平行线与相交线易错题训练
专题02 相交线与平行线【易错题型专项训练】解析版

专题02 相交线与平行线【易错题型专项训练】易错点一:两条直线的位置关系1.若∠α=54°,∠β的两边与∠α两边互相垂直,则∠β=____________.【难度】★★【答案】54︒或126︒.【解析】∠α和∠β是相等或者互补的关系.【总结】考察垂线的意义以及两解问题,注意分类讨论.2.平面上三条直线两两相交,最多有m 个交点,最少有n 个交点,则m n +=____________.【难度】★★【答案】4.【解析】最多有3个交点,最少有1个交点.3m =,1n =,4m n +=.【总结】考察学生的作图分析能力.3.作图:已知线段AB 上一点Q 及线段外一点P .(1) 过点Q 作线段AB 的垂线;(2) 过点P 作线段AB 的垂线.【难度】★★【答案】如右图.【解析】注意标注垂直符号,以及字母的标注.【总结】画图一定要写结论.4.下列说法中正确的是( )A .有公共顶点、公共边且和为180°的两个角是邻补角B .有公共顶点且相等的是对顶角C .对顶角的补角一定相等D .互为邻补角的两个角不可能相等【难度】★【答案】C【解析】有一条公共边,并且另一条边互为反向延长线的两个角互为邻补角,故选项A 错误;有公共顶点且相等的两个角不一定是对顶角,故选项B 错误;C 正确;互为邻补角的两个角可能都为90︒,故选型D 错误.【总结】本题主要考查了对顶角和邻补角的概念.5.下列说法正确的是( )A .如果两个角相等,那么这两个角是对顶角B .经过一点有且只有一条直线与已知直线平行C .如果两条直线被第三条直线所截,那么内错角相等D.联结直线外一点与直线上各点的所有线段中,垂线段最短【难度】★【答案】D【解析】对顶角相等,但相等的角不一定是对顶角,故选项A错误;过直线外一点有且只有一条直线与已知直线平行,故选项B错误;只有两直线平行时,它们的内错角才相等,故选项C错误;联结直线外一点与直线上各点的所有线段中,垂线段最短,故选项D正确.【总结】本题主要考查了对顶角、内错角、平行线、点到直线的距离的概念.易错点二:同位角、内错角、同旁内角1.在直线AB、CD被直线EF所截的八个角中∠1和∠5是一对________角,∠3和∠5是一对________角,∠4和∠5是一对________角.【难度】★【答案】同位角;内错角;同旁内角.【解析】同位角像字母F,内错角像字母Z,同旁内角像字母U.【总结】本题考查同位角、内错角、同旁内角的概念及特征.2.(1)如图∠1和∠2是直线________与________被直线_______所截,所形成的______角;(2)∠3和∠4是直线_____与_______被直线______所截,所形成的_______角;(3)∠C的同旁内角是_________.【难度】★【答案】(1)DC、AB、DB、内错角;(2)AD、CB、DB、内错角;(3)14、、、.∠∠∠∠CBA CDA【解析】两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角叫做内错角,内错角像字母Z,同旁内角像字母U.【总结】本题考查内错角、同旁内角的概念及特征.3.如图,下列说法错误的是()A.∠5和∠3是同位角B.∠1和∠4是同位角C.∠1和∠2是同旁内角D.∠5和∠6是内错角【难度】★【答案】B【解析】两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角,故∠1和∠4不是同位角.【总结】本题考查同位角、内错角、同旁内角的概念及特征.4,如图,与∠C是同旁内角的有()A.5个 B.4个C.3个D.2个【难度】★【答案】B【解析】∠C的同旁内角有:∠CED、∠B、∠EDC、∠ADC共四个.【总结】本题考查同旁内角的概念及特征.5.如图,同旁内角的对数是()A.5对B.4对C.3对D.2对【难度】★★【答案】B【解析】两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【总结】本题考查同旁内角的概念及特征.6.如图,∠1和∠2是同位角的是( )A .(1)(2)B .(2)(3)(4)C .(1)(2)(4)D .(3)(4)(4)(3)(2)(1)21212121【难度】★★【答案】C【解析】(1)(2)(4)中∠1与∠2都在截线的同旁,并且都在被截直线的同侧,是同位角;(3)中∠1与∠2两边不在同一直线上,不是同位角,故选C .【总结】本题考查同位角的概念及特征,注意很多学生会容易误以为(2)中的两个角不是同位角,老师们要注意纠错哦.7.指出下图中:(1)∠C 与∠D 的关系;(2)∠B 与∠GEF 的关系;(3)∠A 与∠D 的关系;(4)∠AGE 与∠BGE 的关系;(5)∠CFD 与∠AFB 的关系.【难度】★★【答案】(1)同旁内角;(2)同位角;(3)内错角;(4)邻补角;(5)对顶角.【解析】 两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角叫做内错角.两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【总结】本题考查同位角、内错角、同旁内角、邻补角、对顶角的概念及特征.8.找出图中∠1的所有的同位角.【难度】★★【答案】∠GEF 、∠CBM 、∠ADF 、∠BCN .【解析】两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【总结】本题考查同位角的概念及特征.易错点三:平行线的判定与性质1.如果两个角的一边在同一条直线上,另一边互相平行,那么这两个角() A .相等或互补B .互补C .相等D .相等且互余【难度】★★【答案】A【解析】分为同侧相等和异侧互补两种情况,故选A .【总结】本题考查平行线的基本应用,注意分类讨论.2.已若∠A 的两边与∠B 的两边分别平行,且∠A 是∠B 的2倍少30°,求∠A 与∠B 的度数.