数 B .()f x 在5,1212ππ⎛⎫-⎪⎝⎭上是增函数C .()f x 在5,36ππ⎛⎫⎪⎝⎭上是减函数 D .()f x 在5,36ππ⎛⎫⎪⎝⎭上增减函数 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. ()4111x x ⎛⎫-+ ⎪⎝⎭的展开式中2x 项的系数为 .14.已知抛物线()220y px p =>上一点()1,M m 到其焦点的距离为5,双曲线221y x a-=的左顶点为A ,若双曲线一条渐近线与直线AM 垂直,则实数a = . 15.如图,为测量出山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角60,MAN C ∠=点的仰角45CAB ∠=以及75MAC ∠=,从C 点测得60MCA ∠=,已知山高100BC m =,则山高MN =m .祝您高考马到成!16.设函数()()21,x x xf xg x x e+==,对任意()12,0,x x ∈+∞,不等式()()121g x f x k k ≤+恒成立,则正数k 的取值范围是.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)中国人口已经出现老龄化与少子化并存的结构特征,测算显示中国是世界上人口老龄化速度最快的国家之一,再不实施“放开二胎”新政策,整个社会将会出现一系列的问题,若某地区2015年人口总数为45万,实施“放开二胎”新政策后专家估计人口总数将发生如下变化:从2016年开始到2025年每年人口比上年增加0.5万人,从2026年开始到2035年每年人口为上一年的0099.(1)求实施新政策后第n 年的人口总数n a 的表达式(注:2016年为第一年);(2)若新政策实施后的2016年到2035年人口平均值超过49万,则需调整政策,否则继续实施, 问到2035年后是否需要调整政策?(说明:()10100.9910.010.9=-≈).18.(本小题满分12分)如图, 已知矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面, 平面ABCD平面ABPE AB =,且2,1,AB BP AD AE AE AB ====⊥,且AE BP .(1)设点M 为棱PD 中点, 在面ABCD 内是否存在点N ,使得MN ⊥平面ABCD ?若存在, 请证明, 若不存在, 说明理由; (2)求二面角D PE A --的余弦值.祝您高考马到成功!19.(本小题满分12分)某产品按行业生产标准分成8个等级,等级系数X 依次1,2,...8,其中5X ≥为标准A ,3X ≥为标准B .已知甲厂执行标准A 生产该产品,产品的零售价为6元/件; 乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准.(1)已知甲厂产品的等级系数1X 的概率分布列如下所示:且1X 的数学期望()16E X =,求,a b 的值;(2)为分析乙厂产品的等级系数2X ,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数2X 的数学期望; (3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:①产品的“性价比”;②“性价比”大的产品更具可购买性.20.(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>短轴的两个顶点与右焦点的连线构成等边三角形,直线3460x y ++=与圆()222x y b a +-=相切.(1)求椭圆C 的方程;(2)已知椭圆C 的左顶点A 的两条直线12,l l 分别交椭圆C 于,M N 两点, 且12l l ⊥,求证:直线MN 过定点, 并求出定点坐标; (3)在(2) 的条件下求AMN ∆面积的最大值.21.(本小题满分12分)已知函数()()()1x f x a x e a =--(常数0a R a ∈≠且).祝您高考马到成!(1)证明: 当0a >时, 函数()f x 有且只有一个极值点;(2)若函数()f x 存在两个极值点12,x x ,证明:()()12224400f x f x e e <<<<且. 请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,,,,A B C D 四点在同一个圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上. (1)若11,32EC ED EB EA ==,求DCAB的值; (2)若2EF FA FB =,证明:EF CD .23.(本小题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合,直线l 的参数方程为:1(12x t y t ⎧=-⎪⎪⎨⎪=⎪⎩为参数), 曲线C 的极坐标方程为:4cos ρθ=. (1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)设直线l 与曲线C 相交于,P Q 两点, 求PQ 的值. 24.(本小题满分10分)选修4-5:不等式选讲已知函数()()223,12f x x a x g x x =-++=-+. (1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得()()12f x g x =成立, 求实数a 的取值范围.祝您考马到成功!一、 选择题:每小题5分,共60分,每小题所给选项只有一项符合题意.ADCBA DCDCB DB二、 填空题:每题5分,共20分.13.2 14.1415.15016. 1e 21k -≥三、解答题 17.本题满分12分解:(1)当10n ≤时,数列{}n a 是首项为45.5,公差为0.5的等差数列,因此,新政策实施后第年的人口总数n a (单位:万)的表达式为()1045.50.51,110500.99,11n n n n a n -⎧+⨯-≤≤⎪=⎨⨯≥⎪⎩n 祝您高考马到成功!(2)设n S 为数列{}n a 的前项和,则从2016年到2035年共20年,由等差数列及等比数列的求和公式得:()()102010111220...477.5495010.99972.5S S a a a =++++=+⨯-≈万新政策实施到2035年年人口均值为2048.634920S ≈< 故到2035年不需要调整政策. 18.本题满分12分解:(1)连接AC ,BD 交于点N ,连接MN ,则⊥MN 平面ABCD 证明: M 为PD 中点,N 为BD 中点MN ∴为PDB ∆的中位线,PBMN //∴又平面⊥ABCD 平面ABPE平面平面=,⊂BC 平面,ABBC ⊥⊥∴BC 平面PB BC ⊥∴,又AB PB ⊥,B BC AB =⋂⊥∴PB 平面ABCD所以⊥MN 平面ABCD(2)以A 为原点,AE ,AB ,AD 所在直线分别为x 轴,y 轴,z 轴建立坐标系,⊥AD 平面PEA∴平面PEA 的法向量)1,0,0(1==AD n 另外)1,0,0(D ,)0,0,1(E ,)0,2,2(P)1,0,1(-=∴DE ,)1,2,2(-=DP ,设平面DPE 的法向量),,(2z y x n =,则⎩⎨⎧=-+=-0220z y x z x ,令1=x ,得)1,21,1(2-=n 32,cos 21>=<∴n n 又A PE D --为锐二面角,所以二面角A PE D --的余弦值为32n S n ∴ABCD ABPE AB ABCD ABPE 祝您高考马到成功!19.本题满分12分解:(1)16,50.46780.16EX a b =⨯+++⨯=,即67 3.2a b +=①又由1X 的概率分布列得0.40.11,0.5a b a b +++=+= ② 由①②得0.30.2a b =⎧⎨=⎩(2)由已知得,样本的频率分布表如下:用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X 2的概率分布列如下:所以,230.340.250.260.170.180.1 4.8EX =⨯+⨯+⨯+⨯+⨯+⨯=即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购买性,理由如下:因为甲厂产品的等级系数的数学期望等于6 ,价格为6 元/件,所以其性价比为616=因为乙厂产品的等级系数的期望等于4.8 ,价格为4 元/件,所以其性价比为4.81.24=据此,乙厂的产品更具可购买性。
河北省衡水中学2020届高三下学期第一次模拟考试数学(理)试卷 Word版含答案

2019—2020学年度高三年级下学期第一次模拟考试数学(理科)试卷 第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡)1. 设复数11z i =+,21z i =-,则1211z z +=( ) A. 1B. -1C. iD. i -2. 已知集合(){}|ln 1M x y x ==+,{}|x N y y e ==,则M N =( )A. ()1,0-B. ()1,-+∞C. ()0,+∞D. R3. 为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )A. 甲的数据分析素养优于乙B. 乙的数据分析素养与数学建模素养相同C. 甲的六大素养整体水平优于乙D. 甲的六大素养中数学运算最强4. 若,2παπ⎛⎫∈⎪⎝⎭,7cos 225α=,则sin 3sin 2απα=⎛⎫+ ⎪⎝⎭( )A. 34-B.34 C.43D. 43-5. 已知123,,x x x R ∈,123x x x <<,设1212x x y +=,2322x x y +=,3132x x y +=,1212y y z +=,2322y y z +=,3132y y z +=,若随机变量X ,Y ,Z 满足:()()()i i i P X x P Y y P Z z =====1(1,2,3)3i ==,则( ) A. ()()()D X D Y D Z << B. ()()()D X D Y D Z >> C. ()()()D X D Z D Y <<D. ()()()D X D Z D Y >>6. 函数cos ln y x x =-⋅的图象可能是( )A. B . C. D.7. 标准对数远视力表(如图)采用的“五分记录法”是我国独创的视力记录方式,标准对数远视力表各行为正方形“E ”形视标,且从视力5.2的视标所在行开始往上,每一行“E ”的边长都是下方一行“E ”边长的 4.1的视标边长为a ,则视力4.9的视标边长为( )A. 4510a B. 91010a C. 45110a ⎛⎫⎪⎝⎭D. 910110a ⎛⎫⎪⎝⎭8. 已知1F ,2F 为椭圆C :221(0)x y m m+=>的两个焦点,若C 上存在点M 满足12MF MF ⊥,则实数m 取值范围是( ) A. 10,2⎛⎤ ⎥⎝⎦B. [)2,+∞C. [)10,2,2⎛⎤+∞ ⎥⎝⎦D. (]1,11,22⎡⎫⎪⎢⎣⎭9. 已知函数()f x x ω=和()()0g x x ωω=>图象的交点中,任意连续三个交点均可作为一个等腰直角三角形的顶点,为了得到()y g x =的图象,只需把()y f x =的图象( )A. 向左平移1个单位B. 向左平移2π个单位 C. 向右平移1个单位D. 向右平移2π个单位10. 已知函数()()2121f x ax x ax a R =+++-∈的最小值为0,则a =( ) A.12B. -1C. 1±D. 12±11. 如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=,则直线1B P 与直线1AD 所成角的余弦值的取值范围为( )A. 10,2⎡⎤⎢⎥⎣⎦B. 10,3⎡⎤⎢⎥⎣⎦C. 1,22⎡⎢⎣⎦D. 12⎡⎢⎣⎦12. 已知双曲线C :()222210,0x y a b a b-=>>的左、右顶点分别为A ,B ,左焦点为F ,P 为C 上一点,且PF x ⊥轴,过点A 的直线l 与线段PF 交于点M (异于P ,F ),与y 轴交于点N ,直线MB 与y 轴交于点H ,若3HN OH =-(O 为坐标原点),则C 的离心率为( ) A. 2B. 3C. 4D. 5第Ⅱ卷(非选择题 共90分)二、填空题(共4题,每题5分)13. 已知平面向量a 与b 的夹角为45︒,()1,1a =-,1b =,则a b +=______.14. 在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,A 、B 、C 、D 四地新增疑似病例数据信息如下:A 地:中位数为2,极差为5;B 地:总体平均数为2,众数为2;C 地:总体平均数为1,总体方差大于0;D 地:总体平均数为2,总体方差为3.则以上四地中,一定符合没有发生大规模群体感染标志的所有选项是___________(填A 、B 、C 、D ) 15. ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若3cos 3cos 5sin b C c B a A +=,且A 为锐角,则当2a bc 取得最小值时,a b c+的值为______.16. 在空间直角坐标系O xyz -中,正四面体P ABC -的顶点A ,B 分别在x 轴,y 轴上移动,若该正四面体的棱长为2,则OP 的取值范围是______.三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17. 如图,四棱锥S ABCD -中,二面角S AB D --为直二面角,E 为线段SB 的中点,3390DAB CBA ASB ABS ∠=∠=∠=∠=︒,1tan 2ASD ∠=,4AB =.(1)求证:平面DAE ⊥平面SBC ; (2)求二面角C AE D --的大小.18. 数列{}n a ,{}n b 定义如下:11a =,12b =,12n n n a a b +=+,12n n n b a b +=+. (1)求数列{}n n a b -的通项公式; (2)求数列{}n a 和{}n b 的通项公式.19. 已知抛物线1C :()220x py p =>上的点到焦点的距离最小值为1.(1)求p 的值;(2)若点()00,P x y 在曲线2C :2114y x =+上,且在曲线1C 上存在三点A ,B ,C ,使得四边形PABC为平行四边形.求三角形PAC 的面积S 的最小值. 20. 已知函数()()21x a e x f x x--=,且曲线()y f x =在()()2,2f 处的切线斜率为1.(1)求实数a 的值;(2)证明:当0x >时,()1f x >; (3)若数列{}n x 满足()1n x n ef x +=,且113x =,证明:211n x n e -<.21. 系统中每个元件正常工作的概率都是()01p p <<,各个元件正常工作的事件相互独立,如果系统中有多于一半的元件正常工作,系统就能正常工作.系统正常工作的概率称为系统的可靠性. (1)某系统配置有21k -个元件,k 为正整数,求该系统正常工作概率k P 的表达式.(2)现为改善(1)中系统的性能,拟增加两个元件,试讨论增加两个元件后,能否提高系统的可靠性. 选做题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22. 已知平面直角坐标系中,曲线1C 的参数方程为2211222x t y t t =+⎧⎪⎨=++⎪⎩(t 为参数,t R ∈),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为()2sin 02ρθθπ=≤≤.(1)求曲线1C 的极坐标方程;(2)射线l 的极方程为()0,0θααπρ=≤≤≥,若射线l 与曲线1C ,2C 分别交于异于极点的A ,B 两点,且4OA OB =,求α的值. 23. 已知()22f x x x a =-++.(Ⅰ)当2a =时,求不等式()5f x >的解集;(Ⅱ)设不等式()21f x x ≤+的解集为B ,若[]3,6B ⊆,求a 的取值范围.答 案一、选择题(共12小题) 1-5:ACDBB 6-10:ACCAC11-12:AB1. A 解:12111111111(1)(1)i iz z i i i i -+++=+==+-+-.故选:A.2. C 解:∵{}|1M x x =>-,{}|0N y y =>,∴()0,M N =+∞,故选:C.3. D 解:甲乙的六大素养指标A :甲的数据分析素养优于乙,故A 正确;B :乙的数据分析优于数学建模素养相同;故B 正确;C :甲的六大素养整体水平优于乙,故C 正确;D :甲的六大素养中,直观想象,数据分析与逻辑推理能力最强,故D 错误.4. B 解:由题可得:222222cos sin 1tan 7cos 2cos sin 1tan 25ααααααα--===++,解得3tan 4α=±,因为,2παπ⎛⎫∈ ⎪⎝⎭,所以3tan 4α=-,所以sin sin 3tan 3cos 4sin 2αααπαα==-=-⎛⎫+ ⎪⎝⎭.故选:B. 5. B 解:()1231()3E X x x x =++,2331121()3222x x x x x x E Y +++⎛⎫=++ ⎪⎝⎭()()12313x x x E X =++=,122x x +,232x x +,312x x +距()E Y ,1x ,2x ,3x 较近,所以()()D X D Y >,同理()()D Y D Z >,故()()()D X D Y D Z >>,故选:B.6. A 解:因为cos ln y x x =-⋅为偶函数,定义域为{}|0x x ≠,故排队C ,D ; 当x π=时,ln 2y π=<,排除B ; 故选:A.7. C 解:由题意可得,假若视力4.9的视标边长为首项,则公比q = 4.1的视标边长为a ,故81a a q =,即451881101010a aa a q -===⎛⎫ ⎪⎝⎭,故选:C. 8. C 解:当焦点在x 轴上时,2a m =,21b =,1m >,当M 为上下顶点时,12F MF ∠最大, 因为120MF MF ⋅=坐标,122FMF π∠≥,14F MO π∠≥,所以1tan tan 14c F MO b π∠=≥=,即11≥,解得2m ≥; 当焦点在y 轴上时,21a =,2b m =,01m <<,当M 为左右顶点时,12F MF ∠最大,因为120MF MF ⋅=,122F MF π∠≥,14F MO π∠≥,所以1tan tan 14c F MO b π∠=≥=1≥,解得102m <≤,故选C.9. A 解:令()f x x ω=和()g x x ω=相等可得 sin cos tan 14x x x x k πωωωωπ=⇒=⇒=+,k Z ∈;∴可设连续三个交点的横坐标分别为:4πω,54πω,94πω;对应交点坐标为:,14A πω⎛⎫⎪⎝⎭,5,14B πω⎛⎫- ⎪⎝⎭,9,14C πω⎛⎫⎪⎝⎭; ∵任意连续三个交点均可作为一个等腰直角三角形的顶点; ∴B 到AC 的距离等于AC 的一半;即1922442πππωωω⎛⎫=⨯-⇒= ⎪⎝⎭;∴11()222f x x x x πωππ⎛⎫===- ⎪⎝⎭()11222x x πππ⎛⎫=-=- ⎪⎝⎭;∴需把()y f x =的图象向左平移1个单位得到1()2g x x x ωπ==的图象;故选:A.10. C 解:设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,所以22()()1g x x ax h x x ⎧=+⎨=-⎩, 则()()()()()f x g x h x g x h x =++-()()()()()()2,2,g x g x h x h x g x h x ≥⎧⎪=⎨<⎪⎩,由于()()g x x x a =+的图象恒过()0,0,(),0a -,()h x 的图象为开口向下, 且过()1,0-,()1,0的抛物线,且()f x 的最小值为0,结合图象可得1a -=或1a -=-,即有1a =±. 故选:C.12. B 解:不妨设P 在第二象限,FM m =,()()0,0H h h >, 由3HN OH =-知()0,2N h -,由AFM AON △△,得2m c ah a-=(1), 由BOHBFM △△,得h am c a =+(2), (1),(2)两式相乘得12c ac a-=+,即3c a =,离心率为3.故选:B.二、填空题(共4小题)13.14. AD 15.16. 1⎤⎦13. 解:根据题意,()1,1a =-,则2a =,又由a 与b 的夹角为45︒,1b =,则22222215a b a a b b +=+⋅+=++=,则5a b +=;故答案为:14. 解:该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.在A 地中,中位数为2,极差为5,257+=,每天新增疑似病例不会超过7人,所以A 地符合标准;在B 地中,总体平均数为2,众数为2,每天新增疑似病例可以超过7人,所以B 地不符合标准; 在C 地中,总体平均数为1,总体方差大于0,每天新增疑似病例可以超过7人,所以C 地不符合标准;在D 地中,总体平均数为2,总体方差为3.根据方差公式,如果存在大于7的数存在,那么方差大于3,所以D 地符合标准.故答案为:AD .15. 解:由3cos 3cos 5sin b C c B a A +=,及正弦定理可得:23sin cos 3sin cos 5sin B C C B A +=, 可得:23sin()5sin B C A +=,由sin()sin 0B C A +=>,可得3sin 5A =,而A 是锐角, 所以4cos 5A =,则2222282cos 5a b c bc A b c bc =+-=+-, 则22222882825555b c bc a b c bc bc bc bc bc +-+==-≥-=,当且仅当b c =时,2a bc 取得最小值25, 故2225a b =,故5a =,所以a b c =+三、解答题(共2小题)17. 解:(1)∵二面角S AB D --为直二面角,∴平面SAB ⊥平面ABCD , ∴90DAB ∠=︒,∴AD AB ⊥,∵平面ABCD平面SAB AB =,AD ⊂平面ABCD ,∴AD ⊥平面SAB ,又BS ⊂平面SAB ,∴AD BS ⊥,∵ASB ABS ∠=∠,∴AS AB =,又E 为BS 的中点,∴AE BS ⊥,又AD AE A =,∴BS ⊥平面DAE ,∵BS ⊂平面SBC ,∴平面DAE ⊥平面SBC .(2)如图,连接CA ,CE ,在平面ABS 内作AB 的垂线,建立空间直角坐标系A xyz -, ∵1tan 2ASD ∠=,∴2AD =,∴()0,0,0A ,()0,4,0B ,()0,4,2C,()2,0S -,)E,∴()0,4,2AC =,()3,1,0AE =,设平面CAE 的法向量为(),,n x y z =,则00n AC n AE ⎧⋅=⎪⎨⋅=⎪⎩,即4200x z y +=⎧⎪+=,令1x =,则y =z =(1,3,2n =-是平面CAE 的一个法向量,∵SB ⊥平面DAE ,∴平面DAE 的一个法向量为()SB =-,∴21cos ,2n SB n SB n SB⋅-===-⋅,由图可知二面角C AE D --的平面角为锐角,故二面角C AE D --的大小为60︒.18. 解:(1)由12n n n a a b +=+和12n n n b a b +=+,两式相减得()11n n n n a b a b ++-=-+,又111a b -=-,则数列{}n n a b -成首项为-1,公比为-1的等比数列,则(1)n n n a b -=-.(2)两式相加得()113n n n n a b a b +++=+,则数列{}n n a b +成首项为3,公比为3的等比数列,则3nn n a b +=,所以3(1)2n nn a +-=,3(1)2n n n b --=.19. 解:(1)解析:设线法由抛物线上的点到焦点的距离等于到准线的距离, 故最小值应为()0,0,准线2p y =-,由题意可得12p=,解得2p =; (2)解析:设线法:设直线AC :y kx b =+,当直线斜率k 不存在时,此时直线AC 为垂直x 轴的直线,与抛物线只有一个交点,故舍去. 点()00,P x y 在曲线2C :2114y x =+上,故2044x y -=-,设()11,A x y ,()22,C x y , 联立方程24y kx bx y=+⎧⎨=⎩,得2440x kx b --=,124x x k +=,124x x b =-,故线段AC 的中点()22,2D k k b +, 若要满足四边形PABC 为平行四边形,则B ,P 关于点D 对称.则()2004,42B k x k b y -+-. 又点B 在抛物线1C 上,故满足方程()()22004442k x k b y -=+-,即()2000148kx b x y +=+①1212PAC S AC d x =⋅⋅=-△00kx b y =+-, 代入①得:2004S x y =-===当012k x =时,min 2S =.所以三角形PAC 的面积S的最小值2. (2)解析2:设点法设()11,A x y ,()22,C x y ,直线AC :()121240x x x y x x +--=,点()00,P x y 在曲线2C :2114y x =+上,故2044x y -=-,线段AC 中点221212,28x x x x D ⎛⎫++ ⎪⎝⎭,若要满足四边形PABC 为平行四边形,则B ,P关于点D 对称,则22121200,4x x B x x x y ⎛⎫++-- ⎪⎝⎭. 又点B 在抛物线1C 上,故满足方程:()22212012044x x y x x x ⎛⎫+-=+-⎪⎝⎭, 即()()2012120022x x x x x x y +=++ ①12PACS AC d =⋅⋅=△1222000014428x x x y x y -⋅=-=-2004x y=-32200416x y ≥-2=,所以三角形PAC 的面积S 的最小值为:2. 20.(1)解:由()21()x a e x f x x--=,得()32'()2xx a x e f x x⎡⎤-++⎣⎦=,则()'212af ==,即2a =; (2)证明:要证()1f x >,只需证21()102x h x e x x =--->, ()'1x h x e x =--,()''1x h x e =-,∵()0,x ∈+∞时,()''0h x >,∴()'1xh x e x =--在()0,+∞上单调递增,∴()()'1'00xh x e x h =-->=,则21()12x h x e x x =---在()0,+∞上单调递增. ∴()21()1002x h x e x x h =--->=成立.