【难度】★★【答案】3030B A ∠=︒∠=︒,或70110B A ∠=︒∠=︒,.【解析】由题意可知,180A B A B ∠=∠∠+∠=︒或,又因为∠A 是∠B 的2倍少30°,所以230A B ∠=∠-︒,即3030B A ∠=︒∠=︒,或70110B A ∠=︒∠=︒,【总结】本题考查平行线的性质及两个角的两边平行时的两种情况的讨论.3.如果两个角的两边分别平行,其中一个角比另一个角的3倍多12°,则这两个角是( ).A .42°和138°B .都是10°C .42°和138°或都是10°D .以上都不对【难度】★★【答案】A 【解析】由题意假设这两个角分别为A 、B ,则有:180A B A B ∠=∠∠+∠=︒或,又因为∠A 是∠B 的3倍多12°,则有:312A B ∠=∠+︒,即180********B B B A ︒-∠=∠+︒∠=︒∠=︒,解得:,.【总结】本题考查两角位置关系的可能性,注意两种情况的讨论.5.已知:如图,E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,试说明:∠B =∠C .【难度】★★【解析】因为121AHB ∠=∠∠=∠(已知),(对顶角相等)所以2AHB ∠=∠(等量代换), 所以//AF ED (同位角相等,两直线平行)所以D AFC ∠=∠(两直线平行,同位角相等)因为A D ∠=∠(已知), 所以A AFC ∠=∠(等量代换) 所以//AB CD (内错角相等,两直线平行)所以B C ∠=∠(两直线平行,内错角相等)【总结】本题主要考察平行线的性质定理和判定定理的综合运用.6.如图,直线GC 截两条直线AB 、CD ,AE 是GAB ∠的平分线,CF 是ACD ∠的平分线,且//AE CF ,那么AB CD ∥吗?为什么?【难度】★★【解析】因为AE 是GAB ∠的平分线,CF 是ACD ∠的平分线(已知)所以GAE EAB ACF FCD ∠=∠∠=∠,(角平分线的性质)因为//AE CF (已知),所以GAE ACF ∠=∠(两直线平行,同位角相等)所以EAB FCD ∠=∠(等量代换)所以//(AB CD 同位角相等,两直线平行)【总结】本题主要考查平行线的判定定理及性质定理的综合运用.7.已知,正方形ABCD 的边长为4cm ,求三角形EBC 的面积.【难度】★★【答案】8平方厘米.【解析】由题意可知:三角形EBC 与正方形同底BC ,且其高即是正方形的边DC ,故三角形面积为正方形面积的一半:24428cm ⨯÷=【总结】本题考查三角形的面积的计算,注意三角形与正方形同底等高.8.如图,AD //BC ,52BC AD =,求三角形ABC 与三角形ACD 的面积之比.【难度】★★★【答案】5:2.【解析】因为//AD BC (已知)所以三角形ABC 与三角形ACD 的高相等(平行线间的距离处处相等)所以::52ABC ACD S S BC AD ∆∆==:(两三角形高相等,面积比等于底之比)【总结】本题考查平行线距离处处相等及三角形的面积比问题.9.如图,a ∥b ,.若△ABC 的面积是5,△ABE 的面积是2,则BEC S △=________;DEC S =__________;DBC S =__________;ADE S =___________.【难度】★★★【答案】3;2;5;43.【解析】因为△ABC的面积是5,△ABE的面积是2,所以△BEC的面积为5-2=3,因为△ABC和△DBC为同底等高的三角形,所以△DBC的面积为5,所以△DEC的面积为5-3=2,因为△ABE和△BEC为等高三角形,所以面积之比为底之比,即AE:EC=2:3,因为△ADE和△DEC为等高三角形,所以底之比为面积之比,所以△ADE的面积为4 232=3÷⨯.【总结】本题主要考查了平行线的性质和三角形面积的求法.10.如图,已知∠1=∠2,AD=2BC,三角形ABC的面积为3,求三角形CAD的面积.【难度】★★【答案】6【解析】因为∠1=∠2(已知)所以AD∥BC(内错角相等,两直线平行),所以AD到BC的距离相等,设为a,所以三角形ABC面积=12a BC⨯ =3,所以三角形ACD面积= 12a AD a BC⨯=⨯=6.【总结】本题主要考查了等高三角形的面积之比为底之比的应用.11.如图△ABC中,∠ABC=∠ACB,AE是△ABC的外角的平分线,F是AE上的一点,试说明△ABC与△FBC的面积相等.【难度】★★【解析】因为AE 是△ABC 的外角的平分线(已知)所以∠DAF =12∠DAC (角平分线的意义)因为180DAC BAC ∠+∠=(邻补角的意义),180BAC ABC ACB ∠+∠+∠=(三角形内角和等于180°)所以∠DAC =∠ABC +∠ACB (等式性质)因为DAC DAF CAF ∠=∠+∠(角的和差),∠ABC=∠ACB (已知)所以∠DAF =∠ABC (等式性质)所以AF//BC (同位角相等,两直线平行),所以点A 到直线BC 的距离等于点F 到直线BC 的距离(夹在平行线间的距离处处相等)所以△ABC 与△FBC 为同底等高三角形,所以△ABC 与△FBC 的面积相等.【总结】本题主要考查了平行线的判定和同底等高三角形面积相等的应用.12.如图,已知AB ∥ED ,试说明:∠B +∠D =∠C .【难度】★★【解析】过点C 作AB 的平行线CF ,因为AB ∥ED (已知)所以////AB CF ED (平行的传递性)所以B BCF D DCF ∠=∠∠=∠,(两直线平行,内错角相等)所以B D BCF DCF BCD ∠+∠=∠+∠=∠(等式性质)【总结】本题考查平行线的性质及辅助线的添加.13.如图所示,已知,++360A B C ︒∠∠∠=,试说明AE ∥CD .【难度】★★【解析】过点B向右作BF//AE,所以180A ABF∠+∠=︒(两直线平行,同旁内角互补)因为++360∠∠∠=(已知)A B C︒所以180∠+∠=︒(等式性质)FBC C所以//BF CD(同旁内角互补,两直线平行)所以//AE CD(平行的传递性)【总结】本题考查平行线的判定及性质的综合运用,注意简单的辅助线的添加方法.14.如图,已知:AB//CD,试说明:∠B+∠D+∠BED=360︒(至少用三种方法).【难度】★★【解析】方法一:连接BD则∠EBD+∠EDB+∠E=180°(三角形内角和等于180°)因为AB//CD(已知),所以∠ABD+∠BDC=180°(两直线平行,同旁内角互补)所以∠ABD+∠EBD+∠EDB+∠BDC+∠E=360°,即∠B+∠D+∠BED=360°方法二:过点E作EF//CD,因为//EF AB(平行的传递性)AB CD(已知),所以//所以∠B+∠BEF=180°,∠D+∠DEF=180°(两直线平行,同旁内角互补)所以∠B+∠BEF+∠D+∠DEF=360°(等式性质)即∠B+∠D+∠BED=360°;方法三:过点E作//EF BA因为//EF AB(平行的传递性)AB CD(已知),所以//所以180180,(两直线平行,同旁内角互补)ABE BEF FED EDC∠+∠=︒∠+∠=︒所以∠B+∠D+∠BED=360︒(等式性质);方法四:过点E作EF⊥CD的延长线与F,EG垂直于AB的延长线于G,则有:∠B=∠BGE+∠GEB,∠D=∠EDF+∠DFE,所以∠B+∠D+∠BED=∠BGE+∠DFE+∠GED=180+180=360°.【总结】本题考查平行线的判定及性质的综合运用,注意多种方法的归纳总结.11。
平行线与相交线易错题训练

学习必备 欢迎下载l 1 l 212 3 ADC B ABC D E FABC D EEDCAOFE DCB ADC B AD CBA GFEDCBA 1234l 3l 2l 112BA 21E DB A54321G FED CBA A BCE F DABC E D相交线与平行线综合演练一、选择题1、到直线L 的距离等于2cm 的点有( )A.0个 B.1个 C.无数个 D.无法确定2、过一点画已知直线的平行线,则( )A.有且只有一条 B.有两条 C. 不存在或只有一条 D.不存在3、如图所示,能判断AB ∥CE 的条件是( )A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE(第3题图) (第4题图)4、如图所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( ) A.62°B.118°C.72°D.59°5、如图1所示,下列说法正确的是( )A.点B 到AC 的垂线段是线段ABB.点C 到AB 的垂线段是线段ACC.线段AD 是点D 到BC 的垂线段; D.线段BD 是点B 到AD 的垂线段(第5题图) (第6题图)6、如图,能表示点到直线(线段)的距离的线段有( ) A.2条 B.3条 C.4条 D.5条7、如图,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG •平分∠BEF,若∠1=72°,则∠2=( )A. 72°B. 54°C.45° D.55° (第7题图) (第8题图)8、如图所示,直线L1,L2,L3相较于一点,交点为O,∠1=∠2,∠3:∠1=8:1,则∠4=( )A. 36°B. 72 C.40° D.45° 9、如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D′,C′的位置.若∠EFB =65°,则∠AED′=( ) A .70° B .65° C .50° D .25°(第10题图)10、如图,已知 90ACB ∠=°,DE 过点C ,且D E A B∥,若55ACD ∠=°则∠B 的度数是()A.35°B.45°C .55°D .65°11.如图,已知AB CD ∥,若20A ∠=°,35E∠=°,则∠C=12.ABC ,且,则=∠D13.如图,直线1l ∥2l ,则∠α=(第13题图) (第14题图) 14.如图,12//l l ,∠1=120°,∠2=100°,则∠3=15.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC =30o 时,∠BOD = 16.下列说法正确的有(填序号)①平面内,过直线上一点有且只有一条直线垂直于已知直线;②平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.17.两条非平行的直线被第三条直线所截,那么这3条直线将所在平面分成部分。
新初中数学相交线与平行线易错题汇编及答案

C、∠3和∠4是邻补角,故本选项错误;
D、∠1和∠C是同位角,故本选项正确;
故选:D.
【点睛】
本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.
∵AB∥DE,CF∥AB
∴AB∥DE∥CF
∴∠BCF=∠α
∠DCF+∠β=180°
∴∠BCD=∠BCF +∠DCF
∴∠α+180°-∠β=95°∴∠β﹣∠α=85°故选:D【点睛】
本题考查平行线的性质,熟练掌握平行线的性质进行推理证明是本题的解题关键.
17.如图,下列判断:①若 ,则 ;②若 ,则 :③若 ,则 .其中,正确的个数是().
考点:平行线的性质.
4.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是72°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B等于()
A.81°B.99°C.108°D.120°
【答案】B
【解析】
试题解析:过B作BD∥AE,
∵AE∥CF,
【解析】
【分析】
分两种情况,画出图形,结合平行线的性质求解即可.
【详解】
如图1,
∵a∥b;
∴∠1= =20°,
∵c∥d
∴∠β=∠1=20°;
如图2,
∵a∥b;
∴∠1= =20°,
∵c∥d
∴∠β=180°-∠1=160°;
故选C.
【点睛】
本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.