∴当0x >时,()1f x >; (3)证明:由(2)知,当0x >时,()1f x >,∵()1n x n ef x +=,∴()1ln n n x f x +=⎡⎤⎣⎦,设()()ln n n g x f x =⎡⎤⎣⎦,则()1n n x g x +=,∴()()()()()()121n n n x g x g g x gg x --====.要证:211n x n e -<,只需证112n nx e ⎛⎫-< ⎪⎝⎭,∵113x =,∴11311x e e -=-,∵3327028e e ⎛⎫-=-< ⎪⎝⎭,∴1332e <,则1131112x e e -=-<;故只需证11112n nx x ee +-<-. ∵()0,n x ∈+∞,故只需证111122n n x x ee +-<-.即证()11122n x nf x e -<-.只需证当()0,n x ∈+∞时,()2211222022x x e x x x ϕ⎛⎫=-+++>⎪⎝⎭.()2'1222x x x e x x ϕ⎛⎫=+-++ ⎪⎝⎭,()212112''x x x e x ϕ⎛⎫=+-+ ⎪⎝⎭, ()21310''2'x x x e x ϕ⎛⎫=++> ⎪⎝⎭,∴()''x ϕ在()0,+∞上单调递增,故()()21211''''002x x x e x ϕϕ⎛⎫+-+>=⎪⎝⎭=,∴()'x ϕ在()0,+∞上单调递增, 故()()2122'002'x x x x e x ϕϕ⎛⎫+-++>=⎪⎝⎭=,∴()x ϕ在()0,+∞上单调递增, 故()()22112220022x x x e x x ϕϕ⎛⎫-+++>⎪⎝==⎭.∴原不等式成立.21. 解:(1)21k -个元件中,恰好k 个正常工作的概率为121(1)k k k k C p p ---,恰好有1k +个元件正常工作的概率为11221(1)k k k k C p p ++---,……,恰好21k -个元件正常工作的概率为212121k k k C p ---,故212121(1)k ii k i k k i kP Cp p ----==-∑.(2)当有21k +个元件时,考虑前21k -个元件,为使系统正常工作,前21k -个元件中至少有1k -个元件正常工作.①前21k -个元件中恰有1k -个元件,它的概率为11221(1)k k k k C p p ++---,此时后两个必须同时正常工作,所以这种情况下系统正常工作的概率为11221(1)k k k k C pp p ----⋅.②前21k -个元件中恰好有k 个正常工作,它的概率为121(1)k k k k C p p ---,此时后两个元件至少有一个正常工作即可,所以这种情况下系统正常工作的概率为1221(1)1(1)k k k k C p p p --⎡⎤-⋅--⎣⎦.③前21k -个元件中至少有1k +个元件正常工作,它的概率为121(1)k k k k k P C p p ----,此时系统一定正常工作.故1121211212121(1)(1)1(1)(1)k k k k k k k k k k k k k k P C p p p C p p p P C p p ----+---⎡⎤=-⋅+-⋅--+--⎣⎦. 所以1121211212121(1)(1)1(1)(1)k k k k k k k k k k k k k k P P C p p p C p p p C p p ----+---⎡⎤-=-⋅+-⋅----⎣⎦()112221(1)(1)2k k k k p p C p p p p p p ---⎡⎤=--+--⎣⎦12121(1)(12)(1)(1)(21)k k k k k kk k p p C p p p p C p ---=---=--.故当12p =时,1k k P P +=,系统可靠性不变;当102p <<,1k k P P +<,系统可靠性降低,当112p <<,1k k P P +>,系统可靠性提高.22. 解:(1)曲线1C 的参数方程为2211222x t y t t =+⎧⎪⎨=++⎪⎩(t 为参数,t R ∈),转换为直角坐标方程为:22x y =,转换为极坐标方程为22cos 2sin ρθρθ=,整理得22sin cos θρθ=. (2)射线l 的极方程为()0,0θααπρ=≤≤≥,若射线l 与曲线1C ,2C 分别交于异于原点的A ,B 两点,所以22sin cos θρθθα⎧=⎪⎨⎪=⎩,故22sin cos A αρα=, 同理2sin ρθθα=⎧⎨=⎩,故2sin B ρα=,由于4OA OB =,所以22sin 8sin cos ααα=,所以24cos 1α=,所以3πα=或23π. 23. 解:(Ⅰ)当2a =时,()5f x >即2225x x -++>,当22(2)(2)5x x x <-⎧⎨--+>⎩,解得2x <-;当222(2)25x x x -≤≤⎧⎨-++>⎩,解得21x -≤<;当22(2)(2)5x x x >⎧⎨-++>⎩,解得73x >;故不等式()5f x >解集为7|13x x x ⎧⎫<>⎨⎬⎩⎭或;(Ⅱ)若[]3,6B ⊆,则原不等式()21f x x ≤+在[]3,6上恒成立, 即2221x a x x ++-≤+,即()2122x a x x +≤+--,5x a +≤, ∴55x a -≤+≤,即55a x a --≤≤-,解得81a -≤≤-,故满足条件的a 的取值范围是[]8,1a ∈--.。
河北省衡水中学高三第十次模拟考试数学(理)试题(解析版)

河北省衡水中学高三第十次模拟考试数学(理)试题一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1. 设集合,,则()A. B. C. D.2. 在复平面内,复数对应的点的坐标为,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知中,,,则的值是()A. B. C. D.4. 设,为的展开式的第一项(为自然对数的底数),,若任取,则满足的概率是()A. B. C. D.5. 函数的图象大致是()A. B. C. D.6. 已知一个简单几何体的三视图如图所示,若该几何体的体积为,则该几何体的表面积为()A. B. C. D.7. 已知,,,则,,的大小关系为()8. 执行如下程序框图,则输出结果为()A. B. C. D.9. 如图,设椭圆:的右顶点为,右焦点为,为椭圆在第二象限上的点,直线交椭圆于点,若直线平分线段于,则椭圆的离心率是()A. B. C. D.10. 设函数为定义域为的奇函数,且,当时,,则函数在区间上的所有零点的和为()A. B. C. D.11. 已知函数,其中为函数的导数,求()A. B. C. D.12. 已知直线:,若存在实数使得一条曲线与直线有两个不同的交点,且以这两个交点为端点的线段长度恰好等于,则称此曲线为直线的“绝对曲线”.下面给出的四条曲线方程:①;②;③;④.其中直线的“绝对曲线”的条数为()A. B. C. D.二、填空题:(本大题共4小题,每题5分,共20分)13. 已知实数,满足,且,则实数的取值范围_______.14. 双曲线的左右焦点分别为、,是双曲线右支上一点,为的内心,交轴于点,若,且,则双曲线的离心率的值为__________.15. 若平面向量,满足,则在方向上投影的最大值是________.16. 观察下列各式:;;;;……若按上述规律展开后,发现等式右边含有“”这个数,则的值为__________.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)17. 已知等差数列中,公差,,且,,成等比数列.(1)求数列的通项公式;(2)若为数列的前项和,且存在,使得成立,求实数的取值范围.18. 为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:(1)已知该校有名学生,试估计全校学生中,每天学习不足小时的人数.(2)若从学习时间不少于小时的学生中选取人,设选到的男生人数为,求随机变量的分布列. (3)试比较男生学习时间的方差与女生学习时间方差的大小.(只需写出结论)19. 如图所示,四棱锥的底面为矩形,已知,,过底面对角线作与平行的平面交于.(1)试判定点的位置,并加以证明;(2)求二面角的余弦值.20. 在平面直角坐标平面中,的两个顶点为,,平面内两点、同时满足:①;②;③.(1)求顶点的轨迹的方程;(2)过点作两条互相垂直的直线,,直线,与的轨迹相交弦分别为,,设弦,的中点分别为,.①求四边形的面积的最小值;②试问:直线是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.21. 已知函数.(1)当,求函数的图象在处的切线方程;(2)若函数在上单调递增,求实数的取值范围;(3)已知,,均为正实数,且,求证.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22. [选修4-4:坐标系与参数方程]在极坐标系中,曲线的极坐标方程是,以极点为原点,极轴为轴正半轴(两坐标系取相同的单位长度)的直角坐标系中,曲线的参数方程为:(为参数).(1)求曲线的直角坐标方程与曲线的普通方程;(2)将曲线经过伸缩变换后得到曲线,若,分别是曲线和曲线上的动点,求的最小值.23. [选修4-5:不等式选讲]已知.(1)当时,解不等式.(2)若不等式对恒成立,求实数的取值范围.2018届河北省衡水中学高三第十次模拟考试数学(理)试题(解析版)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1. 设集合,,则()A. B. C. D.【答案】B【解析】A={x|y=log2(2﹣x)}={x|x<2},B={x|x2﹣3x+2<0}={x|1<x<2},则∁A B={x|x≤1},故选:B.2. 在复平面内,复数对应的点的坐标为,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】设z=x+yi,,∴∴在复平面内对应的点位于第四象限故选:D.3. 已知中,,,则的值是()A. B. C. D.【答案】A【解析】∵,∴化为.可得:B为锐角,C为钝角.∴=- = =≤=,当且仅当tanB=时取等号.∴tanA的最大值是故选A点睛:本题考查了三角形内角和定理、诱导公式、和差公式、基本不等式的性质,属于综合题是三角和不等式的结合.4. 设,为的展开式的第一项(为自然对数的底数),,若任取,则满足的概率是()A. B. C. D.【答案】C【解析】由题意,s=,∴m==e,则A={(x,y)|0<x<m,0<y<1}={(x,y)|0<x<e,0<y<1},画出A={(x,y)|0<x <e,0<y<1}表示的平面区域,任取(a,b)∈A,则满足ab>1的平面区域为图中阴影部分,如图所示:计算阴影部分的面积为S阴影==(x﹣lnx)=e﹣1﹣lne+ln1=e﹣2.所求的概率为P=,故选:C.5. 函数的图象大致是()A. B.C. D.【答案】D【解析】函数y=是偶函数,排除B.当x=10时,y=1000,对应点在x轴上方,排除A,当x>0时,y=x3lgx,y′=3x2lgx+x2lge,可知x=是函数的一个极值点,排除C.故选:D.6. 已知一个简单几何体的三视图如图所示,若该几何体的体积为,则该几何体的表面积为()A. B.C. D.【答案】D【解析】该几何体是一个棱锥与四分之一的圆锥的组合体,其表面积为,,所以,故选D.7. 已知,,,则,,的大小关系为()A. B. C. D.【答案】A【解析】由题易知:,∴故选:A点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.........................8. 执行如下程序框图,则输出结果为()A. B. C. D.【答案】C【解析】由题意得:则输出的S=.故选:C9. 如图,设椭圆:的右顶点为,右焦点为,为椭圆在第二象限上的点,直线交椭圆于点,若直线平分线段于,则椭圆的离心率是()A. B. C. D.【答案】C【解析】如图,设AC中点为M,连接OM,则OM为△ABC的中位线,于是△OFM∽△AFB,且,即=可得e==.故答案为:.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.10. 设函数为定义域为的奇函数,且,当时,,则函数在区间上的所有零点的和为()A. B. C. D.【答案】A【解析】由题意,函数,,则,可得,即函数的周期为4,且的图象关于直线对称.在区间上的零点,即方程的零点,分别画与的函数图象,两个函数的图象都关于直线对称,方程的零点关于直线对称,由图象可知交点个数为6个,可得所有零点的和为6,故选A.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.11. 已知函数,其中为函数的导数,求()A. B. C. D.【答案】A【解析】由题意易得:∴函数的图象关于点中心对称,∴由可得∴为奇函数,∴的导函数为偶函数,即为偶函数,其图象关于y轴对称,∴∴故选:A12. 已知直线:,若存在实数使得一条曲线与直线有两个不同的交点,且以这两个交点为端点的线段长度恰好等于,则称此曲线为直线的“绝对曲线”.下面给出的四条曲线方程:①;②;③;④.其中直线的“绝对曲线”的条数为()A. B. C. D.【答案】C【解析】由y=ax+1﹣a=a(x﹣1)+1,可知直线l过点A(1,1).对于①,y=﹣2|x﹣1|,图象是顶点为(1,0)的倒V型,而直线l过顶点A(1,1).