七年级数学下册第五章相交线与平行线重点易错题(带答案)

七年级数学下册第五章相交线与平行线重点易错题单选题1、下列定理有逆定理的是( )A.直角都相等B.同旁内角互补,两直线平行C.对顶角相等D.全等三角形的对应角相等答案:B分析:先写出各选项的逆命题,判断出其真假即可得出答案.解:A、直角都相等的逆命题是相等的角是直角,是假命题,此选项无逆定理;B、同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题,此选项有逆定理;C、对顶角相等的逆命题是相等的角是对顶角,是假命题,此选项无逆定理;D、全等三角形的对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题,此选项无逆定理.故选B.小提示:本题考查了对逆定理概念的认识,如果一个定理的逆命题是真命题,那么它的逆命题也叫这个定理的逆定理,如果一个定理的逆命题是假命题,则这个定理没有逆定理.2、如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3B.∠2与∠3互补C.∠2与∠3互余D.不能确定答案:C分析:根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.解:∵OB⊥CD,∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C.小提示:本题考查了垂线和余角,解题的关键是掌握垂线的定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.的值为()3、如图,四边形ABCO是矩形,点D是BC边上的动点(点D与点B、点C不重合),则∠BAD+∠DOC∠ADO C.2D.无法确定A.1B.12答案:A分析:过点D作DE//AB交AO于点E,由平行的性质可知∠BAD=∠ADE,∠DOC=∠ODE,等量代换可得∠BAD+∠DOC的值.∠ADO解:如图,过点D作DE//AB交AO于点E,∵四边形ABCO是矩形∴AB//OC∵DE//AB∴AB//DE,DE//OC∴∠BAD=∠ADE,∠DOC=∠ODE∴∠BAD+∠DOC∠ADO=∠BAD+∠DOC∠ADE+∠ODE=∠BAD+∠DOC∠BAD+∠DOC=1故选:A.小提示:本题主要考查了平行线的性质,灵活的添加辅助线是解题的关键.4、如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°答案:A分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.5、如图,直线AB、BE被AC所截,下列说法,正确的有()①∠1与∠2是同旁内角;②∠1与∠ACE是内错角;③∠B与∠4是同位角;④∠1与∠3是内错角.A.①③④B.③④C.①②④D.①②③④答案:D分析:根据同位角、内错角、同旁内角的定义可直接得到答案.解:①∠1与∠2是同旁内角,说法正确;②∠1与∠ACE是内错角,说法正确;③∠B与∠4是同位角,说法正确;④∠1与∠3是内错角说法正确,故选:D.小提示:此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.6、如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°答案:C分析:根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.解:因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故选:C.小提示:本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.7、下列命题中,是真命题的有()①两条直线被第三条直线所截,同位角的平分线平行;②垂直于同一条直线的两条直线互相平行;③过一点有且只有一条直线与已知直线平行;④对顶角相等,邻补角互补.A.1个B.2个C.3个D.4个答案:A分析:根据平行线的性质及基本事实,对顶角及邻补角的性质进行判断.两条平行线被第三条直线所截,同位角的平分线平行,故①是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故②是假命题;过直线外一点有且只有一条直线与已知直线平行,故③是假命题;对顶角相等,邻补角互补,故④是真命题.故选A.小提示:本题考查命题的真假判断,熟练掌握平行线的性质,对顶角及邻补角的性质是解题的关键.8、如图,不能判定AB∥CD的是()A.∠B=∠DCE B.∠A=∠ACDC.∠B+∠BCD=180°D.∠A=∠DCE答案:D分析:利用平行线的判定方法一一判断即可.解:由∠B=∠DCE,根据同位角相等两直线平行,即可判断AB∥CD.由∠A=∠ACD,根据内错角相等两直线平行,即可判断AB∥CD.由∠B+∠BCD=180°,根据同旁内角互补两直线平行,即可判断AB∥CD.故A,B,C不符合题意,故选:D.小提示:本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.9、如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠5答案:B分析:根据同旁内角的定义求解即可.与∠1是同旁内角的是∠3所以答案是:B.小提示:本题考查了同旁内角的问题,掌握同旁内角的定义是解题的关键.10、如图,小明从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东70°方向行走至C处,则∠ABC等于()A.130°B.120°C.110°D.100°答案:C分析:根据方位角和平行线性质求出∠ABE,再求出∠EBC即可得出答案.解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东70°方向行走至点C处,∴∠DAB=40°,∠CBE=70°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+70°=110°,故选:C.小提示:本题考查了方向角及平行线的性质,熟练掌握平行线的性质:两直线平行,内错角相等是解题的关键.填空题11、如图,已知直角三角形ABC,∠A=90∘,AB=4cm,BC=5cm.将△ABC沿AC方向平移1.5cm得到△A′B′C′,求四边形BCC′B′的面积为________cm2.答案:6分析:根据题意,再结合平移的性质,可得AB=A′B′,AA′=BB′=CC′=1.5cm,BB′∥CC′,S△ABC=S△A′B′C′,然后再根据等量代换,得出S四边形AA′OB =S四边形OCC′B′,然后再根据等量代换,得出S四边形BCC′B′=S四边形AA′B′B,然后再根据长方形的特征,得出四边形AA′B′B是长方形,然后再根据长方形的面积公式,算出长方形AA′B′B的面积,即可得出四边形BCC′B′的面积.