所以直线l不会与曲线y=﹣2|x﹣1|有两个交点,不是直线l的“绝对曲线”;对于②,(x﹣1)2+(y﹣1)2=1是以A为圆心,半径为1的圆,所以直线l与圆总有两个交点,且距离为直径2,所以存在a=±2,使得圆(x﹣1)2+(y﹣1)2=1与直线l有两个不同的交点,且以这两个交点为端点的线段的长度恰好等于|a|.所以圆(x﹣1)2+(y﹣1)2=1是直线l的“绝对曲线”;对于③,将y=ax+1﹣a代入x2+3y2=4,得(3a2+1)x2+6a(1﹣a)x+3(1﹣a)2﹣4=0.x1+x2=, x1x2=.若直线l被椭圆截得的线段长度是|a|,则化简得.令f(a)=.f(1),f(3).所以函数f(a)在(1,3)上存在零点,即方程有根.而直线过椭圆上的定点(1,1),当a∈(1,3)时满足直线与椭圆相交.故曲线x2+3y2=4是直线的“绝对曲线”.对于④将y=ax+1﹣a代入.把直线y=ax+1-a代入y2=4x得a2x2+(2a-2a2-4)x+(1-a)2=0,∴x1+x2=,x1x2=.若直线l被椭圆截得的弦长是|a|,则a2=(1+a2)[(x1+x2)2-4x1x2]=(1+a2)化为a6-16a2+16a-16=0,令f(a)=a6-16a2+16a-16,而f(1)=-15<0,f(2)=16>0.∴函数f(a)在区间(1,2)内有零点,即方程f(a)=0有实数根,当a∈(1,2)时,直线满足条件,即此函数的图象是“绝对曲线”.综上可知:能满足题意的曲线有②③④.故选:C.点睛:本题以新定义“绝对曲线”为背景,重点考查了二次曲线弦长的度量问题,本题综合性较强,需要函数的零点存在定理作出判断.二、填空题:(本大题共4小题,每题5分,共20分)13. 已知实数,满足,且,则实数的取值范围_______.【答案】【解析】如图,作出可行域:,表示可行域上的动点与定点连线的斜率,显然最大值为,最小值为∴故答案为:点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.14. 双曲线的左右焦点分别为、,是双曲线右支上一点,为的内心,交轴于点,若,且,则双曲线的离心率的值为__________.【答案】【解析】可设|PF1|=m,|PF2|=n,|F1F2|=2c,由I为△PF1F2的内心,可得=2,则|QF1|=m,若|F1Q|=|PF2|=m,又PQ为∠F1PF2的角平分线,可得,则n=4c﹣m,又m﹣n=2a,n=m,解得m=4a,n=2a,=2,即c=a,则e==.故答案为:.15. 若平面向量,满足,则在方向上投影的最大值是________.【答案】【解析】由可得:∴在方向上投影为故最大值为:16. 观察下列各式:;;;;……若按上述规律展开后,发现等式右边含有“”这个数,则的值为__________.【答案】【解析】由题意可得第n个式子的左边是n3,右边是n个连续奇数的和,设第n个式子的第一个数为a n,则有a2﹣a1=3﹣1=2,a3﹣a2=7﹣3=4,…a n﹣a n﹣1=2(n﹣1),以上(n﹣1)个式子相加可得a n﹣a1=,故a n=n2﹣n+1,可得a45=1981,a46=2071,故可知2017在第45个式子,故答案为:45三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)17. 已知等差数列中,公差,,且,,成等比数列.(1)求数列的通项公式;(2)若为数列的前项和,且存在,使得成立,求实数的取值范围.【答案】(1) (2)【解析】试题分析:(1)由题意可得解得即可求得通项公式;(2),裂项相消求和,因为存在,使得成立,所以存在,使得成立,即存在,使得成立.求出的最大值即可解得的取值范围.试题解析:(1)由题意可得即又因为,所以所以.(2)因为,所以.因为存在,使得成立,所以存在,使得成立,即存在,使得成立.又(当且仅当时取等号).所以,即实数的取值范围是.18. 为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:(1)已知该校有名学生,试估计全校学生中,每天学习不足小时的人数.(2)若从学习时间不少于小时的学生中选取人,设选到的男生人数为,求随机变量的分布列. (3)试比较男生学习时间的方差与女生学习时间方差的大小.(只需写出结论)【答案】(1)240人(2)见解析(3)【解析】试题分析:(1)根据题意,由折线图分析可得20名学生中有12名学生每天学习不足4小时,进而可以估计校400名学生中天学习不足4小时的人数;(2)学习时间不少于4本的学生共8人,其中男学生人数为4人,故X的取值为0,1,2,3,4;由古典概型公式计算可得X=0,1,2,3,4的概率,进而可得随机变量X的分布列;(3)根据题意,分析折线图,求出男生、女生的学习时间方差,比较可得答案.试题解析:(1)由折线图可得共抽取了人,其中男生中学习时间不足小时的有人,女生中学习时间不足小时的有人.∴可估计全校中每天学习不足小时的人数为:人.(2)学习时间不少于本的学生共人,其中男学生人数为人,故的所有可能取值为,,,,.由题意可得;;;;.所以随机变量的分布列为∴均值.(3)由折线图可得.19. 如图所示,四棱锥的底面为矩形,已知,,过底面对角线作与平行的平面交于.(1)试判定点的位置,并加以证明;(2)求二面角的余弦值.【答案】(1) 为的中点,见解析(2)【解析】试题分析:(1)由平面得到,结合为的中点,即可得到答案;(2)求出平面EAC的法向量和平面DAC的法向量,由此利用向量法能求出二面角的平面角的余弦值.试题解析:(1)为的中点,证明如下:连接,因为平面,平面平面,平面,所以,又为的中点,所以为的中点.(2)连接,因为四边形为矩形,所以.因为,所以.同理,得,所以平面,以为原点,为轴,过平行于的直线为轴,过平行于的直线为轴建立空间直角坐标系(如图所示).易知,,,,,,则,.显然,是平面的一个法向量.设是平面的一个法向量,则,即,取,则,所以,所以二面角的余弦值为.点睛:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设m,n分别为平面α,β的法向量,则二面角θ与<m,n>互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.20. 在平面直角坐标平面中,的两个顶点为,,平面内两点、同时满足:①;②;③.(1)求顶点的轨迹的方程;(2)过点作两条互相垂直的直线,,直线,与的轨迹相交弦分别为,,设弦,的中点分别为,.①求四边形的面积的最小值;②试问:直线是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.【答案】(1);(2)①的最小值的,②直线恒过定点.【解析】试题分析:(1)由可得为的重心,设,则,再由,可得为的外心,在轴上,再由∥,可得,结合即可求得顶点的轨迹的方程;(2)恰为的右焦点.当直线,的斜率存在且不为0时,设直线的方程为.联立直线方程与椭圆方程,化为关于的一元二次方程,利用根与系数的关系求得的纵坐标得到和与积.①根据焦半径公式得、,代入四边形面积公式,再由基本不等式求得四边形面积的最小值;②根据中点坐标公式得的坐标,得到直线的方程,化简整理令解得值,可得直线恒过定点;当直线,有一条直线的斜率不存在时,另一条直线的斜率为0,直线即为轴,过点(.试题解析:(1)∵∴由①知∴为的重心设,则,由②知是的外心∴在轴上由③知,由,得,化简整理得:.(2)解:恰为的右焦点,①当直线的斜率存且不为0时,设直线的方程为,由,设则,①根据焦半径公式得,又,所以,同理,则,当,即时取等号.②根据中点坐标公式得,同理可求得,则直线的斜率为,∴直线的方程为,整理化简得,令,解得∴直线恒过定点,②当直线有一条直线斜率不存在时,另一条斜率一定为0,直线即为轴,过点,综上,的最小值的,直线恒过定点.点睛:(1)在圆锥曲线中研究范围,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时,常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.(2)定点的探索与证明问题:①探索直线过定点时,需考虑斜率存在不存在,斜率存在可设出直线方程,然后利用条件建立等量关系进行消元,借助于直线系的思想找出定点;②从特殊情况入手,先探求定点再证明与变量无关.21. 已知函数.(1)当,求函数的图象在处的切线方程;(2)若函数在上单调递增,求实数的取值范围;(3)已知,,均为正实数,且,求证. 【答案】(1) (2) (3)见解析【解析】试题分析:1)求导函数,可得切线的斜率,求出切点的坐标,可得函数y=f(x)的图象在x=0处的切线方程;(2)先确定﹣1≤a<0,再根据函数f(x)在(0,1)上单调递增,可得f′(x)≥0在(0,1)上恒成立,构造=(x+1)ln(x+1)﹣x,证明h(x)在(0,1)上的值域为(0,2ln2﹣1),即可求实数a 的取值范围;(3)由(2)知,当a=﹣1时,在(0,1)上单调递增,证明,即从而可得结论.试题解析:(1)当时,则,则,∴函数的图象在时的切线方程为.(2)∵函数在上单调递增,∴在上无解,当时,在上无解满足,当时,只需,∴①,∵函数在上单调递增,∴在上恒成立,即在上恒成立.设,∵,∴,则在上单调递增,∴在上的值域为.∴在上恒成立,则②综合①②得实数的取值范围为.(3)由(2)知,当时,在上单调递增,于是当时,,当时,,∴,即,同理有,,三式相加得.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22. [选修4-4:坐标系与参数方程]在极坐标系中,曲线的极坐标方程是,以极点为原点,极轴为轴正半轴(两坐标系取相同的单位长度)的直角坐标系中,曲线的参数方程为:(为参数).(1)求曲线的直角坐标方程与曲线的普通方程;(2)将曲线经过伸缩变换后得到曲线,若,分别是曲线和曲线上的动点,求的最小值.【答案】(1) (2)【解析】试题分析:(1)根据x=ρcosθ,y=ρsinθ求出C1,C2的直角坐标方程即可;(2)求出C3的参数方程,根据点到直线的距离公式计算即可.试题解析:(1)∵的极坐标方程是,∴,整理得,∴的直角坐标方程为.曲线:,∴,故的普通方程为.(2)将曲线经过伸缩变换后得到曲线的方程为,则曲线的参数方程为(为参数).设,则点到曲线的距离为.当时,有最小值,所以的最小值为.23. [选修4-5:不等式选讲]已知.(1)当时,解不等式.(2)若不等式对恒成立,求实数的取值范围.【答案】(1) (2)【解析】试题分析:(1)把原不等式转化为三个不等式组,分别求解集,最后求并集即可;(2)不等式对恒成立,即求的最小值,结合函数的单调性即可. 试题解析:(1)当时,等式,即,等价于或或,解得或,所以原不等式的解集为;(2)设,则,则在上是减函数,在上是增函数,∴当时,取最小值且最小值为,∴,解得,∴实数的取值范围为.点睛:|x-a|+|x-b|≥c(或≤c)(c>0),|x-a|-|x-b|≤c(或≤c)(c>0)型不等式的解法可通过零点分区间法或利用绝对值的几何意义进行求解.①令每个绝对值符号的代数式为零,并求出相应的根;②将这些根按从小到大排列,把实数集分为若干个区间;③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;④取各个不等式解集的并集就是原不等式的解集.。
河北省衡水中学高三高考模拟测试题——理科数学试题及参考答案

河北衡水中学高考模拟测试卷理科数试试题第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1、设集合2{|60,}A x x x x Z =--<∈,{|||,,}B z z x y x A y A ==-∈∈,则集合A B =( ) A 、{0,1} B 、{0,1,2} C 、{0,1,2,3} D 、{1,0,1,2}-2、设复数z 满足121z i i +=-+,则1||z=( )A 、15 C 、5 D 、253、若1cos()43πα+=,(0,)2πα∈,则sin α的值为( )A 、46B 、46+C 、718D 、3 4、已知直角坐标原点O 为椭圆:C 22221(0)x y a b a b+=>>的中心,1F ,2F 为左、右焦点,在区间(0,2)任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O :2222x y a b +=-没有交点”的概率为( )A 、4B 、44C 、2D 、22- 5、定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90︒的正角、已知双曲线E :22221(0,0)x y a b a b-=>>,当其离心率2]e ∈时,对应双曲线的渐近线的夹角的取值范围为( ) A 、[0,]6π B 、[,]63ππ C 、[,]43ππ D 、[,]32ππ6、某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A 、(3)22π++B 、3()242π+C 、2 D 、4+ 7、函数sin ln ||y x x =+在区间[3,3]-的图象大致为( )A 、B 、C 、D 、8、二项式1()(0,0)n ax a b bx+>>的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab 的值为( )A 、4B 、8C 、12D 、169、执行下图的程序框图,若输入的0x =,1y =,1n =,则输出的p 的值为( )A 、81B 、812C 、814D 、81810、已知数列11a =,22a =,且222(1)n n