解:如图,∵△ABC沿AC方向平移1.5cm得到△A′B′C′,∴A的对应点为点A′,点B的对应点为点B′,点C的对应点为点C′,∴由平移的性质,可得:AB=A′B′=4cm,AA′=BB′=CC′=1.5cm,BB′∥CC′,又∵△ABC沿AC方向平移1.5cm得到△A′B′C′,∴S△ABC=S△A′B′C′,又∵S△ABC=S四边形AA′OB+S△A′OC,S△A′B′C′=S四边形OCC′B′+S A′OC,∴S四边形AA′OB =S四边形OCC′B′,∵S四边形BCC′B′=S四边形OCC′B′+S△BOB′,S四边形AA′B′B =S四边形AA′OB+S△BOB′,∴S四边形BCC′B′=S四边形AA′B′B,∵AB=A′B′,AA′=BB′,∠A=90∘,∴根据长方形的特征,可得:四边形AA′B′B是长方形,∴S长方形AA′B′B=AB⋅AA′=4×1.5=6cm2,∴S四边形BCC′B′=S四边形AA′B′B=6cm2所以答案是:6小提示:本题考查了平移的性质,等量代换,根据长方形的特征判定长方形,长方形的面积公式,解本题的关键在熟练掌握平移的性质.平移的性质:1、形状大小不变;2、对应点的连线平行(或在同一直线上)且相等;3、对应线段平行(或在同一直线上)且相等,对应角相等.12、说明命题“若x>-4,则x2>16”是假命题的一个反例可以是_______.答案:x=-3,答案不唯一分析:当x=-3时,满足x>-4,但不能得到x2>16,于是x=-3可作为说明命题“x>-4,则x2>16”是假命题的一个反例.说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=-3.故答案为-3.小提示:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.13、如图,直线a∥b,AB⊥BC,如果∠1=48°,那么∠2=_______度.答案:42.∵AB⊥BC,∴∠ABC=90°,即∠1+∠3=90°,∵∠1=48°,∴∠3=42°,∵a∥b,∴∠2=∠3=42°.故答案为42.点睛:本题关键利用平行线的性质解题.14、如图,当∠ABC,∠C,∠D满足条件______________时,AB∥ED.答案:∠ABC=∠C+∠D分析:延长CB交DE于F,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠EFB=∠C+∠D,再根据同位角相等,两直线平行解答即可.如图,延长CB交DE于F,则∠EFB=∠C+∠D,当∠ABC=∠EFB时,AB∥ED,所以,当∠ABC=∠C+∠D时,AB∥ED.故答案为∠ABC=∠C+∠D.小提示:本题考查了平行线的判定,作辅助线,把∠C、∠D转化为一个角的度数是解题的关键.15、如图,AB∥CD,若GE平分∠DGH,HE平分∠GHB,GF平分∠CGH,若∠CGH=70°,则∠EHB的度数是______,图中与∠DGE互余的角共有______个.答案: 35°##35度 5分析:由平行线的性质可得,∠CGH=∠GHB=70°,∠GFH=∠CGF,利用邻角的补角可得∠DGH=∠GHA= 110°,利用角平分线的性质可得∠EHB=∠GHE=35°,∠CGF=∠GFH=∠HGF=35°,∠DGE=∠HGE= 55°,进而可求得答案.解:∵AB//CD,∴∠CGH=∠GHB=70°,∠DGH=∠GHA,∠GFH=∠CGF∴∠DGH=∠GHA=180°−70°=110°,又∵HE平分∠GHB,∵GE平分∠DGH,HE平分∠GHB,GF平分∠CGH,∴∠EHB=∠GHE=12∠GHB=35°,∠CGF=∠GFH=∠HGF=12∠CGH=35°,∠DGE=∠HGE=12∠DGH=55°,∴∠DGE+∠BHE=90°,∠DGE+∠GHE=90°,∠DGE+∠CGF=90°,∠DGE+∠HGF=90°,∠DGE+∠GFH=90°,∴与∠DGE互余的角共有5个,所以答案是:35°,5.小提示:本题考查了平行线的性质、角平分线的性质以及互余的定义,熟练掌握角平分线的性质及互余的定义是解题的关键.解答题16、如图所示,已知∠CFE+∠BDC=180°,∠DEF=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.答案:∠AED=∠ACB,理由见解析分析:首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.解:∠AED=∠ACB.理由:如图,分别标记∠1,∠2,∠3,∠4.∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).小提示:本题重点考查平行线的性质和判定,难度适中.17、如图,已知AB∥DE,那么∠A+∠C+∠D的和是多少度?为什么?答案:∠A+∠C+∠D的和是360度,理由见解析.分析:如图(见解析),过点C作CF//AB,则CF//DE,先根据平行四边形的性质(两直线平行,同旁内角互补)得出∠A+∠FCA=180°,∠D+∠DCF=180°,再根据角的和差即可得.如图,过点C作CF//AB,则所求的问题变为∠A+∠ACD+∠D的和是多少度∴∠A+∠FCA=180°∵AB//DE∴CF//DE∴∠D+∠DCF=180°∴∠A+∠FCA+∠D+∠DCF=180°+180°=360°即∠A+∠ACD+∠D=360°.小提示:本题考查了平行线的性质、角的和差,熟记平行线的性质是解题关键.18、图形的世界丰富且充满变化,用数学的眼光观察它们,奇妙无比.(1)如图,EF//CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小丽添加的条件:∠B+∠BDG=180°.请你帮小丽将下面的证明过程补充完整.证明:∵EF//CD(已知)∴∠BEF=()∵∠B+∠BDG=180°(已知)∴BC//()∴∠CDG=()∴∠BEF=∠CDG(等量代换)(2)拓展:如图,请你从三个选项①DG//BC,②DG平分∠ADC,③∠B=∠BCD中任选出两个作为条件,另一个作为结论,组成一个真命题,并加以证明.①条件:,结论:(填序号).②证明:.答案:(1)∠BCD;两直线平行,同位角相等;DG;同旁内角互补,两直线平行;∠BCD;两直线平行,内错角相等;(2)①DG∥BC,∠B=∠BCD,DG平分∠ADC,②证明见解析分析:(1)根据平行线的判定定理和性质定理解答;(2)根据真命题的概念写出命题的条件和结论,根据平行线的判定定理和性质定理、角平分线的定义解答.(1)证明:∵EF∥CD(已知),∴∠BEF=∠BCD(两直线平行,同位角相等),∵∠B+∠BDG=180°(已知),∴BC∥DG(同旁内角互补,两直线平行),∴∠CDG=∠BCD(两直线平行,内错角相等),∴∠BEF=∠CDG(等量代换);(2)①条件:DG∥BC,∠B=∠BCD,结论:DG平分∠ADC,②证明:∵DG∥BC,∴∠ADG=∠B,∠CDG=∠BCD,∵∠B=∠BCD,∴∠ADG=∠CDG,即DG平分∠ADC.所以答案是:(1)∠BCD;两直线平行,同位角相等;DG;同旁内角互补,两直线平行;∠BCD;两直线平行,内错角相等;小提示:本题考查了命题的真假判断、平行线的判定和性质,掌握平行线的判定定理和性质定理是解题的关键.。
相交线与平行线易错题汇编及答案解析

∴∠3=90°-∠1=45°(三角形的内角和定理),
∴∠4=180°-∠3=135°(平角定义),
∵EF∥MN(已知),
∴∠2=∠4=135°(两直线平行,同位角相等).
故选D.
【点睛】
此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.
【详解】
A.由∠D=∠DCE,根据内错角相等,两直线平行可得BD//AE,故不符合题意;
B.由∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得BD//AE,故不符合题意;
C.由∠1=∠2可判定AB//CD,不能得到BD//AE,故符合题意;
D.由∠3=∠4,根据内错角相等,两直线平行可得BD//AE,故不符合题意,
∴∠2=64°.