n a a +-=--,*n N ∈,则2017S 的值为( )A 、201610101⨯-B 、10092017⨯C 、201710101⨯-D 、10092016⨯11、已知函数()sin()f x A x ωϕ=+(0,0,||)2A πωϕ>><的图象如图所示,令()()'()g x f x f x =+,则下列关于函数()g x 的说法中不正确的是( )A 、 函数()g x 图象的对称轴方程为()12x k k Z ππ=-∈ B 、函数()g x的最大值为C 、 函数()g x 的图象上存在点P ,使得在P 点处的切线与直线:31l y x =-平行D 、方程()2g x =的两个不同的解分别为1x ,2x ,则12||x x -最小值为2π 12、已知函数32()31f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( )A 、(,2)-∞-B 、(2,2)-C 、(2,)+∞D 、(2,0)(0,2)-第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答、第22题和第23题为选考题,考生根据要求作答二、填空题:本大题共4小题,每小题5分,共20分13、向量(,)a m n =,(1,2)b =-,若向量a ,b 共线,且||2||a b =,则mn 的值为 、14、设点M 是椭圆22221(0)x y a b a b+=>>上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于不同的两点P 、Q ,若PMQ ∆为锐角三角形,则椭圆的离心率的取值范围为 、15、设x ,y 满足约束条件230,220,220,x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩则y x 的取值范围为 、16、在平面五边形ABCDE 中,已知120A ∠=︒,90B ∠=︒,120C ∠=︒,90E ∠=︒,3AB =,3AE =,当五边形ABCDE的面积S ∈时,则BC 的取值范围为 、三、解答题:解答应写出文字说明、证明过程或演算步骤、17、已知数列{}n a 的前n 项和为n S ,112a =,121n n S S -=+*(2,)n n N ≥∈、 (1)求数列{}n a 的通项公式;(2)记12log n n b a =*()n N ∈求11{}n n b b +的前n 项和n T18、如图所示的几何体ABCDEF 中,底面ABCD 为菱形,2AB a =,120ABC ∠=︒,AC 与BD 相交于O 点,四边形BDEF 为直角梯形,//DE BF ,BD DE ⊥,2DE BF ==,平面BDEF ⊥底面ABCD 、(1)证明:平面AEF ⊥平面AFC ;(2)求二面角E AC F --的余弦值19、某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A、B、C、D、E五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B的人数;(2)若等级A、B、C、D、E分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A、B两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A级的个数 的分布列与数学期望20、 已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,且过点22P ,动直线l :y kx m -+交椭圆C 于不同的两点A ,B ,且0OA OB ⋅=(O 为坐标原点)(1)求椭圆C 的方程、(2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由21、 设函数22()ln f x a x x ax =-+-()a R ∈、(1)试讨论函数()f x 的单调性;(2)设2()2()ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x ,2x ,证明12'()02x x h +>请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22、选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C :3cos ,2sin x t y tαα=+⎧⎨=+⎩(t 为参数,0a >),在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C :4sin ρθ=、(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围;(2)当3a =时,两曲线相交于A ,B 两点,求||AB23、 选修4-5:不等式选讲已知函数()|21||1|f x x x =-++(1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++参考答案一、选择题1-5:BCAAD 6-10:AABCC 11、12:CD二、填空题13、-8 14e << 15、27[,]5416、 三、解答题17、解:(1)当2n =时,由121n n S S -=+及112a =, 得2121S S =+,即121221a a a +=+,解得214a =、 又由121n n S S -=+,①可知121n n S S +=+,②②-①得12n n a a +=,即11(2)2n n a n a +=≥、 且1n =时,2112a a =适合上式,因此数列{}n a 是以12为首项,12为公比的等比数列,故12n n a =*()n N ∈ (2)由(1)及12log n n b a =*()n N ∈, 可知121log ()2nn b n ==, 所以11111(1)1n n b b n n n n +==-++, 故2231111n n n n T b b b b b b +=+++=11111[(1)()()]2231n n -+-++-=+1111n n n -=++、 18、解:(1)因为底面ABCD 为菱形,所以AC BD ⊥,又平面BDEF ⊥底面ABCD ,平面BDEF平面ABCD BD =,因此AC ⊥平面BDEF ,从而AC EF ⊥、又BD DE ⊥,所以DE ⊥平面ABCD ,由2AB a =,2DE BF ==,120ABC ∠=︒,可知AF =,2BD a =,EF ==,AE ==,从而222AF FE AE +=,故EF AF ⊥、又AF AC A =,所以EF ⊥平面AFC 、又EF ⊂平面AEF ,所以平面AEF ⊥平面AFC 、(2)取EF 中点G ,由题可知//OG DE ,所以OG ⊥平面ABCD ,又在菱形ABCD 中,OA OB ⊥,所以分别以OA ,OB ,OG 的方向为x ,y ,z 轴正方向建立空间直角坐标系O xyz -(如图示), 则(0,0,0)O,,0,0)A,(,0,0)C,(0,,)E a -,(0,)F a ,所以(0,,),0,0)AE a =--=(,,)a -,(,0,0),0,0)AC=--=(,0,0)-,(0,)(0,,)EFa a =--(0,2,)a =、由(1)可知EF ⊥平面AFC ,所以平面AFC 的法向量可取为(0,2,)EF a =、 设平面AEC 的法向量为(,,)n x y z =,则0,0,n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩即0,0,y x ⎧-+=⎪⎨=⎪⎩即,0,y x⎧=⎪⎨=⎪⎩令z =,得4y =, 所以(0,4,2)n =、从而cos ,n EF <>=||||63n EF n EF⋅==⋅、 故所求的二面角E AC F --的余弦值为3、19、解:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,所以可以估计该校学生获得成绩等级为B 的概率为561410025=, 则该校高三年级学生获得成绩为B 的人数约有1480044825⨯=、 (2)这100名学生成绩的平均分为1(321005690780370260)100⨯+⨯+⨯+⨯+⨯91.3=, 因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关、(3)由题可知用分层抽样的方法抽取11个学生样本,其中A 级4个,B 级7个,从而任意选取3个,这3个为A 级的个数ξ的可能值为0,1,2,3、 则03473117(0)33C C P C ξ===,124731128(1)55C C P C ξ===, 214731114(2)55C C P C ξ===,30473114(3)165C C P C ξ===、 因此可得ξ的分布列为:则728144()0123335555165E ξ=⨯+⨯+⨯+⨯1211=、 20、解:(1)由题意可知2c a =,所以222222()a c a b ==-,即222a b =,①又点22P 在椭圆上,所以有2223144a b+=,② 由①②联立,解得21b =,22a =, 故所求的椭圆方程为2212x y +=、 (2)设1122(,),(,)A x y B x y ,由0OA OB ⋅=,可知12120x x y y +=、 联立方程组22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩ 消去y 化简整理得222(12)4220k x kmx m +++-=,由2222168(1)(12)0k m m k ∆=--+>,得2212k m +>,所以122412km x x k +=-+,21222212m x x k -=+,③ 又由题知12120x x y y +=,即1212()()0x x kx m kx m +++=,整理为221212(1)()0k x x km x x m ++++=、 将③代入上式,得22222224(1)01212m km k km m k k -+-⋅+=++、 化简整理得222322012m k k--=+,从而得到22322m k -=、 21、 解:(1)由22()ln f x a x x ax =-+-,可知2'()2a f x x a x =-+-=222(2)()x ax a x a x a x x --+-=、 因为函数()f x 的定义域为(0,)+∞,所以,①若0a >时,当(0,)x a ∈时,'()0f x <,函数()f x 单调递减,当(,)x a ∈+∞时,'()0f x >,函数()f x 单调递增;②若0a =时,当'()20f x x =>在(0,)x ∈+∞内恒成立,函数()f x 单调递增;③若0a <时,当(0,)2a x ∈-时,'()0f x <,函数()f x 单调递减,当(,)2a x ∈-+∞时,'()0f x >,函数()f x 单调递增、(2)证明:由题可知()()()h x f x x ϕ=+=2(2)ln x a x a x +--(0)x >, 所以'()2(2)a h x x a x=+--=22(2)(2)(1)x a x a x a x x x +---+=、 所以当(0,)2a x ∈时,'()0h x <;当(,)2a x ∈+∞时,'()0h x >;当2a x =时,'()02a h =、 欲证12'()02x x h +>,只需证12'()'()22x x a h h +>,又2''()20a h x x=+>,即'()h x 单调递增,故只需证明1222x x a +>、 设1x ,2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则21112222(2)ln ,(2)ln ,x a x a x m x a x a x m ⎧+--=⎨+--=⎩ 两式相减并整理得1212(ln ln )a x x x x -+-=22121222x x x x -+-, 从而221212121222ln ln x x x x a x x x x -+-=-+-, 故只需证明2212121212122222(ln ln )x x x x x x x x x x +-+->-+-, 即22121212121222ln ln x x x x x x x x x x -+-+=-+-、 因为1212ln ln 0x x x x -+-<,所以(*)式可化为12121222ln ln x x x x x x --<+, 即11212222ln 1x x x x x x -<+、 因为120x x <<,所以1201x x <<, 不妨令12x t x =,所以得到22ln 1t t t -<+,(0,1)t ∈、 记22()ln 1t R t t t -=-+,(0,1)t ∈,所以22214(1)'()0(1)(1)t R t t t t t -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在(0,1)单调递增、又(1)0R =,因此()0R t <,(0,1)t ∈, 故22ln 1t t t -<+,(0,1)t ∈得证, 从而12'()02x x h +>得证、22、解:(1)曲线1C :3cos ,2sin ,x t y t αα=+⎧⎨=+⎩消去参数t 可得普通方程为222(3)(2)x y a -+-=、 曲线2C :4sin ρθ=,两边同乘ρ、可得普通方程为22(2)4x y +-=、把22(2)4y x -=-代入曲线1C 的普通方程得:222(3)4136a x x x =-+-=-, 而对2C 有222(2)4x x y ≤+-=,即22x -≤≤,所以2125a ≤≤故当两曲线有公共点时,a 的取值范围为[1,5]、(2)当3a =时,曲线1C :22(3)(2)9x y -+-=, 两曲线交点A ,B 所在直线方程为23x =、 曲线22(2)4x y +-=的圆心到直线23x =的距离为23d =,所以||3AB ==、 23、 解:(1)因为()|21||1|f x x x =-++=3,1,12,1,213,.2x x x x x x ⎧⎪-<-⎪⎪-+-≤≤⎨⎪⎪>⎪⎩ 所以作出图象如图所示,并从图可知满足不等式()3f x ≤的解集为[1,1]-、(2)证明:由图可知函数()y f x =的最小值为32,即32m =、 所以2232a b +=,从而227112a b +++=, 从而221411a b +=++2222214[(1)(1)]()71a b a a b ++++=++2222214(1)[5()]711b a a b ++++≥++218[577+=、 当且仅当222214(1)11b a a b ++=++时,等号成立, 即216a =,243b =时,有最小值, 所以221418117a b +≥++得证。
衡水中学普通高等学校招生全国统一考试模拟(三)数学(理)---精校Word版含答案

2018年普通高等学校招生全国统一考试模拟试题理数(三)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){}22 2A x y log x x==--,B N =,则AB =( )A .{}0B .{}1C .{}01,D .{}-10, 2.复数()+2z x x i =+(其中i 为虚数单位,x R ∈)满足2iz+是纯虚数,则z =( )A ..3 D .33.已知2:,2028p x R x x a q a ∀∈++><;:.若“P q ∧”是真命题,则实数a 的取值范围是( )A .()1,+∞B .(),3-∞C .(1,3)D . ()(), 1 3 ,+ U -∞∞4.已知双曲线()22210,02x y a b a b -=>>的离心率为e ,其中一条渐近线的倾斜角θ的取值范围是63ππ⎡⎤⎢⎥⎣⎦,,其斜率为k ,则2e k的取值范围是( )A .(B .1⎛ ⎝⎦ C.2⎡⎣ D .2⎡⎢⎣⎦5.电路从A 到B 上共连接着6 个灯泡(如图),每个灯泡断路的概率是13,整个电路的连通与否取决于灯泡是否断路,则从A 到B 连通的概率是( )A .1027 B .448729 C.100243 D .40816.已知点(),P x y ,若实数,x y 满足330103x y x y x ++≤⎧⎪--≤⎨⎪≥-⎩,则目标函数21x y z x +-=-的取值范围是( )A .124⎡⎤⎢⎥⎣⎦,B .134⎡⎤⎢⎥⎣⎦, C.524⎡⎤⎢⎥⎣⎦, D .534⎡⎤⎢⎥⎣⎦, 7.已知430.355=2,22 ,=1 9111a b c g g --=+,则,a b c ,的大小关系是( )A .b a c <<B .a c b << C.c a b << D .c b a <<8.某锥体的三视图如图所示,用平行于锥体底面的平面把锥体截成体积相等的两部分,则截面面积为( )A .2 B.2.29.意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,数列的通项以及求和由如图所示的框图给出.则最后输出的结果等于( )A .1N a +B .2N a + C.11N a +- D .21N a +-10.将函数()y f x =的图象按以下次序变换:①纵坐标不变,横坐标变为原来的12,②向左平移6π个单位,得到函数=()y g x 的图象(如图所示,其中点2(,0)3D π-,点(,0)3E π,则函数()'()f x y f x =在区间[]02π,上对称的中心为( )A .()()020ππ,,,B .()0π, C.()()000π,,, D .()()()00020ππ,,,,, 11.已知()()()()22+121122220,,: ,:12a c r r R C x a y r r C x a y r >>∈++-=-+-2,=r给出以下三个命题:①分别过点()(),0,,0E c F c -作1C 的不同于x 轴的切线,两切线相交于点M ,则点M 的轨迹为椭圆的一部分; ②若12,C C 相切于点H ,则点H 的轨迹恒在定圆上;③若12,C C 相离,且122r r a ==,则与12,C C 都外切的圆的圆心在定椭圆上.则以上命题正确的是( )A .①②B .①③ C.②③ D .①②③12.已知函数()221ln 323e x e f x c c n x xln ⎛⎫ ⎪⎝⎭=---(其中e 为自然对数的底数)有两个极值点,则函数()()22211xg x e x c x c c =--+---的零点个数为( )A .0B .1 C.2 D .3第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某学校男女比例为2:3,从全体学生中按分层抽样的方法抽取一个样本容量为m 的样本,若女生比男生多10 人,则m = . 14.如图所示,已知在ABC ∆中,21,,33AE AC BD BC BE ==交AD 于点F ,AF AB AC λμ=+,则+λμ= .15.某港口停泊两艘船,大船船速40 海里/小时,小船船速20 海里/小时,某时,大船从港口出发,沿东偏北60°方向行驶2.5小时后,小船开始向正东方向行驶,小船出发1.5小时后,大船接到命令,需要把一箱货物转到小船上,便折向驶向小船,期间,小船行进方向不变,从大船折向开始,到与小船相遇,最少需要的时间是______小时.16.母线长为O ,与圆锥的侧面、底面都相切,现放入一些小球,小球与圆锥底面、侧面、球O 都相切,这样的小球最多可放入____个.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列{}n a 满足12a =,且1122,*n n n a a n N ++=+∈. (1)设2nn na b =证明:数列{}n b 为等差数列,并求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和Sn .18.如图,在ABCD 中,30,2A AD AB =∠==,沿BD 将ABD ∆翻折到'A BD ∆的位置,使平面'A BC ⊥平面'A BD.(1)求证:'A D ⊥平面BCD ;(2)若在线段'A C 上有一点M 满足' 'A M A C λ=,且二面角M BD C --的大小为60°,求λ的值.19.我国华南沿海地区是台风登陆频繁的地区,为统计地形地貌对台风的不同影响,把华南沿海分成东西两区,对台风的强度按风速划分为:风速不小于30米/秒的称为强台风,风速小于30米/秒的称为风暴,下表是2014 年对登陆华南地区的15次台风在东西两部的强度统计:强台风 风暴 东部沿海 9 6 西部沿海312(1)根据上表,计算有没有99%以上的把握认为台风强度与东西地域有关;(2)2017 年8月23 日,“天鸽”在深圳登陆,造成深圳特大风暴,如图所示的茎叶图统计了深圳15 块区域的风速.(十位数为茎,个位数为叶)①任取2个区域进行统计,求取到2个区域风速不都小于25 的概率;②任取3个区域进行统计,X 表示“风速达到强台风级别的区域个数”,求X 的分布列及数学期望()E X .附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P K k ≥0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.0010k0.4550.7081.3232.0722.7063.8415.0246.6357.879 10.82820.已知双曲线2212x y =一的左、右顶点分别为12,A A ,直线:l x p =与双曲线交于,M N ,直线2A M 交直线1A N 于点Q .(1)求点Q 的轨迹方程;(2)若点Q 的轨迹与矩形ABCD 的四条边都相切,探究矩形ABCD 对角线长是否为定值,若是,求出此值;若不是,说明理出. 21.已知函数()xx af x e +=,其中e 为自然对数的底数,若当[] 1,1x ∈-时,()f x 的最大值为()g a .(1)求函数()g a 的解析式; (2)若对任意的1,a R k e e∈<<,不等式()g a ka t ≥+恒成立,求kt 的最大值. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为1cos 2sin x t y t αα=+⎧⎨=+⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,圆M 的极坐标方程为46cos sin ρθθ=+.(1)求圆M 的直角坐标方程,并写出圆心和半径;(2)若直线l 与圆M 交于,A B 两点,求AB 的最大值和最小值. 23.选修4-5:不等式选讲 已知函数() f x x x a =++.(1)若不等式()221f x a ≥-对任意的x R ∈恒成立,求实数a 的取值范围; (2)若不等式()21f x a ≤-的解集为[],3b b +],求实数,a b 的值.2018年普通高等学校招生全国统一考试模拟试题理数(三)一、选择题1-5:ADCB 6-10:DCCDD 11、12:AD 二、填空题13.50【解析】由题意得32105055m m m -=⇒= 14.【解析】设()0,AD k AF k AD AB BD =≠=+=()1212133332AB AC AB AB AC AB AE +-=+=+,即2121+3232k AF AB AE AF k AB AE k =+⇒=,由,,F B E 三点共线,得21=132k k=,解得76k =,又214342327777AF AB AE AB AE AB AC k k =+=+=+,所以47λ=,27μ=所以67λμ==.15.3.5【解析】设港口为O ,小船行驶1.5小时到达B ,此时大船行驶到A ,大船折向按AC 方向行驶,大船与小船同时到达C 点时,用时最少.设从A 到C ,大船行驶时间为t ,则()240 2.5.5160,40,20 1.520OA AC t OC t =⨯+===⨯+.由余弦定理得()()2222 2 . 6016030201603020OA OC OC OA cos AC t t +-∙=⇒++-+,()()()224012202170276310 3.5t t t t t t =⇒+-=⇒-+=⇒=,即最少需要3.5小时.16.10【解析】由题意可知圆锥轴截面为正三角形,高为3,如图1.设球O 半径为R ,由30OCB ∠=,可得2OC R =,故2OA OC R ==,所以231,2R R R OC +==>==,故得1EC =.设小球半径为r ,同理可得'2O C r =r,故31r =,所以小球半径13r =,且4'3OO =.这时'O 到直线AO 的距离为423sin 603=这些小球相邻相切,排在一起,的圆M 上(图2),H 为相邻两球切点,12,M M 分别为相邻两球球心,设1M MH θ∠=,则1,6r sin tan MM θθ===,由三角函数性质,可知22632sin tan πθθθθθθ<<=><⇒<<<<,因为11>=,故可得能入入小球个数最多为10三、解答题17.解:(1)把2n n n a b =,代入到1122n n n a a ++=+, 得1112 122n n n n n b b ++++=+, 两边同除以12n +,得11n n b b +=+,∴{}n b 为等差数列,首项1112a b ==,公差为1, ∴()* n b n n N =∈. (2)由 22n nn n a b n an n ===>=⨯ , ∴123122232...2nSn n =⨯+⨯+⨯++⨯()23412122232...122nn Sn n n +⇒=⨯+⨯+⨯++-⨯+⨯,两式相减,得()()()123111-222...221 22?122* n n n n Sn n n Sn n n N +++=++++-⨯=-⨯-⇒=-⨯+∈18.解:(1)ABD ∆中,由余弦定理,可得1BD =. ∴222BD AD AB +=,∴90,90ADB DBC ∠=∴∠=. 作'DF A B ⊥于点F , ∵平面'A BC ⊥平面'A BD , 平面'A BC平面''A BD A B =∴DF ⊥平面'A BC . ∵BC ⊂平面'A BC . ∴DF BC ⊥. 又∵,CB BD BDDF D ⊥=,∴CB ⊥平面'A DB . 又∵'A D ⊂平面'A DB , ∴'CB A D ⊥. 又∵',A D BD BDCB B ⊥=,∴'A D ⊥平面CBD .(2)由(1)知,,'DA DB DA 两两垂直,以D 为原点,以DA 方向为x 轴正方向建立如图所示空间直角坐标系Dxyz,则()()(0,1,0,,'B C A . 设(),,M c y z ,则由''x A M A C y z λλ⎧=⎪=⇒=⎨⎪-=⎩(),M λ⇒.设平面MDB 的一个法向量为(),,m a b c =,则由00m DB M DM ⎧∙=⎪⎨∙=⎪⎩0)0b a bc λ=⎧⎪⇒⎨++=⎪⎩ 取() 1-1- 0,a c m λλλλ=⇒=⇒=,.