故选:A.
【点睛】
本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.
7.如图所示,点E在AC的延长线上,下列条件中不能判断BD∥AE的是()
A.∠D=∠DCEB.∠D+∠ACD=180°C.∠1=∠2D.∠3=∠4
【答案】C
【解析】
【分析】
根据平行线的判定方法逐项进行分析即可得.
C、∠4=∠5正确,同位角相等两直线平行;
D、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行.
故选:D.
【点睛】
此题考查同位角、内错角、同旁内角,解题关键在于掌握各性质定义.
5.如图,下列能判定 的条件有( )个.
(1) ; (2) ;
(3) ; (4) .
A.1B.2C.3D.4
A.40°B.60°C.50°D.70°
【答案】B
相交线与平行线易错题汇编附解析

相交线与平行线易错题汇编附解析一、选择题1.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°【答案】C【解析】【分析】直接利用平行线的性质结合已知角得出答案.【详解】如图,作直线l平行于直角三角板的斜边,可得:∠3=∠2=45°,∠4=∠5=30°,故∠1的度数是:45°+30°=75°,故选C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解题关键.2.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等=-的图像上.D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x【答案】D【解析】【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;=-的图像上,故D是真命D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x题故选:D本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.3.如图,若AB ∥CD ,则∠α、∠β、∠γ之间关系是( )A .∠α+∠β+∠γ=180°B .∠α+∠β﹣∠γ=360°C .∠α﹣∠β+∠γ=180°D .∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF ∥AB ,∵AB ∥CD ,∴EF ∥CD ,∵EF ∥AB ,∴∠α+∠AEF=180°,∵EF ∥CD ,∴∠γ=∠DEF ,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D .4.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】根据平行线的判定得出AC∥DE,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC∥DE,故①正确;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC∥DE,AC⊥BC,∴DE⊥BC,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB,故③正确,④错误;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B,故⑤正确;即正确的个数是4个,故选:C.【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.5.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【答案】B【解析】试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE 平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.考点:平行线的性质.6.如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是()A.35°B.70°C.110°D.120°【答案】B【解析】【分析】【详解】解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF中,∠DEB=180°-2∠2=70°.故选B.7.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.8.如图,在下列四组条件中,不能判断AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠ABD=∠BDC D.∠ABC+∠BCD=180°【答案】A【解析】【分析】根据各选项中各角的关系,利用平行线的判定定理,分别分析判断AB、CD是否平行即可.【详解】A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),故A不能判断;B、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故B能判断;C、∵∠ABD=∠BDC,∴AB∥CD(内错角相等,两直线平行),故C能判断;D、∵∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故D能判断,故选A.【点睛】本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.9.下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.【答案】D【解析】【分析】根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D 选项是对顶角,故选:D .【点睛】考核知识点:对顶角.理解定义是关键.10.如图,12180∠+∠=︒,3100∠=︒,则4∠=( )A .60︒B .70︒C .80︒D .100︒【答案】C【解析】【分析】 首先证明a ∥b ,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.【详解】解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,a ∥b ,∴∠3=∠6=100°,∴∠4=180°-100°=80°.故选:C .【点睛】此题考查平行线的判定与性质,解题关键是掌握两直线平行同位角相等.11.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°,图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .12.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( )A .20°B .160°C .20°或160°D .70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】如图1,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=∠1=20°;如图2,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.13.如图所示,下列条件中,能判定直线a∥b的是()A.∠1=∠4 B.∠4=∠5 C.∠3+∠5=180°D.∠2=∠4【答案】B【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠1=∠4,错误,因为∠1、∠4不是直线a、b被其它直线所截形成的同旁内角或内错角;B、∵∠4=∠5,∴a∥b(同位角相等,两直线平行).C、∠3+∠5=180°,错误,因为∠3与∠5不是直线a、b被其它直线所截形成的同旁内角;D、∠2=∠4,错误,因为∠2、∠4不是直线a、b被其它直线所截形成的同位角.故选:B.【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角14.下列说法中不正确的是()①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A.①B.②C.③D.④【答案】B【解析】【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确;故选B .15.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.16.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【答案】C【解析】【分析】 先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.17.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.18.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )A .115°B .120°C .145°D .135°【答案】D【解析】【分析】由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.【详解】在Rt △ABC 中,∠A=90°,∵∠1=45°(已知),∴∠3=90°-∠1=45°(三角形的内角和定理),∴∠4=180°-∠3=135°(平角定义),∵EF∥MN(已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D.【点睛】此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.19.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE方向行走,∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,∴∠A=60°,∠1=20°,AM∥BN,CE∥AB,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.20.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.。
相交线与平行线易错题汇编及答案

A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;
B选项:强调了在平面内,正确;
C选项:不符合对顶角的定义,错误;
D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.
故选:B.
【点睛】
对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.
A.①②③④B.①②③④C.①②③④⑤D.①②④⑤
【答案】D
【解析】
如图,
①∠1和∠4是直线AC和直线BC被直线AB截得的同位角,所以①正确;
②∠3和∠5是直线BC和直线AB被直线AC截得的内错角,所以②正确;
③∠2和∠6是直线AB和直线AC被直线CB截得的内错角,所以③错误;
④∠5和∠2是直线AC和直线BC被直线AB截得的同位角,所以④正确;
12.给出下列说法,其中正确的是( )
A.两条直线被第三条直线所截,同位角相等;
B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;
C.相等的两个角是对顶角;
D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.
【答案】B
【解析】
【分析】
正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.
故选C.
7.如图, 平分 , .若 , 到 的距离是2.4,则 的面积等于()
A.3.6B.4.8C.1.8D.7.2
【答案】A
【解析】
【分析】
由角平分线的定义可得出∠BOC=∠DOC,由CD∥OB,得出∠BOC=∠DCO,进而可证出OD=CD=3.再由角平分线的性质可知 到 的距离是2.4,然后根据三角形的面积公式可求 的面积.