平面CBD的一个法向量可取('DA =,∴1cos ,2DA m <>=⇒=1-1=22λ±⇒∵[]01λ∈,∴λ=19.解:(l)22⨯列联表如下:强台风 风暴 合计 东部沿海 9 6 15 西部沿海 3 12 15 合计121830由22⨯列联表中数据,可得2K 的观测值222()30108-18==5 6.635()()()()12181515n ad bc K a b c d a c b d -⨯=<++++⨯⨯⨯()所以没有99%以上的把握认为台风强度与东西地域有关. (2)①风速小于25的区域有7块,2块区域风速都小于25的概率为2172515CC =故取到2个区域风速不都小于25的概率为14155-= ②达到强台风级别的区域有5块, 故0,1,2,3X =.()32410039115CP X C ===,()2145105139115C CP X C ===, ()1220105239115CCP X C ===, ()325339115CP X C ===,故随机变量X 的分布列为2445202()=0+1+2+3=191919191E X ⨯⨯⨯20.解:(1)设点()()()0,,, ,, o Q x y M p y N p y -,其中00y ≠ 由题意,得())12,A A .由11QA NA k k =⇒=,①22QA MA k k =⇒=,②两式相乘得222222yy x p =--, ∵22102p y -=, ∴22102p y =-,代入上式得X 0 1 2 3P24914591 2091 291222222112-12222p y x y x p -==-⇒+=--, 由①与0o y ≠,得0y ≠,10x =≠-⇒≠.故点Q 的轨迹方程为221(0,0)2x y x y +=≠≠. (2)设点()(),0,0A m n m n ≠≠,过点A 作椭圆的切线, 则切线的斜率存在且不为0,设斜率为k ,则切线方程为()y n k x m y kx n km -=-⇒=+-,代入到椭圆方程整理, 得()()()222124220.kx k n km x n km ++-+--=()()()222216 41+22- -2 =0k n km k n km ⎡∆-⎤⎣⎦=-即()2222210m k mnk n --+-=.这个关于k 的一元二次方程的两根即为AB k 与AD k , 由1AB AD k k ∙=-,得22221131n m n m -=-⇒+=-. 设O 为坐标原点,故可知OA =同理,得OA OB OC OD ====即点O 为矩形ABCD 外接圆的圆心,其中AC 为直径,大小为 故矩形ABCD对角线长为定值21.解:(1)由题意,得()1'xa xf x e --=当11a -≤-,即2a ≥时,()()0f x f x ≤⇒在[]1,1x ∈-时为单调递减函数, 所以()f x 最大值为()()()11g a f e a =-=-.当111a -<-<,即02a <<时,当()1,1x a ∈--时,()()'0,f x f x >单调递增; 当()1,1x a ∈-时,()()'0,f x f x <单调递减, 所以()f x 的最大值为()()11a g a f a e -=-=.当11a -≥,即0a ≤时,()()'0,f x f x ≥在[]1,1x ∈-时为单调递增函数, 所以()f x 的最大值为()()11ag a f e+==. 综上得() -1),21,02 1,0e a a g a ea a a a e ⎧⎪≥⎪=-<<⎨⎪+⎪≤⎩((2)令()()h a g a ka t =--.①当02a <<时,()()()11'a a h a g a ka t e ka t h a e k --=--=--⇒=-,由()'0h a =,得1a lnk =+, 所以当()0,1a lnk ∈+时,()'0h a <; 当()1,2a lnk ∈+时,()'0h a >,故()h a 最小值为()()110 h lnk k k lnk t t kln k +=-+-≥⇒≤-. 故当1k e e<<且t klnk ≤-时,()g a ka t ≥+恒成立. ②当2a >,且t klnk ≤-时,()()()()h a g a ka t a e k e t =-+=---. 因 为0e k ->, 所以()h a 单调递增,故()()()()222 2ln min h a h e k e t e k e kln k e k k k ==---≥--+=-+. 令()2 p k e k kln k =-+, 则()'10p k lnk =-≤,故当1,k e e ⎛∈⎫ ⎪⎝⎭时,()p k 为减函数,所以()()p k p e >, 又()0p e =, 所以当1k e e<<时,()0h a >, 即()0h a ≥恒成立. ③当0a ≤,且t klnk ≤-时,()()()11h a g a ka t a k t e e=-+=-⎛⎫ ⎪⎭-⎝+,因为10k e-<, 所以()h a 单调递减, 故()()110min h a h t klnk e e==-≥+. 令()1m k kln k e=+, 则()'10m k lnk =+≥,所以当1,k e e ⎛∈⎫ ⎪⎝⎭时,()p k 为增函数, 所以()1(0)m k em >=, 所以()0h a >,即()0h a ≥. 综上可得当1k e e<<时,“ t kln k ≤-”是“()g a ka t ≥+g(a) 成立”的充要条件. 此时2tk k ln k ≤-. 令()2q k k ln k =-,则()()'2 21 1q k kln k k k n k =--=-+, 令()'0q k =,得1-2k e =故当112,k e e --⎛∈⎫ ⎪⎝⎭时,()'0q k >;当12k e e -⎛⎫⎪⎝∈⎭,时,()'0q k <,所以()q k 的最大值为1-212q e e⎛⎫ =⎪⎝⎭,当且仅当11--221,2k e t klnk e ==-=时,取等号,故tk 的最大值为12e. 22.解:(1)24 64 6 cos sin cos sin ρθθρρθρθ=+⇒=+2246x y x y ⇒+=+ 22 2)(3)13x y ⇒-+-=(.圆心为(2,3),.(2)把直线l 的参数方程代入圆M 的标准方程, 得()()22122313tcos tsin αα+-++-=, 整理得()22 2110t cos sin t αα-+-=,()22 2 440cos sin αα∆=++>,设,A B 两点对应的参数分别为12,t t , 则12122 2,11t t sin cos t t αα+=+=-.所以12AB t t =-==因为[]21,1sin a ∈-,所以AB ∈⎡⎣,即AB 的最大值为最小值为23.解:(1)对(), ()|x R f x x x a x x a a ∀∈=++≥-+=当且仅当()0x x a +≤时取等号, 故原条件等价于21a a ≥-,即21a a ≥-或()211a a a ≤--⇒≤, 故实数a 的取值范围是(],1-∞.(2)由210a x x a -≥++≥,可知210a -≥, 所以12a ≥’ 故-0a <.故()2,,02,0x a x a f x a a x x a x --<-⎧⎪=-≤≤⎨⎪+>⎩,的图象如图所示,由图可知222152(3)212a b a a b a a b =⎧--=-⎧⎪⇒⎨⎨++=-=-⎩⎪⎩。
河北省衡水中学2020届高三年级模拟试题(一)(理数)

河北省衡水中学2020届高三年级模拟试题(一)数 学(理科)本试卷总分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上相应的位置。
2.全部答案在答题卡上完成,答在本试卷上无效。
3.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案用0.5 mm 黑色笔迹签字笔写在答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数iiz -=12,则z 在复平面内对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合}0)2)(2(|{≤+-=x x x A ,}0|{a x x B ≤<Z ∈=.若}2,1{=B A I ,则实数a 的取值范围是 A .),2[+∞B .),2(+∞C .),1[+∞D .),1(+∞3.2020年第1期深圳车牌摇号竞价指标共6 668个,某机构从参加这期车牌竞拍且报价在1~8万元的人员中,随机抽取了若干人的报价,得到的部分数据整理结果如下:报价区间(单位:万元)[)2,1[)3,2[)4,3频数103640则在这些竞拍人员中,报价不低于5万元的人数为 A .30 B .42 C .54 D .804.已知c b a >>,且0=++c b a ,则下列不等式一定成立的是A .bc ab >B .bc ac <C .||||bc ab >D .011>+ca5.设实数y x ,满足约束条件⎪⎩⎪⎨⎧≥++≥+≤,0632,2,2y x x y x y 则y x z 2-=的最小值为A .2-B .4-C .6-D .8- 6.已知0<ab ,若函数x x x f cos sin )(+=在区间],[b a 上单调,则ab 的最小值是A .42π-B .1632π-C .82π-D .162π-7.某正方体的三视图中的侧视图如图所示,是由两个全等的长方形构成,则该正方体的体积为A .8B .23C .4D .228.已知数列}{n a 为等比数列,n S 为其前n 项和,0>n a ,32=S ,154=S .对任意的正整数n ,下列结论正确的是A .122++=+n n n a a aB .1+>n n a SC .213++++>+n n n n a a a aD .21++≥⋅n n n a a a9.已知四棱锥ABCD P -的所有棱长均相等,过其外一点且与直线PA 和BC 所成的角都是o60的 直线的条数是 A .2 B .3 C .4 D .510.如图所示的44⨯正方形网格,可看成是横向、纵向各五条相等线段相交成的封闭图形,横向、纵向各取2条线段,则围成的封闭图形为正方形的概率为A .101 B .51 C .103 D .52 11.已知双曲线)0,0(1:2222>>=-b a by a x C 的右焦点为F ,过F 作直线l 与两条渐近线交于B A ,两点,若OAB ∆为等腰直角三角形(O 为坐标原点),则OAB ∆的面积为A .2aB .22aC .22a 或2aD .22a 或221a12.如图,正方形ABCD 的边长为2,O 是正方形ABCD 的中心,线段EF 过点O ,且1==OF OE ,EF 绕着点O 旋转,M 为线段AB 上 的动点,则MF ME ⋅的最小值为A .21- B .22- C .23- D .1-二、填空题:本题共4小题,每小题5分,共20分。
2025届河北衡水中学高三数学第一学期期末考试模拟试题含解析

2025届河北衡水中学高三数学第一学期期末考试模拟试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在ABC ∆中,0OA OB OC ++=,2AE EB =,AB AC λ=,若9AB AC AO EC ⋅=⋅,则实数λ=( ) A .33B .32C .63D .622.我国古代数学名著《九章算术》有一问题:“今有鳖臑(biē naò),下广五尺,无袤;上袤四尺,无广;高七尺.问积几何?”该几何体的三视图如图所示,则此几何体外接球的表面积为( )A .90π平方尺B .180π平方尺C .360π平方尺D .13510π平方尺3.公比为2的等比数列{}n a 中存在两项m a ,n a ,满足2132m n a a a =,则14m n+的最小值为( ) A .97B .53C .43D .13104.已知函数()2331x x f x x ++=+,()2g x x m =-++,若对任意[]11,3x ∈,总存在[]21,3x ∈,使得()()12f x g x =成立,则实数m 的取值范围为( ) A .17,92⎡⎤⎢⎥⎣⎦B .[)17,9,2⎛⎤-∞+∞ ⎥⎝⎦C .179,42⎡⎤⎢⎥⎣⎦ D .4179,,2⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭5.已知过点(1,1)P 且与曲线3y x =相切的直线的条数有( ). A .0B .1C .2D .36.关于函数11()4sin 4cos 2323f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,有下述三个结论:①函数()f x 的一个周期为2π; ②函数()f x 在423,ππ⎡⎤⎢⎥⎣⎦上单调递增; ③函数()f x 的值域为[4,42]. 其中所有正确结论的编号是( ) A .①②B .②C .②③D .③7.已知锐角α满足2sin21cos2 ,αα=-则tan α=( ) A .12B .1C .2D .48.下列几何体的三视图中,恰好有两个视图相同的几何体是( ) A .正方体 B .球体C .圆锥D .长宽高互不相等的长方体9.已知函数()()()2ln 14f x ax x ax =-+-,若0x >时,()0f x ≥恒成立,则实数a 的值为( )A .2eB .4eC .2ee - D .4ee- 10.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( )A .B .2C .3D .611.已知()3,0A -,)3,0B,P 为圆221x y +=上的动点,AP PQ =,过点P 作与AP 垂直的直线l 交直线QB于点M ,若点M 的横坐标为x ,则x 的取值范围是( ) A .1x ≥B .1x >C .2x ≥D .2x ≥12.函数f(x)=sin(wx +φ)(w >0,φ<2π)的最小正周期是π,若将该函数的图象向右平移6π个单位后得到的函数图象关于直线x =2π对称,则函数f(x)的解析式为( ) A .f(x)=sin(2x +3π) B .f(x)=sin(2x -3π) C .f(x)=sin(2x +6π) D .f(x)=sin(2x -6π) 二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