“相交线与平行线”易错题

第五单元《相交线和平行线》易错题5.1相交线1.判断题: 同一平面内三条直线a 、b 、c ,若a ∥b,b ∥c,则a ∥c ;同理,若a ⊥b,b ⊥c,则a⊥c 。
( )【错解】正确【错题剖析】这句话的前半部分是成立的(如图1),但由此推出的后半部分不成立。
平行具有传递性,但垂直不具有传递性(如图2)如果a ⊥b,b ⊥c ,则a ∥c 。
【正确解答】错误【应对攻略】画图是解决问题的最简单也是最直接的办法,往往有意想不到的效果.【练习巩固】1.判断题:1)不相交的两条直线叫做平行线。
( ) 2)过一点有且只有一条直线与已知直线平行。
( ) 3)两直线平行,同旁内角相等。
( ) 4)两条直线被第三条直线所截,同位角相等。
( )2.判断题:只有过直线外一点才能画已知直线的垂线 ( )【错解】正确【错题剖析】此句错误的原因是受“经过直线外一点有且只有一条直线和已知直线平行”这一事实的影响。
但画垂线可以过直线上一点,也可以过直线外一点来画。
正确说法是:经过直线上或直线外一点可以画已知直线的垂线。
【正确解答】错误【应对攻略】考虑问题要全面,全方面的多角度的分析,不能片面看问题.【练习巩固】判断(1)对顶角的余角相等.( )(2)邻补角的角平分线互相垂直.( )(3)平面内画已知直线的垂线,只能画一条.() (4)在同一个平面内不相交的两条直线叫做平行线.( )(5)如果一条直线垂直于两条平行线中的一条直线,那么这条直线垂直于平行线中的另一条直线.( )(6)两条直线被第三条直线所截,两对同旁内角的和等于一个周角.( ) (7)点到直线的距离是这点到这条直线的垂线的长.( )(8)“过直线外一点,有且只有一条直线平行于已知直线”是公理.( )a bc 图1 图23. 如下图,直线AB 、CD 、EF 和射线OG 都经过O 点,则图中对顶角有( )对A 、 6B 、 7C 、 5D 、 8【错解】A.【错题剖析】这种题目很容易“重复”解,也很容易“遗漏”解.本题很容易把 ∠AOG 也数进去. 【正确解答】C.【应对攻略】观察图形需要仔细,要有两个防止:既要防止“重复”又要防止“遗漏”并且应按一定的顺序进行.【练习巩固】如图,BE 平分ABC ,BC DE //,图中相等的角共有( )A 、 3对B 、 4对C 、 5对D 、6对3.观察下列各图,寻找对顶角(不含平角):⑴ 如图a ,图中共有 对对顶角;C EA OB G F DE DCB AA BCD Oa b c A A B B CCD DO OEFGH图a图b图c⑵ 如图b ,图中共有 对对顶角; ⑶ 如图c ,图中共有 对对顶角;⑷ 研究⑴~⑶小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成 对对顶角;⑸ 若有2008条直线相交于一点,则可形成 对对顶角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1l 1 l 212 3 ADCBA B CDE FABC D EEDCBAOFE DCB ADC B AD CBA GFEDCBA 1234l 3l 2l 112EDBC ′FCD ′A 21E DCBA54321G FED CBA A BCE FDABC E D相交线与平行线综合演练一、选择题1、到直线L 的距离等于2cm 的点有( )A.0个 B.1个 C.无数个 D.无法确定2、过一点画已知直线的平行线,则( )A.有且只有一条B.有两条C. 不存在或只有一条D.不存在 3、如图所示,能判断AB ∥CE 的条件是( )A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE(第3题图) (第4题图)4、如图所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( ) A.62°B.118°C.72°D.59°5、如图1所示,下列说法正确的是( )A.点B 到AC 的垂线段是线段AB B.点C 到AB 的垂线段是线段AC C.线段AD 是点D 到BC 的垂线段; D.线段BD 是点B 到AD 的垂线段(第5题图) (第6题图)6、如图,能表示点到直线(线段)的距离的线段有( ) A.2条 B.3条 C.4条 D.5条7、如图,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG•平分∠BEF,若∠1=72°,则∠2=( )A. 72°B. 54° C.45° D.55° (第7题图) (第8题图)8、如图所示,直线L1,L2,L3相较于一点,交点为O,∠1=∠2,∠3:∠1=8:1,则∠4=( )A. 36°B. 72 C.40° D.45° 9、如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D′,C′的位置.若∠EFB =65°,则∠AED′=( ) A .70° B .65° C .50° D .25°(第9题图) (第10题图)10、如图,已知 90ACB ∠=°,DE 过点C ,且DE AB ∥,若55ACD ∠=°则∠B 的度数是()A.35°B.45° C .55° D .65°11.如图,已知AB CD ∥,若20A ∠=°,35E∠=°,则∠C=12.如图,AD ∥BC ,BD 平分∠ABC ,且︒=∠110A ,则=∠D13.如图,直线1l ∥2l ,则∠α=(第13题图) (第14题图) 14.如图,12//l l ,∠1=120°,∠2=100°,则∠3= 15.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC =30o 时,∠BOD = 16.下列说法正确的有 (填序号)①平面内,过直线上一点有且只有一条直线垂直于已知直线;②平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.17.两条非平行的直线被第三条直线所截,那么这3条直线将所在平面分成 部分。
三、解答题18.如图,已知12∠=∠,34∠=∠,5C ∠=∠,求证:AB DE ∥.19.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线,求证: ∠EDF=∠BDF.20、如图所示,已知DE BC ∥,12∠=∠,试说明CD 是ECB ∠的平分线.22、如图,AB ∥ED,α=∠A+∠E,β=∠B+∠C+∠D,求证:β=2α.23、如图,AB ∥A ′B ′,BC ∥B ′C ′,BC 交A ′B ′于点D ,∠B 与∠B•′有什么关系?为什么?24、如图,CD ⊥AB 于D ,点F 是BC 上任意一点,FE ⊥AB 于E ,且∠1=∠2,•∠3=80°.求∠BCA 的度数.1.(2000•荆门)如图所示,AB∥EF ∥DC ,EG ∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个B.5个C.4个D.2个2.如图,BE平分∠ABC,DE∥BC,图中相等的角共有()A.3对B.4对C.5对D.6对4.如图,若AB∥CD,则有①∠A+∠B=180°②∠B+∠C=180°③∠C+∠D=180°.上述结论正确的是()A.只有①B.只有②C.只有③D.只有①和③5.下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行.(2)在同一平面内,不相交的两条线段必平行.(3)相等的角是对顶角.(4)两条直线被第三条直线所截,所得到同位角相等.(5)两条平行线被第三条直线所截,一对内错角的角平分线互相平行.A.1个B.2个C.3个D.4个6.两条相交直线所成的角中()A.必有一个钝角B.必有一个锐角C.必有一个不是钝角 D.必有两个锐角7.下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直D.两点之间的所有连线中,线段最短8.(2006•河南)两条直线相交所成的四个角中,下列说法正确的是()A.一定有一个锐角B.一定有一个钝角C.一定有一个直角D.一定有一个不是钝角9.如图,能表示点到直线的距离的线段共有()A.2条B.3条C.4条D.5条10.如图所示,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点D到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥线段AB是点B到AC的距离;⑦AD>BD.A.2个B.4个C.7个D.0个11.同一平面内有三条直线,如果只有两条平行,那么它们交点的个数为()A.0 B.1 C.2 D.312.如图所示,将一张长方形纸的一角斜折过去,使顶点A落在A′处,BC为折痕,如果BD为∠ABE的平分线,则∠CBD=()A.80°B.90°C.100°D.70°13.如图,直线AB∥CD,直线EF分别与AB、CD相交,则有()A.∠1+∠2﹣∠3=180°B.∠1﹣∠2+∠3=180°C.∠3+∠2﹣∠1=180°D.∠1+∠2+∠3=180°二.填空题(共17小题)14.已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为_______15.如图所示,已知∠AOB=50°,PC∥OB,PD平分∠OPC,则∠APC=_________度,∠PDO=_________度.16.如图所示,OP∥QR∥ST,若∠2=110°,∠3=120°,则∠1= _________度.17.如图,将长方形纸片的一角折叠,使顶点A落在A′处,EF为折痕,再将另一角折叠,使顶点B落在EA′上的B′点处,折痕为EG,则∠FEG等于_________.18.在同一平面内,如果有两条直线都与第三条直线垂直,那么这两条直线的位置关系是_________.19.已知,如图,AB∥CD,则∠α、∠β、∠γ之间的关系为20.如图,已知AB∥CD∥EF,则∠x、∠y、∠z三者之间的关系是_________.21.如图,已知AB∥CD,则∠1与∠2,∠3的关系是____ 22.如图,光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,这时光线的入射角等于反射角.若已知∠1=50°,∠2=55°,则∠3=_________°.24.(2011•西宁)如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=_________.25.(2010•宁德)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是_________度.226.将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是_________.27.(2009•邵阳)如图,AB∥CD,直线EF与AB,CD分别相交于E,F两点,EP平分∠AEF,过点F作FP⊥EP,垂足为P,若∠PEF=30°,则∠PFC=_________度.28.如图AB∥CD,直线EF分别交AB、CD于E、F,且EG 平分∠AEF,∠1=34°,则∠2=_________.29.(2009•常德)如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=_________度.30.如图,△ABC中,∠ABC与∠ACB的平分线相交于D,若∠A=50°,则∠BDC=_________度.1.如图所示,是用一张长方形纸条折成的.如果∠1=100°,那么∠2=_________度.2.将一长方形纸条按如图所示折叠,∠2=54°,则∠1=_________3.一个角的余角的2倍和它的补角的互为补角,那么这个角的度数为_________.4.如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=___ 5.如图,AB∥EF∥CD,∠ABC=50°,∠CEF=145°,则∠BCE= _________°.6.如图是一个破损的梯形零件,只有上底一部分,已经量得∠A=115°,∠D=100°,则梯形的另外两个角∠B=_________,∠C=_________.7.8条直线两两相交,且任3条直线不交于同一点,则共可形成()对内错角8.平面内5条直线两两相交,且没有3条直线交于一点,那么图中共有_________对同旁内角.9.四条直线两两相交,且任意三条不相交于同一点,则四条直线共可构成的同位角有()A24组B48组C12组D16组10.如果∠A与∠B的两边分别垂直,那么∠A与∠B的关系是_________.11.在直线AB上任取一点O,过点O作射线OC,OD,使OC ⊥OD,当∠AOC=30°时,∠BOD的度数是()12.若点A到直线l的距离为7cm,点B到直线l的距离为3cm,则线段AB的长度为()A.10cm B.4cm C.10cm或4cm D.至少4cm 13.如果平行直线EF、MN与相交直线AB、CD相交如图所示的图形,则共得同旁内角为()A.4对B.8对C.12对D.16对14.如图:两条直线相交于一点形成_________对对顶角,三条直线相交于一点形成_________对对顶角,四条直线相交于一点形成_________对对顶角,请你写出n条直线相交于一点可形成_________对对顶角.15.下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.2个B.3个C.4个D.5个16.如图,P为直线l外一点,A、B、C在l上,且PB⊥l,有下列说法:①PA,PB,PC三条线段中,PB最短;②线段PB 的长叫做点P到直线l的距离;③线段AB的长是点A到PB 的距离;④线段AC的长是点A到PC的距离.其中正确的个数是()A.1个B.2个C.3个D.4个18.(本题满分15分)已知,AB∥CD,(1)如图①,求∠1+∠2+∠3.(2)如图②,求∠1+∠2+∠3+∠4+∠5+∠6.(3)如图③,求∠1+∠2+…+∠n.3。