启用前★绝密衡水中学高三年级全仿真模拟理科数学本试卷满分150分,考试时间120分钟 注意事项:1.答卷前,考生务必将姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 在答题卡上与题号相对应的答题区域内答题,写在试卷、草稿纸或答题卡非题号对应的答题区域的答案一律无效。
不得用规定以外的笔和纸答题,不得在答题卡上做任何标记。
4. 考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数)(x f y =,[]b a x ,∈,那么集合[]{}{},(),,(,)2x y y f x x a b x y x =∈=I ()中元素的个数为 ( )A .1B .0C .0或1D .1或22.已知x ∈C ,若关于x 实系数一元二次方程20ax bx c ++=(a ,b ,c ∈R ,a ≠0)有一根为1+i .则该方程的另一根为 ( ) A .-1+i B .1-i C .-1-i D .1 3.设)(),161(log );32(,21221R x x N a a a M ∈+=<<-+=,则M ,N 大小关系是( ) A . M >N B . M =N C .M <N D . 不能确定4.设向量)25sin ,25(cos οορ=a ,)20cos ,20(sin οορ=b ,若t 是实数,且b t a u ϖρϖ+=,则u ϖ的最小值为( )A .2B .1C 2D .125.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,C ′D ′=2 cm ,则原图形是( ). A .正方形 B .矩形 C . 梯形 D .菱形6.设函数⎪⎩⎪⎨⎧<≥=1,1,)(2x x x x x f )(x g 是二次函数,若))((x g f 的值域是[0,+∞),则)(x g 的值域是 ( ).A .(-∞,-1]∪[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)7.右图是求样本x 1,x 2,…,x 10平均数x 的程序框图,图中空白框中应填入的内容为( ). A.S =S +n x B.S =S +nx nC.S =S + nD.S =S +10nx8.函数)0(cos sin )(≠-=a x b x a x f 的图象关于4x π=对称,则3()4y f x π=-是( ) A .图象关于点),(0π对称的函数 B .图象关于点302π(,)对称的函数C .图象关于点),(02π对称的函数D .图象关于点),(04π对称的函数 9. 如图,在正方形区域内任取一点,则此点取自阴影部分的概率是 ( ) A.21-B.()2421π-C.()2421π+D.1610.f (x )是集合A 到集合B 的一个函数,其中,A={1,2,…,n},B={1,2,…,2n},n ∈N *,则f (x )为单调递增函数的个数是( ) A .B .n 2nC .(2n )nD .11.已知函数()ln 2x axf x x-=,若有且仅有一个整数k ,使得()1f k >,则实数a 的取值范围是 ( ) A. (1,3]B.1111ln 2,ln34262⎡⎫--⎪⎢⎣⎭C.11ln 21,ln3123⎡⎫--⎪⎢⎣⎭D.11,1e e ⎛⎤-- ⎥⎝⎦12..设点P 是椭圆22221(0)x y a b a b+=>>上异于长轴端点的任意一点,F 1,F 2分别是其左右焦点,O 为中心,2212||||||3PF PF OP b +=,则此椭圆的离心率为 ( )A .12 B .22 C. 32 D . 24二.填空题:本大题共4小题,每小题5分,共20分.13. 若实数x ,y 满足约束条件41014x y y x y --≥⎧⎪≥⎨⎪+≤⎩则z =ln y -ln x 的最小值是________. 14. 210(2018)()x y x y +-展开式中56x y 的系数为 .15. 如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点E 为线段A 1B 1的中点,点F ,G 分别是线段A 1D 与BC 1上的动点,当三棱锥E ﹣FGC 的俯视图的面积最大时,该三棱锥的正视图的面积是 . 16.在△ABC 中,内角A ,B ,C 的边分别为a ,b ,c ,2ABC=3π∠,BD 平分ABC ∠交AC 于点D ,BD=2,则△ABC 面积的最小值为 .三.解答题:本大题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)已知正项的数列{}n a 的前n 项和为n S ,首项11a =,点21(,)n n P a a +在曲线244y x x =++上.(1)求n a 和n S ;(2)若数列{}n b 满足1117,2n n b b b n +=-=,求使得n nS 最小值时n 的值.18.(本小题满分12分)某企业生产一种产品,从流水线上随机抽取100件产品,统计其质量指标值并绘制频率分布直方图(如图1):规定产品的质量指标值在[)65,75的为劣质品,在[)75,105为优等品,在[)105,115的为特优品,销售时劣质品每件亏损1元,优等品每件盈利3元,特优品每件盈利5元.以这1000件产品的质量指标值位于各区间的频率代替产品的质量指标值位于该区间的概率;(1)求每件产品的平均销售利润;(2)该企业为了解年营销费用x (单位:万元)对年销售量y (单位:万件)的影响,对近5年年营销费用i x 和年销售量()1,2,3,4,5i y i =数据做了初步处理,得到如图2的散点图及一些统计量的值根据散点图判断by ax =可以作为年销售量y(万件)关于年营销费用x(万元)的回归方程. ①求y 关于x 的回归方程②用所求的回归方程估计该企业应投入多少年营销费,才能使得该企业的年收益的预报值达到最大?(取3.0120e =)19.如图,AB 为圆O 的直径,点E ,F 在圆O 上,AB//EF ,矩形ABCD 和圆O 所在的平面互相垂直,已知AB=2,EF=1.(1)求证:平面DAF ⊥平面CBF ;(2)当AD 的长为何值时,平面DFC 与平面FCB 所成的锐二面角的大小为60°?21.(本小题满分12分)已知函数()sin 2cos 2f x x x x ax =+++,其中a 为常数. (Ⅰ)若曲线()y f x =在0x =处的切线在两坐标轴上的截距相等求a 的值; (Ⅱ)若对[]0,x π∀∈,都有()2f x ππ≤≤,求a 的取值范围.选考题:请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题记分 22.(本小题满分10分)[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线C 的参数标方程为t t t tx e e y e e--⎧=+⎪⎨=-⎪⎩(其中t 为参数),在以O 为极点、x 轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线l 的极坐标方程为sin 23πρθ⎛⎫-= ⎪⎝⎭(1) 求曲线C 的极坐标方程;(2) 求直线l 与曲线C 的公共点P 的极坐标.23.(本小题满分10分)[选修4-5:不等式选讲] 已知函数()21f x x x =-+,且,,a b c R ∈.(1) 若2a b c ++=,求()()()f a f b f c ++的最小值; (2) 若1x a -<,求证:()()()21f x f a a -<+.2019年普通高等学校招生全国统一考试理科数学(仿真二)答案一、选择题:1-4CBAC 5-8 DCDA 9-12 BDBB 二、填空题:13.-ln 3;14.210;15.2 16. 43. 三、解答题: 17.18.19.解(Ⅰ)∵平面ABCD ⊥平面,ABEF CB AB ⊥,平面ABCD ⋂平面ABEF AB =,∴CB ⊥平面ABEF ,∵AF ⊂平面ABEF ,∴AF CB ⊥, 又∵AB 为圆O 的直径,∴AF BF ⊥,∴AF ⊥平面CBF , ∵AF ⊂平面ADF ,∴平面DAF ⊥平面CBF ………5分 (Ⅱ)设EF 中点为G ,以O 为坐标原点, OA OG AD 、、方向分别为x 轴、y 轴、z 轴方向建立空间直角坐标系(如图).设(0)AD t t =>,则点D 的坐标为()1,0,t ,则()1,0,C t -,又()()131,0,0,1,0,0,,,022A B F⎛⎫- ⎪ ⎪⎝⎭,∴,设平面DCF 的法向量为()1,,n x y z =,则,即20{302x y tz =-+=,令3z =,解得0,2x y t ==.∴()10,2,3n t =.由(1)可知AF ⊥平面CFB ,取平面CBF 的一个法向量为213,,022n AF ⎛⎫==- ⎪ ⎪⎝⎭,∴1212·cos60n n n n =,即231243t t =+,解得6t =, 因此,当AD 的长为6时, 平面DFC 与平面FCB 所成的锐二面角的大小为60°。
…………12分21解:(Ⅰ)求导得()cos sin f x x x x a '=-+,所以()0f a '=. 又()04f =,所以曲线()y f x =在0x =处的切线方程为4y ax =+. 由切线在两坐标轴上的截距相等,得44a-=,解得1a =-即为所求. ………4分 (Ⅱ)对[]0,x π∀∈,()sin 0f x x x ''=-<,所以()f x '在[]0,π区间内单调递减.(1)当0a ≤时,()()00f x f a ''<=≤,所以()f x 在区间[]0,π内单调递减,故()()f x f a ππ>=,由()f x π>恒成立,得1a ≥,这与0a ≤矛盾,故舍去. …6分(2)当a π≥时,()()0f x f a ππ''>=-≥,所以()f x 在区间[]0,π内单调递增,故()()()0f f x f π<<,即()4f x a π<<,由()2f x ππ<<恒成立得a π≤,结合a π≥得a π=. ………8分(3)当0a π<<时,因为()00f a '=>,()0f a ππ'=-<,且()f x '在[]0,π区间上单调递减,结合零点存在定理可知,存在唯一()00,x π∈,使得()00f x '=,且()f x 在区间[]00,x 内单调递增,在区间[]0,x π内单调递减. 故()()(){}min 0,f x f fπ>,由()f x π>恒成立知,()04f π=≥,()f a πππ=≥,所以1a π≤<.又()f x 的最大值为()00000sin 2cos 2f x x x x ax =+++,由()00f x '=得000sin cos a x x x =-, 所以()20000002sin 2cos cos 2f x x x x x x =+-+.设()()22sin 2cos cos 20g x x x x x x x π=+-+<<,则()2sin 0g x x x '=>,所以()g x 在区间[]0,π内单调递增,于是()()2g x g ππ<=,即()20f x π<.所以不等式()2f x π<恒成立. 综上所述,所求a 的取值范围是[]1,π. ………12分 22.解:(Ⅰ)消去参数t ,得曲线C 的直角坐标方程()2242x y x -=≥. 将cos x ρθ=,y sin ρθ=代入224x y -=,得()222cos 4sin ρθθ-=.所以曲线C 的极坐标方程为2cos 2444ππρθθ⎛⎫=-<< ⎪⎝⎭.....5分 (Ⅱ)将l 与C 的极坐标方程联立,消去ρ得242cos 23sin πθθ⎛⎫-= ⎪⎝⎭.展开得()22223cos cos sin 2cos sin θθθθθθ-+=-.因为cos 0θ≠,所以23tan 10θθ-+=.于是方程的解为tan θ=,即6πθ=.代入sin 3πρθ⎛⎫-=⎪⎝⎭可得ρ=P 的极坐标为6π⎛⎫ ⎪⎝⎭.....10分 23.解:(1)由柯西不等式得,()22221433a b c a b c ++≥++=(当且仅当23a b c ===时取等号),所以()()()()()222473133f a f b f c a b c a b c ++=++-+++≥+=,即()()()f a f b f c ==的最小值为73;....5分 (2)因为1x a -<,所以()()()()2211f x f a x a x a x a x a x a -=---=-•+-<+-()()()()212112121x a a x a a a a =-+-≤-+-<++=+,故结论成立..10分。